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Abstract: Groundwater has received increasing attention as an important strategic water 

resource for adaptation to climate change. In this regard, the separation of baseflow from 

streamflow and the analysis of recession curves make a significant contribution to 

integrated river basin management. The United States Geological Survey (USGS) RECESS 

model adopting the master-recession curve (MRC) method can enhance the accuracy with 

which baseflow may be separated from streamflow, compared to other baseflow-separation 

schemes that are more limited in their ability to reflect various watershed/aquifer 

characteristics. The RECESS model has been widely used for the analysis of hydrographs, 

but the applications using RECESS were only available through Microsoft-Disk Operating 

System (MS-DOS). Thus, this study aims to develop a web-based RECESS model for easy 

separation of baseflow from streamflow, with easy applications for ungauged regions. 

RECESS on the web derived the alpha factor, which is a baseflow recession constant in the 

Soil Water Assessment Tool (SWAT), and this variable was provided to SWAT as the 

input. The results showed that the alpha factor estimated from the web-based RECESS 

model improved the predictions of streamflow and recession. Furthermore, these findings 

showed that the baseflow characteristics of the ungauged watersheds were influenced by 

the land use and slope angle of watersheds, as well as by precipitation and streamflow. 
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1. Introduction 

Climate change influences the variability of hydrologic responses (i.e., precipitation amounts and 

frequencies, groundwater recharge and discharge, evapotranspiration, runoff processes, etc.) across the 

land surface [1,2]. Many studies have reported the steadily increasing variability of hydrologic 

responses to have negative impacts on water resources management, such as increased severity and 

frequency of natural disasters [3,4]. According to the fourth report of the Intergovernmental Panel on 

Climate Change (IPCC), it seems that climate change will aggravate water stress throughout the world, 

together with population growth, urbanization and changes in land use [5]. Especially the variability of 

water availability due to climate change has made it more difficult to manage water resources 

efficiently at the field scale in regions, such as the Republic of Korea (ROK), where flow-duration 

coefficients (indicating the rate of runoff) are relatively higher. Thus, available groundwater resources 

provide a natural means to alleviate the effects of the highly variable availability of water in ROK. 

Furthermore, climate change has more long-term and extensive impacts on groundwater than direct 

runoff, because the spatio-temporal variability of direct runoff is strongly affected by precipitation. 

Therefore, sustainable groundwater management is needed for adaptation to climate change. 

One of the highest priorities for sustainable groundwater management is to evaluate and appropriate 

the share of available groundwater that can be feasibly extracted. For this purpose, we need to estimate 

accurate amounts of groundwater recharge at the watershed scale. In particular, understanding the 

characteristics of baseflow could be the first step toward a better estimation of groundwater recharge. 

Great efforts in baseflow estimation using historical streamflow records are based on several 

approaches, such as the recession curve displacement (RCD) method [6–13], the curve-fitting  

method [14,15] and the water-table fluctuation method [16–19]. Furthermore, the Hydrograph 

Separation Program (HYSEP) [20], PART [10], RORA [10], BFLOW [11], the Web-GIS-based 

Hydrograph Analysis Tool [21,22] (WHAT) systems and tracer-based hydrograph separation  

methods [23,24] have been employed to separate baseflow from streamflow. For example, Kim [25] 

estimated groundwater recharge using the baseflow-recession curve and a rainfall-runoff model and 

made a comparison of the results from these two methods. Kim et al. [26] and Bae and Kim [27] 

estimated baseflow quantity and the groundwater recharge rate using the Natural Resources Conservation 

Service (NRCS)-Curve Number (CN) method and baseflow separation, respectively. Yang and Chi [28] 

obtained high correlation coefficients between baseflow rates and groundwater-table elevations in the 

analysis using WHAT. Among these baseflow separation models, WHAT is the web-based tool that 

can separate baseflow from direct runoff by using the Local Minimum method, BFLOW filter [29] and 

Eckhardt filter [30,31]. Eckhardt [28] proposed representative values of baseflow index (BFImax) for 

various aquifers, but the use of BFImax (i.e., the maximum of the long-term ratio of baseflow to total 

streamflow) values specific to regional situations is recommended instead. For this reason, a genetic 

algorithm-based BFImax analyzer was developed for providing the optimal BFImax parameter to 
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obtain local watersheds and aquifer characteristics for the long-term separation of baseflow from 

streamflow [22]. With antecedent soil moisture, groundwater storage, precipitation rates and amounts, 

the analysis of the recession curve plays an important role in understanding the baseflow 

characteristics at the watershed scale. For quantifying baseflow from hydrograph separation, the 

WHAT system [21,22,28] adopting the BFLOW parameter [11,32] has mainly been used. However, 

the digital filter [33] is limited in its consideration of hydrologic watershed features, because the digital 

filter algorithm simply separates low-frequency signatures from the high-frequency signatures through 

the signal-analysis process. 

The United States Geological Survey (USGS) RECESS model [10], one of the most widely used 

baseflow-separation programs, can perform more accurate baseflow separations compared to HYSEP 

or BFLOW, by constructing a master-recession curve (MRC) from streamflow. Furthermore, the 

recession index (K) derived from RECESS, which is the time required for the streamflow recession by 

one log cycle [10], can be used to identify the recession characteristics of watersheds in many parts of 

the world. Many watersheds within ROK are usually small and steep, because about 70% of ROK is 

mountainous. These geological characteristics can contribute to a shortened travel time of flow from 

one point of a watershed to another. The RECESS model has been suggested for analyzing long-term 

recession characteristics that had runoff histories [10]. The RECESS model is a long-standing method 

used to analyze recession in many other studies across the world, but its accessibility should be 

improved, while its applicability needs to be extended to include other operating systems and not only 

MS-DOS. One method to improve the applicability is a web-based system, which builds upon the  

field-scale RECESS model’s advantage for policymakers. Specifically, the web-based HYSEP [34] and 

WHAT systems [21] were developed and widely applied in various field-scale studies. The RECESS 

model provides the recession index (K), which can be used to estimate the alpha factor, a parameter 

also used in the Soil and Water Assessment Tool (SWAT). Therefore, the applicability of RECESS 

also needs to be extended to web-based systems. 

Typically, the RECESS baseflow separation requires observed streamflow data at gauge stations; 

the SWAT model [35] can simulate land-atmosphere processes (i.e., streamflow, baseflow, etc.) and 

has been used to predict hydrologic responses at ungauged watersheds. SWAT has an advantage when 

applied to large-scale ungauged watersheds by adapting auto-calibration tools, such as Parameter 

Solution (ParaSol) [36], Sources of Uncertainty Global Assessment using Split Samples 

(SUNGLASSES) [37,38], Shuffled Complex Evolution-University of Arizona (SCE-UA) [36] and 

SWAT-calibration and uncertainty procedures (CUP) [39]. For example, Park et al. [40] and  

Lee et al. [41] tested the applicability of SWAT to small watersheds and performed the estimation of 

runoff curve coefficients, respectively. Furthermore, Lee et al. [42] and Jung et al. [43] suggested 

parameter regionalization using SWAT at ungauged watersheds. If calibrated by observations of 

streamflow in a watershed at the gauged downstream, streamflow at the ungauged upstream can be 

predicted by the SWAT model. Currently, SWAT has adopted several auto-calibration tools for the 

training of SWAT parameters (e.g., curve number (CN), threshold depth of water in the shallow 

aquifer required for return flow to occur (GWQMN), baseflow recession factor (ALPHA_BF)). These 

calibration tools are designed to find the parameter sets satisfying specific given thresholds, from 

numerous parameter combinations, which may be physically meaningless. For this reason, it is 

difficult to consider the calibration characteristics of each SWAT parameter with the auto-calibration 
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tools. Among the SWAT parameters, the alpha factor, which is strongly dependent on stream 

recession, can be distorted by the calibration processes of the various other parameters related to 

streamflow, including peak flow and low flow. In such cases, it is difficult to obtain accurate 

streamflow recession during SWAT calibrations. In this regard, recession information from the 

observed streamflow can contribute to the improvement of streamflow prediction using SWAT for 

baseflow separation in an ungauged watershed. 

Accordingly, the objectives of this study are three-fold (Figure 1): (1) to develop the web-based 

RECESS model to build up the advantages of the RECESS program; (2) to evaluate the recession  

in streamflow prediction using SWAT at a gauged watershed; and (3) to estimate baseflow at 

ungauged watersheds. 

Figure 1. Primary objectives of this study. SWAT, Soil and Water Assessment Tool; 

WHAT, Web-GIS-based Hydrograph Analysis Tool. 

 

2. Materials and Method 

2.1. Development of the Web-Based RECESS Model 

The RECESS model was developed by the USGS and has been widely used to analyze recession 

characteristics using long-term watershed runoff. The original RECESS model on the MS-DOS system 

consists of several sub-programs. To run the model, users need to make some efforts to repeat the 

conventional manual input of commands and data. To overcome these inconveniences, we developed a 

web-based RECESS model to automate these processes through web programming languages, such as 

Practical Extraction and Report Language (PERL) [44], and Common Gateway Interface (CGI). 

Furthermore, the web-based interface adopted Google Maps, improving the usability, accessibility and 

practicability of RECESS. Particularly, the web-based model provides a function to download 

streamflow data from the USGS National Water Information System (NWIS) website based on Google 

Maps, allowing for the instantaneous use of actual data. Furthermore, streamflow data can be manually 

2) Evaluation of the recession in streamflow prediction using SWAT 
in a gauged watershed

Auto‐calibration of 12 parameters 
for the observations

Alpha factor estimated from RECESS 
and auto‐calibration of other 11 
parameters for the observations

Comparison of two scenarios (scenarios 1 and 2) for SWAT calibration

Scenario 1

Observation: Streamflow from 2001 to 2010

Scenario 2

• Link to USGS streamflow database  
• Provide a function to manually upload streamflow data at other stations
• Provide a function for alpha factor estimation
• Calculate alpha factor, recession period, and recession index on the web
• Provide immediate visualization of the results on the screen

1) Development of web‐based RECESS system

3) Estimation of streamflow and baseflow using WHAT in ungauged watersheds
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uploaded from other locations through the Internet, and parameters and results estimated from 

RECESS calculations can be made immediately available through the Internet. 

In general, SWAT [35] is a well-validated semi-distributed hydrological model for reproducing 

streamflow and baseflow based on atmospheric forcings and land-surface information. The SWAT 

model uses an alpha factor as the baseflow-recession constant in separating baseflow from streamflow. 

The newly developed web-based RECESS model derives the alpha factor using streamflow data 

obtained from gauged stations and provides its estimated value to SWAT as an input variable to 

improve the estimation of baseflow. 

In RECESS, the estimated recession index (K) and MRC contribute significantly to the  

baseflow-separation processes. 

As shown in Figure 2, the RECESS model involves three main computation steps: (1) separate the 

recession from the hydrograph (Figure 2a); (2) estimate K (Figure 2b); and (3) determine the MRC 

(Figure 2c). Here, the best-fit linear equation for K, which is represented by the dots in Figure 2b, as a 

function of LogQ based on the recession interval only (Equation 1). 

Figure 2. Calculation of the master-recession curve (MRC) [45]. 

 
(a) Selection of Recession (b) Determination of Recession Index (c) Determination of MRC

21 KLogQKt   (1)

where t is time in days, LogQ is the logarithm of the flow and K1 and K2 are regression coefficients. 

This equation is used to obtain the recession index (K) (days/log cycle), which is the absolute value of K1. 

Equation 2 shows how the recession period, T, is calculated when determining the MRC (Figure 2c), 

which is a polynomial expression of time as a function of LogQ. More detailed information on MRC is 

available in the study of Rutledge [45]. 

}{tC}(LogQ)B(LogQ) {A )t(tT 0
2

0 +×+×== --  (2)

where T  is the recession period, t  is time from 0t time at peak flow, A, B and C denote the coefficients 

related to the recession curve and Q is the streamflow. 

The web-based RECESS model developed in this study provides the alpha factor to extend the 

applicability of the RECESS model and increase convenience, while using SWAT-based applications. 

The alpha factor ( in the web-based RECESS model may be calculated using Equation 3. 
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where 0Q  is discharge at the recession starting point, tQ  is discharge at time t and K is the recession index. 

2.2. Description of SWAT and SWAT-CUP 

SWAT is a semi-distributed hydrological model through which we can run scenarios to investigate 

the effects of climate or land use, and it has been widely used as a rainfall-runoff model [46,47]. It requires 

lots of parameters (see Table 1) associated with hydrologic processes (i.e., rainfall-runoff, groundwater 

recharge/discharge, evapotranspiration) and requires calibration of parameter sets for accurate 

predictions. For the calibration of SWAT, auto-calibration tools have been developed and/or improved. 

Recently, to incorporate various calibration modules into SWAT for automating calibration processes 

or uncertainty analysis, SWAT-calibration and uncertainty programs (SWAT-CUP) [39] was 

developed. This program includes the sequential uncertainty fitting algorithm (SUFI2) [39], 

Generalized Likelihood Uncertainty Estimation (GLUE) [48], Parameter Solution (ParaSol) [36], 

Markov chain Monte Carlo (MCMC) [49] and particle swarm optimization (PSO) calibration [50]. 

Furthermore, by selecting the appropriate calibration algorithms corresponding to their needs, users 

can calibrate the SWAT model with observations at multiple outlets within a watershed. Moreover, 

user can manually adjust the period of observation used for calibration (e.g., the period of recession or 

flood). In this study, calibration was performed using the SUFI2 algorithm, which has been used to 

optimize SWAT parameters in many studies [39,51,52]. 

Typically, streamflow recession information contributes to the accuracy of baseflow estimations, 

because the natural flow mechanism in the stream can be taken into account by streamflow recession [53]. 

For example, a stream with a short recession period has a higher variability of seasonal baseflow 

influence than one with a long recession period. In particular, streamflow is seasonally dominated by 

direct flow or baseflow. Therefore, streamflow recession information can help to understand the 

seasonal roles of direct flow and baseflow to a stream for sustainable river management. In this 

context, the streamflow recession influences baseflow in calibrating rainfall-runoff models. Among the 

many parameters involved in the SWAT model, the alpha factor is one of the most important 

parameters, as it is the baseflow-recession coefficient. However, in SWAT calibrations conducted with 

the numerous parameter sets, the alpha factor can be distorted by various other parameters related to 

streamflow (i.e., peak and low frequencies), because multiple concurrent processes influence the 

recession. Considering this, accurate baseflow estimates might prove elusive to SWAT calibrations. 

Accordingly, uncertainties in streamflow predictions may propagate into the accuracy of baseflow 

estimations at ungauged watersheds, because baseflow is generally separated from the predicted 

streamflow derived from rainfall-runoff models. Therefore, streamflow predictions made using SWAT 

need to reflect the recession appropriately, by considering the alpha factor for accurate baseflow 

estimations at ungauged watersheds. Thus, we tested the prediction performances of SWAT with alpha 

factors using two methods: (1) the web-based RECESS and (2) the SWAT-CUP model. 

Uncertainties in the calibration and prediction processes of SWAT can be typically represented by 

several model evaluation statistics [54]. Specifically, the agreement of the calibrated and observed data 

can be assessed with Nash–Sutcliffe efficiency (NSE) [55], prediction efficiency (Pe) [56], persistence 
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model efficiency (PME) [57], percent bias (PBIAS) [57], daily root-mean square (DRMS) [57], root 

mean square error (RMSE), the RMSE-observations standard deviation ratio (RSR) [58], the coefficient 

of determination (R2) and mean square error (MSE). Of these methods, the R2, NSE and PBIAS were 

used to evaluate the SWAT calibrations applied to this study. The R2 measures the degree of 

collinearity between observations and simulations (Equation 4). 
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where yobs, i is the i-th observation, ysim, i is the i-th simulation, obsY  is the mean of the observations, 

simY  is the mean of the simulations and n is the total number of observations. 

The NSE is a normalized statistic that gives the relative magnitude of the residual variance 

compared to the observed variance [55] and is calculated by using Equation 5: 
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where one NSE value indicates perfect agreement between observations and simulations. 

PBIAS describes the average tendency of simulations to be over- or under-estimated compared to 

observation [57], and it may be calculated by using Equation 6: 
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where a zero PBIAS value indicates perfect agreement between observations and simulations. Positive 

and negative PBIAS values indicate model bias caused by under- and over-estimations, respectively. 

2.3. Descriptions of the Study Area and SWAT Input Data 

Since July, 2012, Anabaena, a kind of blue green algae, has bloomed at the Euiam dam in the 

upstream of North Han River (ROK). The major causes might be abnormally high temperature and 

decreased and less frequent rainfall compared to historical years [59]. Water quantities and quality and 

temperature at the Euiam dam are usually affected by water discharge from the Chuncheon and Soyang 

dams. The Soyang dam is the largest multipurpose dam in ROK for the generation of hydropower, 

flood control and water supply. Thus, the Soyang dam has a large storage capacity with good water 

qualities compared to other dams within the Han River basin [60]. For these reasons, the regulation of 

water discharge from the Soyang dam has become a politically and environmentally sensitive issue, as 

it represents one of the ways to mitigate algae blooms at the Euiam dam during the dry seasons. Thus, 

we selected the Soyang dam watershed for testing the newly developed web-based RECESS. The 

inflow data (flow into the Soyang dam) is retrieved from the Soyang dam gauge station. These inflow 
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data were used to calibrate the SWAT model. Note that the Chuncheon dam watershed was excluded 

from this study, because the water quantities and quality for this watershed are significantly influenced 

by regulated discharge from the Hwacheon dam located further upstream. 
The Soyang dam watershed is located in the Northeast of ROK, with a total area of about 2694 km2. 

The watershed boundary length is 386.6 km, and the average elevation is about 650.5 m with an 
average slope of 40.6% (Figure 3). In addition to these geological specifications, 92% of the entire 
watershed is covered by forest in that the relatively low streamflow discharge (approximately  
3.29 m3/s) during the dry seasons is shown. The Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model (GDEM) were used in this study (Figure 4a), 
and its resolution is 30 m × 30 m. ASTER GDEM is a product of the Ministry of Economy, Trade and 
Industry (METI), Japan, and the National Aeronautics and Space Administration (NASA), the United 
Sates (U.S.). Furthermore, the intermediate classified land use map is available from the Water 
Management Information System (WAMIS), as shown in Figure 4b. Land use at the Soyang dam 
watershed is composed of 91.8% forest (FRST), 1.7% water (WATR), 0.7% residential-medium 
density (URMD), 0.4% agricultural land-clos-grown (AGRC), 0.1% wetlands-forested (WETF), 0.5% 
pasture (PAST), 2.0% rice (RICE) and 2.7% agricultural land-row corps (AGRR), respectively. 
Furthermore, a reconnaissance soil map provided by the Rural Development Administration was used 
(Figure 4c). Figure 4c shows a brief descriptions of soil type which are as follows: Af (alluvial soils 
and river wash, flood plains), An (complex of soils, narrow valleys), Ma (lithosols, siliceous 
crystalline), Mm (lithosols, micaceous and hard siliceous), Mu (brown forest soils and lithosols, 
undifferentiated), Ra (red-yellow podzolic soils, siliceous crystalline), Re (lithosols, severely eroded, 
siliceous) and Rocky (rocky lands).We collected daily atmospheric observations (e.g., precipitation, 
maximum and minimum temperature, solar radiation, humidity, wind speed) from the four climate 
gauge stations within the Soyang dam watershed. 

Figure 3. Location of the study area. The numbers from 1 to 27 indicate the sub-watersheds 

within the Soyang dam watershed. 

 

Soyang dam 

Euiam dam

Chuncheon dam

Hwacheon dam
Inje

weather station

Chuncheon
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Hangye-ri
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: weather station
: dam
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Figure 4. Input parameters of the SWAT model within the Soyang dam watershed. 

  
(a) DEM (b) Land Use Map (c) Soil Map 

2.4. Evaluations of the SWAT Recession Curve Based on the SWAT-CUP and Web-Based RECESS Models 

We calibrated the SWAT model using SWAT-CUP with the runoff observed during the entire  

15-year period (1996–2010) at the Soyang dam watershed. The observed runoff data for the initial five 

years were used for a warm up period of the model. Furthermore, we calibrated the model parameters 

using the inflow observed during the 10-year simulation period (2001–2010) at a Soyang dam gauge 

station (Figure 3). During the calibration processes, the NSE statistic was used as an objective measure 

of accuracy [54,55,61]. To allow the 12 model parameters to converge to their optimized values, 

differences between simulations and observations were minimized during the calibration (Table 1). 

Table 1. Initial condition of the parameters for the SWAT-calibration and uncertainty 

procedures (CUP) auto-calibration. NRCS, Natural Resources Conservation Service. 

Parameters Descriptions Variation Methods 
Lower 
Bound 

Upper 
Bound 

CN2 
NRCS runoff curve number for moisture 
Condition II 

Multiply by value −0.15 0.08 

ALPHA_BF Baseflow alpha factor Replaced by value 0.00 1.00 

GW_DELAY Groundwater delay Replaced by value 180.00 480.00 

GWQMN 
Threshold depth of water in the shallow 
aquifer required for return flow to occur 

Replaced by value 0 5000 

GW_REVAP Groundwater “revap” coefficient Replaced by value 0.01 0.14 

ESCO Soil evaporation compensation factor Replaced by value 0.80 1.00 

CH_N2 Manning’s “n” value for the main channel Replace by value 0.10 0.50 

CH_K2 
Effective hydraulic conductivity in main 
channel alluvium 

Replace by value −16.00 82.00 

SOL_AWC Available water capacity of the soil layer Multiply by value (%) −0.25 0.20 

SOL_K Saturated hydraulic conductivity Multiply by value (%) −0.94 0.22 

SOL_BD Moist bulk density Multiply by value (%) −0.04 0.88 

SFTMP Snowfall temperature Replaced by value −1.29 6.19 
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2.5. Estimating Baseflow by Combining SWAT and WHAT at Ungauged Watersheds 

After using the observations collected at the gauged watersheds to ensure well-calibrated SWAT 

parameters, these parameters were used to predict streamflow at each of the ungauged sub-watersheds 

located within the Soyang dam watershed (Figure 3): Yongdae-ri, Han-gye-ri, Dong-myeon and Jaun-ri. 

Individual areas of the selected ungauged watersheds are 76.85 km2 for Yongdae-ri, 55.58 km2 for 

Hangye-ri, 51.51 km2 for Eoron-ri and 131.34 km2 for Jaun-ri, respectively. The resulting streamflow 

estimates were uploaded to the online WHAT system [62] as input data for baseflow separation. 

3. Results and Discussion 

3.1. Development of the Web-Based RECESS Model and the Estimation of Alpha Factor 

To extend the availability and applicability of the existing RECESS, this study automated  

user-access and output processes through a web-based interface. Furthermore, by basing the interface 

on Google Maps (Figure 5a), actual streamflow data at the USGS gauge stations selected by users can 

be used nearly instantaneously [62]. As shown in Figure 5a, the USGS gauge stations are currently 

only linked by bullet points for the U.S. state of Indiana. The USGS gauge stations for other states 

require that a station code be entered for baseflow separation. For countries other than the U.S., the 

interface provides additional functions that allow users to upload streamflow data directly to the 

modeling environment, upon which these data can be immediately processed (Figure 5b). Figure 5b 

shows a screenshot of the web-based RECESS while uploading Soyang dam watershed streamflow 

data. Furthermore, Figure 5c shows the alpha factor, the K-value (recession index) and recession 

period for the Soyang dam watershed, calculated by the web-based RECESS model. The estimated 

alpha factor can then be input into the SWAT model as the Alpha_BF parameter. For the estimation of 

the alpha factor, we applied our proposed system to the Soyang dam watershed using the inflow data 

obtained during the 10-year simulation period (2001–2010). As shown in Figure 5c, the web-based 

RECESS model produced recession period of 8.8 (days/log cycle), recession index (K) of 0.89777, and 

alpha factor (of 0.108 for Soyang dam gauge station. 

The estimated alpha factor was 0.108 day−1 for the streamflow observed at Soyang dam gauge 

station (Figure 5b). In this study, the application of the web-based RECESS model to the Soyang dam 

watershed requires manual uploading of streamflow data for estimation of the alpha factor, because the 

web-based RECESS model is currently only linked to USGS gauge stations. However, after clicking 

the button “Enter Flow & Run RECESS” in Figure 2b, streamflow and drainage area data can be easily 

uploaded by using the copy/paste functions. The main advantages of the newly developed web-based 

RECESS model are: (1) to extend the accessibility of the RECESS model through the Internet; and  

(2) to enhance the efficiency of user-access and output processes related to analyzing and deriving 

characteristics of streamflow recession. More importantly, the alpha factor obtained by the web-based 

RECESS model may be used for the determination of streamflow recession in the process of  

SWAT calibration. 
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Figure 5. The web-based RECESS model. 

 

3.2. Impact of the Alpha Factor on the SWAT Calibration Using SWAT-CUP 

The SWAT-CUP program was used to calibrate the SWAT model for the 10-year simulation period 

(2001–2010) in Scenarios I and II, by using daily-observed streamflow. For Scenario II, the alpha 

factor obtained from the web-based RECESS model was used, which is also the one of the SWAT 

input. Furthermore, the optimal values of the other 11 parameters were estimated by minimizing the 

differences between simulated and observed streamflow (indicated by maximal NSE and minimal 

absolute PBIAS) during the calibration of model parameters, as defined in the SWAT-CUP program. 

Table 2 presents the results of optimized parameters during the recession processes for Scenarios I and 

II. The alpha factors estimated for Scenarios I and II were considerably different. That is, the alpha 

factor for Scenario I ( is considerably higher than Scenario II (. Generally, alpha 

factors in the range of 0.1–0.3 indicate a slow groundwater recharge response, while alpha factors in 

the range of 0.9–1.0 indicate a rapid recharge response. The auto-calibration used for Scenario I 

resulted in SWAT streamflow predictions with much larger alpha factor ( than Scenario II 

(. Therefore, Scenario I indicates a more rapid groundwater recharge response than Scenario 

II. However, because the SWAT model is a semi-distributed model and, thus, can be affected by the 

sub-watershed of a watershed while estimating the alpha factor and the RECESS model estimates a 

single integrated alpha factor based on a hydrograph at a single outlet of a watershed, the alpha factors 

obtained from the SWAT model and the RECESS model can be different. 
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Table 2. Parameters calibrated by SWAT-CUP for Scenarios I and II. 

Parameters Scenario I Scenario II 

CN2 −0.030 −0.070 
ALPHA_BF 0.663 0.108 
GW_DELAY 212.700 232.230 

GWQMN 4725.000 4980.108 
GW_REVAP 0.118 −0.239 

ESCO 0.961 0.915 
CH_N2 0.493 0.220 
CH_K2 3.100 −60.429 

SOL_AWC(1) 0.247 0.205 
SOL_K(1) 0.040 0.531 

SOL_BD(1) 0.419 0.336 
SFTMP −0.450 4.451 

Figure 6 presents the observed and simulated streamflow results at a logarithmic scale for  

Scenarios I and II, respectively. In Figure 6, the simulated streamflow shows less fluctuation in the 

vertical distribution than the observed streamflow, for both Scenarios I and II. From the comparison of 

Scenarios I and II, it can be seen there seems to be no significant difference between the simulations 

used for Scenarios I and II, although low-flow was captured slightly better by Scenario II. The SWAT 

simulations used for Scenarios I and II produced average annual streamflow of 1048.74 mm·year-1 and 

980.25 mm·year−1, respectively (Table 3). Considering the observed average annual streamflow of  

874.04 mm·year−1, these quantitative results clearly show that Scenario II produced more accurate 

simulations of streamflow. However, both Scenarios I and II overestimated streamflow compared to 

the observed streamflow. Calibrations resulted in high NSE values of 0.818 and 0.822, for Scenarios I 

and II, respectively. Moreover, PBIAS values were −20.0% and −12.2%, for Scenarios I and II. 

According to the SWAT performance rating shown in Table 4 [54], the acceptable NSE and PBIAS 

criteria ensuring satisfactory calibration are NSE ≥ 0.5 and PBIAS ≤ ±25%, respectively. Based on 

these criteria, the SWAT performance ratings for Scenario I are “very good” according to NSE (0.818) 

and “satisfactory” according to PBIAS (−20.0%). For Scenario II, the SWAT performance ratings are 

“very good” according to NSE (0.822) and “good” according to PBIAS (−12.2%). Here, the PBIAS 

statistic indicates that the simulated streamflows were overestimated compared to observed 

streamflows and that Scenario II overestimated these streamflows less severely. However, 

uncertainties that have propagated into streamflow predictions may still exist, because other model 

parameters might affect the model outputs (e.g., the GWQMN and CH_K2 parameters in Table 2). 

Table 3. Result for the observed and simulated streamflows based on SWAT-CUP.  

NSE, Nash–Sutcliffe efficiency; PBIAS, percent bias. 

Scenarios AAS (mm·year−1) R2 NSE PBIAS (%) 

I 1048.74 0.82 0.818 −20.0 
II 980.25 0.83 0.822 −12.2 

Observation 874.04 - - - 
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Figure 6. Results from the SWAT calibrations for the scenarios. 

 

Table 4. Reported performance ratings for the NSE and PBIAS statistics [54]. 

Method Value Performance Rating Modeling Phase Reference 

NSE 

NSE ≥ 0.65 Very good Calibration and validation Saleh et al. [63] 

0.54 < NSE ≤ 0.65 Adequate Calibration and validation Saleh et al. [63] 

NSE > 0.50 Satisfactory Calibration and validation Santhi et al. [56] 

PBIAS 

PBIAS < ±10% Very good Calibration and validation Van Liew et al. [64]

±10% < PBIAS < ±15% Good Calibration and validation Van Liew et al. [64]

±15% < PBIAS < ±25% Satisfactory Calibration and validation Van Liew et al. [64]

Note: AAS is the average of annual streamflow per unit area. 

In this study, there is a significant difference between the PBIAS statistics for Scenarios I and II. 

However, the NSE statistics are similar for both scenarios. This is possibly because an integrated alpha 

factor was applied to a semi-distributed model at a single outlet of a watershed in Scenario II. 

Consequently, the SWAT-CUP program would estimate a higher alpha factor for Scenario I due to  

sub-basin contributions. In particular, the dominant topographic characteristic of the Soyang dam 

watershed (i.e., steeper up- than down-stream) can be a source of uncertainty propagating into the 

alpha factor estimated in the SWAT simulations used for Scenario II. Moreover, although PBIAS was 

higher for Scenario II, this result is likely not solely attributable to the alpha factor, because other 

SWAT parameters also play important roles in streamflow simulations. Especially GWQMN and 

CH_K2 (Table 1) contribute significantly to streamflow, as well as to baseflow, because groundwater 

recharge only occurs when the aquifer level reaches a threshold value of GWQMN (Table 1), while 

high values of CH_K2 (Table 1) lead to quick displacement of water from the streambed to the 

subsurface of a stream or river [65,66]. That these influences should be considered is confirmed by 

Table 2, which shows high variation in the GWQMN and CH_K2 parameters for both scenarios (Table 2). 

Figure 7 shows the observed- and simulated streamflow recessions for Scenarios I and II. Simulated 

recessions were in better agreement with the observed recessions for Scenario II. That is, the 

simulations of recessions were performed more accurately for Scenario II, for both high and low 
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streamflows (Figure 7). It seems that the auto-calibration scheme for Scenario I has a lack of spatially 

distributed discharge observations and inadequate and/or unphysical initial parameter values. Figure 7 

shows that the recession simulations were in better agreement with the observed recessions for 

Scenario II (with a low alpha factor: 0.108), compared to Scenario I (with a high alpha factor: 

0.663). Thus, our findings show that if calibrated for recession periods with a fixed alpha factor, 

streamflow recession was more accurately predicted by the SWAT model. These findings indicates 

that the SWAT model will be useful for the planning of sustainable groundwater management. 

Figure 7. Observed and simulated streamflow recessions for Scenarios I and II, indicated 

by blue triangles, green dots and red diamonds, respectively; with streamflow (m3·s−1) on 

the y-axis and time on the x-axis (day). 

(a) 31 July 2001–12 August 2001 (b) 23 July 2002–2 August 2001 

(c) 19 September 2003–9 October 2003 (d) 18 July 2004–25 July 2004 

(e) 12 April 2005–18 April 2005 (f) 29 July 2006–12 August 2006 

(g) 20 July 2007–28 July 2007 (h) 31 September 2008–14 September 2008 
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Figure 7. Cont. 

(i) 28 August 2009–15 September 2009 (j) 27 May 2010–6 June 2010 

3.3. The Estimation of Baseflow at Ungauged Watersheds 

For the baseflow separations, we used the web-based RECESS derived alpha factor of 0.108 to 

predict the daily streamflow at the ungauged watersheds using SWAT (Figure 8). The frequencies and 

intensities of atmospheric forcings collected at multiple gauged weather stations were spatially and 

temporally variable, and baseflow estimates thus showed different trends for individual ungauged 

watersheds (Table 5). The average annual precipitation amounts (P in Table 5) for Yongdae-ri, 

Hangye-ri, Eoron-ri and Jaun-ri were 1355.3 mm·year−1, 1376.4 mm·year−1, 1363.1 mm·year−1 and 

1838.1 mm·year−1, respectively. Based on the daily streamflow predicted by SWAT, the average 

annual streamflows (S in Table 5) for Yongdae-ri, Han-gye-ri, Eoron-ri and Jaun-ri were estimated to 

be 1021.0 mm·year−1, 904.9 mm·year−1, 920.1 mm·year−1 and 1443.1 mm·year−1. Then, these 

predicted daily streamflows were used as input to the WHAT system for estimation of the baseflow at 

the ungauged watersheds. The baseflow estimates (B in Table 5) for the four ungauged watersheds 

range in 280.0 mm·year−1 (minimum, Eoron-ri) to 602.8 mm/year (maximum, Jaun-ri). High ratios of 

streamflow to precipitation (S/P in Table 5) were found for Jaun-ri and Yongdea-ri, because these 

watersheds have lower evapotranspiration (ET in Table 5). The ratios of baseflow to average annual 

precipitation (B/P in Table 5) for Yongdae-ri, Hangye-ri, Eoron-ri and Jaun-ri were 22.8%, 22.5%, 

20.5% and 32.8%, respectively. The annual precipitation, streamflow and baseflow were highest in 

Jaun-ri, which has a wider area and a milder slope than the other watersheds. Furthermore, Yongdae-ri 

and Eoron-ri have lower ratios of baseflow to streamflow (B/S in Table 5 and Figure 8) than Hagye-ri 

and Jaun-ri. Figure 8 shows that as B/S becomes higher, the fluctuation in temporal baseflow 

distribution becomes lower, indicating a dependency. A comparison of Yongdae-ri and Eoron-ri shows 

that these two ungauged watersheds have large differences in streamflow, baseflow, streamflow per 

precipitation and baseflow per precipitation, although similar in precipitation. Youngae-ri has greater 

forest area, less evapotranspiration, a steeper slope and is less urbanized than Eoron-ri. These findings 

might suggest that the baseflow component is affected not only by precipitation, evapotranspiration 

and average streamflow, but also by topographical characteristics and land use (Table 5). 
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Figure 8. Total streamflow and baseflow at log-scale in the ungauged watersheds:  

(a) Yongdae-ri; (b) Hangye-ri; (c) Eoron-ri; (d) Jaun-ri. 

(a) Yongdae-ri (B/S: 30.2%) 

(b) Hangye-ri (B/S: 34.2%) 

(c) Eoron-ri (B/S: 30.4%) 

(d) Jaun-ri (B/S: 41.8%) 
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Table 5. Watershed characteristics and predicted hydrological responses for individual 

ungauged watersheds. URMD, residential-medium density; FRST, forest; AGRR, 

agricultural land-row corps. 

Watershed 
Area 

(km2) 

Mean 

slope 

(%) 

Land use 
P 

(mm·year−1)

ET 

(mm·year−1)

S 

(mm·year−1) 

B 

(mm·year−1)

S/P 

(%)

B/P

(%)

B/S

(%)
URMD

(%) 

FRST 

(%) 

RICE 

(%) 

AGRR 

(%) 

Others 

(%) 

Yongdae-ri 80.47 41.70 0.86 95.50 1.16 1.97 0.51 1355.3 182.1 1021.0 308.5 75.3 22.8 30.2

Hangye-ri 54.93 50.14 0.14 98.32 0.81 0.51 0.22 1376.4 205.1 904.9 309.8 65.7 22.5 34.2

Eoron-ri 51.51 38.51 1.95 90.57 2.71 3.93 0.84 1363.1 200.7 920.1 280.0 67.5 20.5 30.4

Jaun-ri 134.43 36.34 0.98 96.63 1.05 1.16 0.18 1838.1 140.8 1443.1 602.8 78.5 32.8 41.8

Notes: P, precipitation; ET, evapotranspiration; S, streamflow; B, baseflow. 

4. Conclusions 

Groundwater is an important water resource to build up the capacity to adapt to climate change, and 

scientific information on groundwater characteristics can be used to implement sustainable river 

management. To promote the capacity of the RECESS program to analyze groundwater characteristics 

in practice, the web-based RECESS model was developed in this study. Like other gauge stations that 

provide climatic and hydrologic data, this model can provide information on the alpha factor ().  

This study evaluated the alpha factor obtained from the web-based RECESS model as an input, not as 

a parameter in SWAT applications. To this purpose, the alpha factor derived from the web-based 

RECESS model was applied to the SWAT model for the separation of baseflow from streamflow. 

Specifically, we assessed the impacts of streamflow recession on the baseflow characteristics by 

treating the alpha factor derived from the web-based RECESS model as an input to the SWAT model. 

The main conclusions obtained from this study can be summarized as follows. 

 The web-based RECESS model and SWAT-CUP produced alpha factors of 0.108 and 0.663, 

respectively. These alpha factors were estimated by using two different methods, which was 

reflected by the considerable differences between them, by the influences on accuracy with 

which streamflow could be predicted. This might indicate that SWAT-CUP has a limited ability 

to correctly simulate the characteristics of streamflow recession due to the weighted  

auto-calibration on the entire streamflow, insufficient observation and (consequently) the lack of 

a spatially representative distribution of streamflow data. 

 The alpha factor obtained from the web-based RECESS model was applied to the calibration of 

SWAT for streamflow recession periods. As a result, the web-based RECESS model produced 

good calibration results (NSE: 0.82; PBIAS: −12.2%). The application of the web-based 

RECESS alpha factor to the SWAT calibrations for streamflow recession periods (Scenario II) 

resulted in better predictions of streamflow recession (Figure 7). Comparing the individual 

simulations using Scenarios I and II, Scenario II predicted the recession of low flow more 

accurately than Scenario II. Based on these findings, this study revealed a significant effect of 

recession on baseflow. This conclusion is consistent with previous studies that have found the 

recession to play a major role in baseflow separation [67,68]. However, for better calibration, 
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spatially distributed alpha factors and other parameters associated with groundwater that could 

affect SWAT simulations should be considered. 

 Initially, it was expected that baseflow would be mainly affected by rainfall and streamflow. 

However, our findings showed different results compared to those expected (see Section 3.3). 

For two watersheds that were different in terms of land use, soil texture and topography, similar 

precipitations produced significant differences in baseflow. 

 This study showed that the ratio of baseflow to streamflow (B/S) affected the temporal baseflow 

distribution in ungauged watersheds. As B/S is higher, the fluctuation of the temporal baseflow 

distribution becomes lower. 

Based on these findings, the application of the web-based RECESS alpha factor to auto-calibrations 

for the estimation of recession periods could improve streamflow prediction. Furthermore, the web-based 

RECESS model can provide easy access to recession information (alpha factor), contribute to 

extending the applicability of the original RECESS model, help increase its accessibility and increase 

the convenience with which hydrological modeling may be performed. We expect that the web-based 

RECESS model will be useful in the identification of the roles of streamflow and baseflow in 

integrated river basin management and sustainable watershed development. 
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