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Abstract: Forty years ago, the results of modeling, as presented in The Limits to Growth, 

reinvigorated a discussion about exponentially growing consumption of natural resources, 

ranging from metals to fossil fuels to atmospheric capacity, and how such consumption 

could not continue far into the future. Fifteen years earlier, M. King Hubbert had made the 

projection that petroleum production in the continental United States would likely reach a 

maximum around 1970, followed by a world production maximum a few decades later. 

The debate about “peak oil”, as it has come to be called, is accompanied by some of the 

same vociferous denials, myths and ideological polemicizing that have surrounded later 

representations of The Limits to Growth. In this review, we present several lines of 

evidence as to why arguments for a near-term peak in world conventional oil production 

should be taken seriously—both in the sense that there is strong evidence for peak oil and 

in the sense that being societally unprepared for declining oil production will have  

serious consequences. 
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1. Introduction 

The depletion of non-renewable natural resources was clearly seen to be one of the key factors in 

The Limits to Growth [1]. Due to the high level of aggregation used in the first versions of the World3 

model, there was no specific analysis of individual resources, such as oil. However, soon after the 

publication of Limits to Growth (LtG), the world experienced the first oil shock; the consequences of 

natural resource shortage, albeit artificially induced, became painfully clear.  
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There have been two updates published by some of the authors of the original LtG, as well as 

several other reviews of LtG. Some attempts were made to look more specifically at individual 

resources, going beyond the highly aggregated variable of the original LtG [2,3]. To a lesser degree, 

assessments were also made of the reliability of the projections made in the original work [4]. 

Fifteen years prior to LtG, M. King Hubbert had also used the simple idea that unlimited 

exponential growth cannot be maintained in a finite system to project that oil production in the 

continental US would likely reach a maximum in the late 1960s and go into decline thereafter, 

depending on the assumed total amount of recoverable oil [5]. Much as there are many who deny the 

possibility of biospheric limits to growth in general, often expressed through misrepresentations of the 

techniques and message of LtG, Hubbert’s work has also been maligned. Although US production of 

crude oil did peak in 1970, the potential for an extension of “peak oil” to world resources has not been 

part of public consciousness. The goal of this review is to approach the idea of peak oil from different 

angles and to construct a solid case that there is enough evidence of a near-term peak in world crude 

oil production that one cannot afford not to take the possibility seriously. 

The concept of peak oil is unfortunately surrounded by a large cloud of uncertainty. In fact, trying 

to understand the exact details of the timing of peak production for any fossil fuel resource is difficult, 

partly because the size of the resource in the ground is poorly known. Beyond questions of geology, 

there are multiple interactions between economic drivers and oil production, with GDP growth and oil 

consumption being highly correlated; in addition, there are greater incentives to explore for more oil 

driven by high prices in the face of strong demand. Eventually, there will also be viable large-scale 

substitutes available for oil, although replacing a raw material that is so integral to industrialized 

society will take a long period of time. These properties of complex interacting systems are at the core 

of the LtG analysis. In the end, however, it is difficult to deny that a finite resource must at some point 

reach a maximum in extraction rate, after which production will decline. Extraction of conventional oil 

commenced in 1859 and has now reached a production rate of approximately 27 Gb/a  

(billion barrels per year) over the past several years [6]. (Here, we define conventional oil as crude oil 

plus lease condensate and do not include in this category extra-heavy oil, oil sands, natural gas liquids, 

light tight (shale) oil or biofuels; one barrel is 42 gallons or 159 liters.) The importance of the potential 

for a near-term peak in world oil production is obvious: modern society has grown so dependent on 

supplies of liquid fuels that a lack thereof would likely have severe consequences for economic growth 

and development [7,8]. As has been frequently pointed out by other authors [9], the timing of peak 

production compared to society’s prior preparations is the key issue. 

The discussion of finite fossil-fuel resources goes back to the late-eighteenth century, when William 

Stanley Jevons speculated that British production of coal, which had been increasing at a fairly 

constant exponential growth rate for many decades, could not possibly maintain that same growth far 

into the future [10]. Jevons’s son took up the same issue a half-century later and, with the help of the 

British Geological Survey, came to the conclusion that Great Britain had large enough resources to 

comfortably last a few centuries, even in the face of increasing demand [11]. In fact, production of coal 

did peak in Britain at about the time of the First World War and has declined ever since. At the same 

time, however, it is interesting to note that Jevons was worried about coal production exactly because 

he thought of coal as being a necessary pre-requisite for British economic might and could not 

conceive of a substitute that would be as useful and plentiful; even mentioning oil as a resource that 
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would not be able to take the place of coal. Thus, we have in the writings of one family of economists 

and natural scientists the essence of the tension seen in the current peak oil debate; a warning about the 

danger of depleting crucial finite resources and the overconfidence of projections about plentiful future 

resources. 

As has often been pointed out [12,13], from the earliest days of oil production, there have been 

claims that the world would be running out of oil “soon”. While it is clear that the world has not run 

out of oil, Hubbert’s projections for the US, correct in the timing of peak production and within about 

10% of the peak rate of production, served to temporarily generate discussion about finite resources 

and the need for alternatives. In 1998, Colin Campbell and Jean Lahererre [14] published an article 

that catalyzed a much more serious interest in peak oil. After that article, at least 25 books were 

published on various aspects of peak oil by 2007 (see [15] for a list). Interestingly, until about 2007, 

there were very few peer-reviewed publications about peak oil; since then, the list of papers has 

exploded. Many of the papers were reviewed or referenced in a 2009 report by the UK Energy 

Research Center [16], and the number has continued to increase rapidly since that report was 

published. At the same time, we have seen in the past few years renewed rejections of the immediacy 

of a peak in world oil production, partially because of the emergence of the techniques of hydraulic 

fracturing (fracking) and horizontal drilling to extract light oil from tight formations. Although this has 

currently lead to an increase in production of oil in the United States, even optimistic estimates of the 

total resource available do not lead to the conclusion that this source will provide more than a 

temporary relief of pressure on world oil supplies. 

In the following discussion of ten reasons to take peak oil seriously, the focus will be on production 

of crude oil. While it is clear that there are other sources of liquid fuels (oil sands, oil from tight shale 

formations, natural gas liquids, biofuels, etc.) and that to some extent these will be viable substitutes 

for crude oil, for the most part, each of these represents an expensive alternative to past supplies of 

relatively cheap crude oil and each requires significantly higher energy inputs to extract and process, 

thereby decreasing the net amount of energy available for society. Once cheaply available 

conventional oil is no longer available, the dynamics of the energy system change. The arguments are 

presented in separate sections, with no particular order of importance, followed by a discussion of peak 

oil consequences and a conclusion. Figure 1 shows the current distribution in world production of 

various liquid fuel resources. 
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Figure 1. Data from the US Energy Information Administration [6]; the relative shares of 

different liquid fuels in 2011. 

 

2. Ten Reasons to Take Peak Oil Seriously 

2.1. Stagnating Supplies 

World production of crude oil has not increased for over seven years, through periods of both low 

and high economic growth. Figure 2 shows data from the US Energy Information Administration for 

world production of both crude oil alone (blue) and for total liquids (red) [6]. Looking first at the 

bottom curve, production of crude oil did not change at all (in a statistically significant sense) during 

the strong economic growth of 2005–2008. There was a decline in production, driven by consumption 

decreases, in 2008–2009, followed by a slow increase back to pre-economic-downturn levels.  

Turmoil in the Middle East and North Africa contributed to the subsequent decrease in production in 

early 2011. In the upper curve in Figure 2, there is a slight increase in total world supply of liquid 

fuels. Therefore, given the non-increasing production of conventional oil, the increase in volume of 

total liquids must come from other sources; the data show increases, particularly in natural gas liquids, 

biofuels and, to a lesser extent, heavy oil, tar sands and shale oil. 
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Figure 2. World supply of conventional crude oil (bottom curve) and total liquids, 

including biofuels, oil sands, shale oil, natural gas liquids and refinery processing gain (top 

curve). Data from US Energy Information Administration, International Energy  

Statistics [6]. 

 

As this trend toward liquid fuels other than conventional crude oil continues, two important points 

are worth noting. First, in Figure 2, we show a volumetric measure of fuels, as opposed to gross energy 

content of those fuels. Both natural gas liquids and biofuels have volumetric energy densities that are 

only 60% that of conventional crude oil; demand is for the actual useful energy provided by fuels and, 

therefore, requires additional volume if energy density decreases. Plotting energy vs. time shows a 

slightly smaller upward trend, but this discrepancy will increase with time in the future.  

The second point is that nonconventional liquid fuels, including biofuels, require higher energy inputs 

for extraction, processing, refining and transport than conventional oil. Although some of the energy 

input may be in the form of carriers other than the liquid fuels themselves, the move toward 

nonconventional fuels points to a need to account for net energy use for each sector, since it is the total 

energy system that is of fundamental interest. Furthermore, even in the case of conventional oil 

production, the energy return on energy invested (EROEI) in extraction has been decreasing over time, 

implying that a given amount of final liquid fuel energy (mainly for transportation, but in some areas, 

for electricity generation as well) itself requires energy consumption that would otherwise be available 

for other sectors of the total system [17]. 

An argument against concern about peak oil is precisely that we will find suitable, if not perfect, 

substitutes for conventional oil when the economic and technological conditions are ripe. One can turn 

this logic around, however, by saying that the very fact that oil sands, shale oil, corn-to-ethanol and 

coal-to-liquids are being taken seriously, although these are expensive, input-energy-intensive 

substitutes, is likely a signal that the world is both running up against limits to conventional crude oil 

production expansion and would like to supply the infrastructure already in place. The plot in Figure 2 

is scaled from 60 Mbpd to 100 Mbpd to show a relevant range of production. In 1980, world 

production of conventional oil was approximately at the lower end of this range, thus illustrating the 

amount of growth occurring after the oil shocks of the 1970s. The EIA projects [18,19] that world 
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liquid fuel demand will be approximately 95 Mbpd within one decade, a growth rate approximately 

double that of the last several years. 

2.2. Rising Prices 

Crude oil prices have increased dramatically since the late 1990s, with interruptions only during 

periods of economic recession, as shown in Figure 3. Although there are claims that this price increase 

was due to either speculative trading activity or to deliberate withholding of oil from the world market 

by quasi-monopolistic players, the same price-increase behavior would be expected if nearing a peak 

in production. Published literature investigating the causes of recent price increases tend to find only a 

small role for speculation and a much larger role being played by more fundamental supply and 

demand factors [7,20–27]. 

Figure 3. Yearly average Brent crude oil price from 1990–2011. Data from BP Statistical 

Review of World Energy, 2012. Data are in $US2011 

 

We can demonstrate this point more concretely by looking at the tight historical correlation between 

oil consumption and GDP, shown in Figure 4 (a) with data from the past 25 years  

(more generally, the correlation is between energy and GDP, but oil has a similar pattern). In what is 

presented here, we used some simple arguments that are borne out by detailed econometric studies, 

many of which are reviewed by Hamilton [27]. Data, such as those shown in Figure 4 a, from the past 

quarter century illustrate the income elasticity of demand, defined as: 
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Econometric analyses determine the elasticity for oil worldwide to be about 0.5, although for 

developing countries responsible for much of current increase in demand, the income elasticity tends to 

be closer to unity [27]. Here, the numerator is the fractional change in quantity of oil consumed and the 

denominator is the fractional income (GDP) change. In Figure 4b, to emphasize the changing dynamic 

in the first decade of the 21st century, we plot scaled world GDP (yellow) along with scaled world oil 

consumption (red) from 2002 after the end of the recession that started in 2007. For roughly three 
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years, the two track closely, as they have historically; after that point, world oil production leveled off. 

One can interpret this as “missing” the oil production that would “normally” have been available, 

given the observed economic growth. For a given demand, as driven by economic growth and the 

empirically observed income elasticity of demand, the lack of supply implies that there will be an 

increase in price, conditioned on the price elasticity of demand. 

Figure 4. (a) Correlation between world oil consumption and world GDP, both plotted as 

logarithms. (b) Scaled GDP and oil production (left-hand axis) and oil price  

(right-hand axis). 

 

        (a)       (b) 

Using our value for the income elasticity and substituting GDP for income, one would expect to 

have seen an increase in production of 4–5% over the 2005–2008 time period. Since that supply did 

not materialize, one would expect prices to rise consonant with the own-price elasticity of demand, 

given by: 

஽ߝ ൌ
ΔQ
Q

∆ܲ
ܲ

൘  (2)

Here, the numerator is again the fractional change in supply, and the denominator is the fractional 

price change. Short-term (less than one year or time period of the econometric analysis) elasticities of 

demand for oil are around –0.1 [28–30]; for the “missing” increase in supply, this would imply an 

increase in world oil price on the order of about 45% or $30/barrel, to around $90, which is consistent 

with observed yearly average prices. A somewhat higher income elasticity, along with a somewhat 
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higher longer-term (one-year or greater) price elasticity, would lead to the same result.  

Thus, independent of the actual reason for the “missing” supply, there is no need to resort to blaming 

speculators for the rise in prices [7]. One can also use these data to estimate the effect of supply 

shortages on the economy [31]. 

2.3. Individual Country Peaks  

Perhaps the most familiar indicator of a potential peak in world oil production is that many 

individual countries and regions (many contributing only small quantities) have entered and remained 

in a mode of declining conventional crude oil production, with the United States being the most 

prominent example. For the continental US, peak production occurred in 1970; the addition of Alaskan 

production helped slow the decline (and led to a temporary reversal). More recently, production of 

nonconventional oil from shale formations in North Dakota and Texas has again helped to slightly 

increase US production. 

Most recently, the International Energy Agency’s 2012 World Energy Outlook [18] received 

widespread media attention upon release, because of the projection that the United States would 

become once again the world’s largest producer of liquid fuels by 2020. Aside from the fact that the 

IEA and other agencies have generally been overly-optimistic about future production trends  

(see Section 2.10.), three points were generally overlooked in analyses of this surprising development. 

First, in their projections, conventional oil production continues to decrease, as it has for many years. 

New production comes in the form of natural gas liquids and from shale oil. Second, in these same 

projections, the U.S. overtakes Saudi Arabia by only a few percent and only temporarily; after 2020, 

U.S. production again plateaus and then begins a decline, whereas Saudi production is supposed to 

continue growing beyond the projection time period. Finally, it should be noted that even with the new 

development of non-conventional oil and with the inclusion of natural gas liquids and of biofuels, the 

projected peak production in the 2020s would at most be at the level of U.S. production of crude oil 

alone in 1970. That is, only in the most optimistic estimate, and by “counting” every kind of liquid 

fuel, might the past peak production of the US be bested [32]. 

In fact, most of the world’s oil producing countries are past peak production [33], as seen from data 

supplied by BP and the EIA [6,34]. Of the forty top-producing countries, at least thirty are on a 

declining production path, and very few are on a trajectory that is clearly upward. In total, more than 

sixty countries have already passed a peak in production [33]. 

2.4. Decreasing Discoveries 

Discoveries of oil in new fields peaked in the mid-1960s. Production of oil necessarily follows 

discovery; for a finite resource, one would expect to see cumulative discovery (and with a time delay, 

cumulative production) follow a path that rises as discoveries commence and reaches a plateau as the 

rate of new discoveries decreases. The logistic function, defined for cumulative production by: 

ܳሺݐሻ ൌ
ܳஶ

1 ൅ exp ቀെܾ൫ݐ െ ௣൯ቁݐ
 (3)
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is often used as a simple mathematical description of this process, but there is little physical reason to 

believe that the logistic function should be the best choice [16]. In fact, in the case of discoveries, the 

initial increase is often faster than a logistic, as large fields are usually found early [16,34–36].  

Figure 5. Cumulative production of oil from the continental US, together with a logistic 

curve fit to the data. The lower dashed curve is the fit that would have been found in 1980 

using data to that point. The upper dot-dash curve is the current projection. 

 
In fact, the logistic description of U.S. oil production has been relatively good. As will be shown 

below, it is somewhat difficult to make a projection of the ultimate recoverable quantity using 

production data in advance of the peak in production; after the peak, it seems to be a good predictor, 

although, data for the U.S. follow this pattern deceptively well, compared to other regions [37–39].  

In Figure 5, the production of oil in the continental U.S. is shown, together with a projection of the 

logistic curve corresponding to an ultimate recoverable quantity of 200 Gb.  

Extensions of the logistic curve technique to world conventional oil production are shown in  

Figure 6, where both cumulative and yearly production data and logistic curves are shown. As of 2011, 

cumulative production was about 1,166 Gb. As has already been discussed, it is difficult to use the 

logistic function with past data to reliably predict the value of ultimately recoverable resource (URR). 

Here, we show the result of anon-linear least-squares fit to past production, using two different 

estimates of ultimately recoverable oil, 2,000 Gb and 3,000 Gb. The former should be considered a 

minimum value of URR to be expected. Parameters from the fits are such that there is a 5.3%/year 

initial exponential growth rate and peak-production years of 2008 and 2018 for 2,000 Gb and  

3,000 Gb, respectively. Due to a large decrease in OPEC production during the decade between 1975 

and 1985, the actual production curve is not smooth, somewhat complicating the interpretation of the 

logistic fits to the data. However, two main points are illustrated in Figure 6, independent of the 

precision of fit between the data and the logistic model. In rough numbers, past production is a bit over 

1,000 Gb, and, assuming an additional 1,000 Gb (red curves) or 2,000 Gb (green curves), the delay in 

timing of peak production is only 10 years. Put another way, each additional billion barrels of oil 
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delays the peak by only about 3.6 days [40,41]. The second point, highly relevant to the current special 

issue, is shown by the purple curve in Figure 6b, which shows the 7.5% per year exponential growth in 

rate of production that occurred over the first century of world oil production. Clearly, that exponential 

growth could not be maintained indefinitely, for many of the reasons discussed in LtG and in the 

updates that followed [1–3,42]. 

The USGS made estimates in its 2,000 Assessment [43] based on likely discoveries and additions to 

reserves from existing, already-discovered fields, but only assuming a time-horizon out to 2025.  

In follow-up work to their 2,000 Assessment [43], authors from USGS were satisfied that progress 

toward projected discoveries were on track to meet the 3,000 Gb estimates, especially with respect to 

reserve growth from previously discovered fields, while less oil had been discovered in new  

fields [44]. The issue of how reliable the USGS techniques may be when extended from experience in 

the U.S. to the rest of the world has also been discussed at length in the UKERC report [16]. 

Figure 6. Fits to actual production data for world conventional crude oil production.  

(a) World cumulative production (Gb) data (yellow squares) with logistic function fits for 

5.5%/year initial growth rate and 2,000 Gb (red, lower curve) and 3,000 Gb (green, upper 

curve) ultimate recovery. (b) Yearly world crude oil production (Gb/year) with parameters 

corresponding to the curves in (a). The (purple) curve in the right-hand panel represents a 

7.5%/year exponential growth rate that continued for the first century of oil production.  

 
    (a)      (b) 

Use of the logistic curve technique requires some comment. It is clear that the method is  
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of the amount of oil to be recovered or of the exact timing of the peak [16,45,46]. On the other hand, 

the technique works remarkably well as a heuristic model of oil production for a large region. 

Analyzing data by extrapolating past trends should be viewed critically, as will be discussed below. 

Although Hubbert himself did not start out using this technique, he did so in later work and refined his 

analysis over time. One point that is clear, however, is that he did not simply assume that the 

contemporary stated oil reserves were equivalent to the ultimately recoverable quantity of oil.  

As shown in figures he used [5,47], it was obvious that past production plus current reserves would be 

supplemented by future field extensions and new discoveries. An additional estimate, beyond that of 

declared reserves, was necessary for determining the URR. 

Beyond the use of data for past production with the hope of understanding the potential for future 

production growth, there is one method that can perhaps lead to more reliable estimates.  

As summarized by several authors [16,35,36], rather than concentrating on so-called “1P reserves”, 

which tend to be reported conservatively, and with the expectation that additional oil in these fields 

will be found and that the fields will be extended, a more reasonable approach is to count  

“2P reserves”, which are estimated to be available with a 50% probability. By proper accounting for 

oil in these fields through back-dating or assigning the resources to the date of initial field discovery, 

regardless of when a new fraction of the oil in place is deemed declarable as a reserve quantity, a very 

different picture is found of cumulative discoveries over time [14]. Although thoroughly discussed in 

various publications [16], the technique of backdating suffers from the problem that the necessary data 

are only available from proprietary databases that are very expensive to access. 

2.5. Finding and Development Costs 

There is surprisingly little data available on the economic driving factors of oil discovery, but what 

little exists in the published literature tends to indicate a small price elasticity of new supply, on the 

order of 0.1–0.2 [30,48,49]. Therefore, economic driving factors are fairly unimportant in driving the 

discovery of new oil resources. Although the price elasticity of demand for oil is low, rising prices will 

certainly suppress demand; at the same time, if prices increase sufficiently, additional oil from existing 

fields or extracted with expensive technologies that were previously not economically viable can be 

moved into the reserves category. The tradeoff between these two factors may or may not serve to set 

an upper limit on maximum oil production. Although recently discovered fields have tended to be 

relatively small compared to the mega-giant and super-giant fields discovered in the middle of the past 

century, it is not completely out of the question that new, extremely large resources could be found.  

It is not logically necessary that the largest fields are found first, as evidenced by the discovery of 

smaller fields in the U.S. prior to those of East Texas [50]. In any case, finding new sources of oil does 

appear to have become more difficult (geographically and geologically more challenging) and more 

expensive (deeper and more complicated drilling).  

Over the past several years, as demonstrated by the data gathered by the EIA and other  

sources [51–53], as shown in Figure 7, costs for finding new oil resources have risen dramatically.  

Figure 6 shows the EIA capital cost index for US oil field operations, scaled such that the index is 

equal to 100 in the year 2000. Two versions are shown, one (red squares) with deflated values and one 

(light blue crosses) without inflation. The IHS CERA upstream capital cost index (UCCI) is similarly 
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scaled to a value of 100 in the year 2000 and tracks the relative costs of a portfolio of oil and gas 

infrastructure (offshore, onshore, pipeline) projects. Part of the rise has been due to industry 

bottlenecks for equipment and rigs, but the need to explore in increasingly challenging environments 

and at increasing depths has also played a role [51–54]. In another ongoing set of EIA data  

(recently discontinued), finding and lifting costs for producers of oil and gas were published  

annually [51]. These data also show a strong increase in costs over the past decade for those companies 

reporting data. 

Figure 7. Oil and gas cost indices and the real price of oil. Oil capital cost index from  

EIA [52], scaled to 100 for the year 2000, and from IHS Cambridge Energy Research 

Associates [53]. Oil price (right-hand axis) is from BP. 

 
 

These trends seem to indicate that the “easy oil” is no longer available and certainly not in regions 

that are readily accessible to exploration companies. We will return to this theme below, but it is clear 

that as exploration and extraction costs increase, we can expect the price of oil to increase as well.  

The dynamics of supply and demand will have a large role in setting the market price, and inertia in 

the extraction sector may lead to temporary out-of-balance conditions, but one would expect the 

market price to be equal to the cost of producing the marginal barrel of oil. An interesting question 

would be to address the causality of the relationship between oil exploration and production costs, on 

the one hand, and oil prices on the other; from Figure 7, there is clearly a strong correlation between 

the two. In the end, it is clear that increasingly expensive exploration and production efforts are 

economically viable if the market price of oil is high enough for producers to recover their costs.  

Costs have been rising, and producers are still moving forward with new projects. Once again, the fact 
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that expensive resources, such as oil sands and light tight (shale) oil, are economically viable is an 

indicator of scarcity of cheaper conventional resources. 

There is an interesting divergence in opinion as to extraction costs of oil. In recently published  

work [55], estimates of remaining resources of conventional and non-conventional oil and natural gas 

are compiled, along with the costs of extraction for these resources. In this estimate, for extraction 

costs of under $20/bbl, there is a world-wide resource of approximately 3,500 Gb of conventional oil; 

including unconventional resources, nearly 30,000 Gb of resource is available for extraction costs of 

less than $35/bbl. Not only are these estimates dramatically different than those presented thus far, 

they also can lead to the false conclusion that there must currently be a severe distortion in oil markets 

that leads to both prices exceeding $100/barrel and costs for finding and producing oil that average 

$40/bbl today, with more expensive regions having costs exceeding $50/bbl [51]. There are reasons to 

doubt the reliability of the optimistic resource estimates [16], but more importantly, the presentation of 

cumulative availability curves is not equivalent to being able to make a statement about expected 

prices of oil. Average extraction costs across grades are not equivalent to the marginal cost of barrels 

being produced at a given time, which should set the market price [56]. 

In another example, from the USGS [57], estimates are made of the cost of producing oil in the 

National Petroleum Reserve in Alaska, an area that has been relatively well explored and with familiar, 

if not easy, conditions for putting infrastructure in place. Using the mean estimate for oil in place of 

0.9 Gb, the authors calculate that approximately 50% of this amount can be economically extracted if 

oil prices are $90/bbl or more, and none would be economically viable if market price 

Aguilera et al. [55], and [57] discusses only well-defined conventional resources.  

Although direct comparisons are difficult to make due to varying techniques and definitions used in 

calculating extraction costs, it is striking that both the more detailed study of a given region [57] and 

actual experience within the past decade [51] show markedly higher costs of producing oil than would 

be indicated based on a more optimistic estimate of resource availability. One point that is often 

overlooked in forecasts of energy costs and availability is the potential for a feedback effect of energy 

prices on extraction costs. As described in Attanasi and Freeman, “Major components of oil and gas 

industry costs, such as drilling and service industry costs, are affected by oil and gas price levels and 

changes that commonly follow economic cycles. Between early 2005 and early 2011, world-market 

prices for crude oil have fluctuated between $34 per barrel and nearly $150 per barrel. The oil and gas 

industry typically faces increasing costs when price increases, particularly if the industry tries to 

rapidly increase output.” This phenomenon explains the close correlation seen in Figure 7. 

2.6. Spare Capacity  

Saudi Arabia is generally seen as the world swing-producer for oil, with the largest reserves of 

conventional crude oil and the ability to raise output as needed. In fact, Saudi production decreased 

during the 2006–2008 period, but did start to ramp up again after the recession. As a side note, this 

overall lack of increase in production came in spite of a dramatic increase in the number of drilling  

rigs active in the country, as shown in Figure 8. More to the point, looking at several years’ worth of 

editions of the US EIA International Energy Outlook shows the optimism with which  

Saudi capabilities were viewed. Starting in 2003, the reference scenario called for production  



Sustainability 2013, 5 677 

 

 

of 13.6 MMbpd in 2010 and 23.8 MMbpd by 2025 [58]. In the arguably more relevant “high oil price” 

scenario, production was expected to be 11.4 MMbpd in 2010 and 17.6 MMbpd in 2025. For more 

recent editions of the IEO (2009 and 2011), the reference scenario corresponds to recently observed 

prices that would have belonged to a previous “high price” scenario and projects only about  

11 MMbpd in 2025 and only 15 MMbpd in 2035 [19,59]. The newest edition from 2012 projects 

production of about 11 MMbpd throughout the period to 2035, with a slight rise near the end [60].  

Figure 8. Saudi Arabia output of petroleum. Production is given by the (blue) diamonds, 

rig count by the (red) squares. 

 

There are various ways to interpret the past disparity between actual production of Saudi oil and the 

expectations of energy agencies, such as the IEA and the US EIA, expectations that have been scaled 

back over time. One view is that OPEC, led by the Saudis, is in favor of high oil prices to increase 

their own revenue. Therefore, OPEC countries intentionally limit production for their own benefit.  

A counter-argument is that oil prices of $100+, as experienced currently and prior to the start of the 

economic recession of 2007–2009, are too high for importing countries and simply lead to demand 

destruction through moves toward greater efficiency and alternative modes of transportation or through 

decreased economic activity. The latter possibility has long been recognized, making the lack of 

increased production by Saudi Arabia and OPEC as a whole prior to 2008 that much more puzzling.  

It clearly takes a period of years to develop new fields, with investment planning occurring even 

earlier, but the world production capacity limit was well-defined during the price run-up starting 

around the turn of the century and certainly played a role in the high prices of oil in recent years [21]. 

Is it possible that the Saudis could not increase production as much as was expected from them by 

importing countries?  

A fascinating window into this question was opened by the release of the Wikileaks documents 

showing a series of discussions between US and Saudi officials, as well as with both current and 
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former Aramco officials [61–63]. The gist of the released conversations was essentially that the Saudis 

had spent $120 billion during the height of the boom in prices to bring their production capacity to 

12.5 MMbpd. The Wikileaks documents appear to cast doubt on the possibility of production greater 

than about 12 MMbpd being achieved for more than short periods of time and this at a time when the 

US EIA was projecting production of 20 MMbpd or more. In the end, one point that seems clear is that 

the world lacks transparent sources of information from which fully objective conclusions might  

be based. 

The International Energy Agency, in recent editions of its World Energy Outlook, has been warning 

about the confluence of relatively rapid economic growth, especially in developing countries, and the 

lack of sufficient prior investment in the petroleum system [64,65]. Due to this under-investment, the 

IEA has seen the likelihood of a severe supply crunch in the near future. In their most recent World 

Energy Outlook 2012 [18], the country expected to contribute by far the most to future supply growth, 

beyond the shorter-term contribution from the US and a slight increase from Saudi Arabia  

(an additional 1 MMbpd by 2035), is Iraq. According to these projections, Iraq will triple its 

production from 2.7 MMbpd to over 8 MMbpd by 2035 to become the world’s fourth leading  

producer [18]. Essentially, a large percentage of expected future growth in oil production is from a 

country with severe political and infrastructural challenges that may delay or preclude such increases 

in production. Shortages due to lack of investment do not correspond to the conventional definition of 

peak oil, but should this eventuality come to pass, the effects on world economies will be 

indistinguishable from a true resource-limited peak. 

2.7. Export Capabilities of Producing Countries 

One consequence of economic and population growth in oil-producing countries is that 

consumption increases; if production does not grow at least as much as consumption, the result is a 

decrease in the availability of oil for export [66–69]. Although not a sign of peak oil directly, 

decreasing export capabilities of producing countries will have the effect on importers of  

reducing supply. If there is a limited (or no) ability to expand production, as would be the case near a 

peak, then trade-offs will have to be made between domestic consumption to support industries, 

commercial activity and household transportation and the potential for income through exports. 

As is always the case with energy forecasts, there is a great deal of uncertainty in projecting trends 

for the consumption paths for countries that are also oil exporters. However, given that developing 

countries in particular have always followed a path of increased consumption of energy as wealth 

increases, it is reasonable to assume this as a starting point. Taking this as a starting point, along with 

production data for these same countries, it is not surprising that one finds many scenarios in which net 

exports will decrease [68]. Previous history also shows prominent examples of countries that change 

from being net exporters and, in the case of Indonesia, even a member of OPEC, to being net-import 

countries, as both population and per-capita development levels increase [69].  

Data from BP for production and consumption show that the largest exporting countries were able 

to increase net exports steadily during the late 1980s and 1990s and into the beginning of this  

century [70]. China was not a insignificant exporter and has also managed to continue increasing 

production of oil to the present. However, with China’s rapid economic growth of the past two 
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decades, it has become a large net importer of oil (the BP data show production and consumption data 

for all liquid fuels, not only conventional crude oil). Since about 2005, at the same time worldwide 

crude oil production has stagnated, exports from the largest exporters have also reached a plateau or  

decreased slightly.  

A further important point concerning exports is that of subsidies often provided by producing 

countries to their own citizens [71]. Prices for fuel in many Middle East countries that are large 

producers of oil are as much a factor of ten less than prices in other countries, even those at similar 

stages of development [71]. These subsidies have two major consequences, both with repercussions for 

the world oil market. First, by artificially keeping costs for fuels low, inefficiency is encouraged. 

Whereas most countries have decreased energy intensity (defined as energy consumed per dollar of 

economic output) over the past several decades, Saudi Arabia, for example, has become less efficient, 

with energy intensity increasing continuously [71]. The second effect of artificially low prices for 

energy is that foregone income to the oil-producing sector leads to lowered incentives for investment 

in new and expanded infrastructure. The International Energy Agency has already been projecting for 

several years that current levels of investment in oil and gas infrastructure are significantly less than 

what is necessary to offset aging and production decline of existing capacity, with the potential to lead 

to supply bottlenecks [64,72]. 

2.8. System Inertia and Timing 

Another approach to looking at peak oil production is that the challenge is fundamentally one of 

flow rates and time scales and not of stocks. That is, there may be plenty of oil  

(conventional and non-conventional) in the ground, but that it simply cannot be extracted fast enough 

to satisfy growing demand. In Figure 9 are shown two paths for past and potential future production of 

oil and other liquids. We use the fits discussed in Sec. 5 with a total URR of conventional oil of 

approximately 2,000 Gb to determine logistic function yearly production curves for past production.  

In the total for OPEC and ROW (Rest of the World) conventional oil, we have not included enhanced 

oil recovery and Arctic/Deepwater oil, both additional conventional resources. One adjustment was 

made in that OPEC historical production was fit using two logistic curves, in an attempt to better 

account for the form of the historical data that show a breakpoint in the 1970s during the energy crises.  

For nonconventional oil, we use a combination of current production, historical and industry-projected 

rates of production increase, along with estimates of total recoverable amounts, to construct curves for 

future supply [72,73]. Finally, using projected growth rates for biofuels and natural gas liquids [65], 

we include those curves as well. This is a very simple model, but taken in the spirit of using estimates 

of recoverable quantities provided by agencies, such as the IEA, as a starting point. Since there is no 

economic input in the form of supply and demand interactions, these curves are derived purely from 

the deterministic nature of the logistic function; once the URR has been used as an input parameter and 

historical data patterns are observed to be certain that the projected logistic curves match with past 

production, the logistic curve is defined for all time periods. We do leave as a free parameter for 

unconventional oil resources the growth rate of capacity build-up. 

In Figure 9 (a), we assume that the new technologies (enhanced oil recovery (EOR), Arctic) and 

nonconventional resources (oil sands and shale) have rates of increase in production of 7%/year, 
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reflecting an optimistic extension of historical experience, whereas in Figure 9 (b), those rates are 

10%, a higher rate than was ever sustained for conventional sources and significantly higher than 

projected rates for oil sand development, even under recent optimistic economic conditions [73].  

Two main points come from this simple analysis. First, although the resources are assumed to be in the 

ground, there is a bottleneck in production. Historically, there has never been a prolonged period in 

which a fossil resource has increased in production by more than about 7%/year, even with 

conventional resources [42]. Similar issues have been pointed out previously, with an emphasis on 

limitations to the economically viable rate of build-up of capital, since investments that are forced to 

occur too quickly are more expensive [56]. 

The second point, that in each case shown in Figure 9, total world production of liquid fuels peaks 

temporarily in the very near future, declines and then, in this simple deterministic model, after a few 

decades, begins to rise again. The reality is that the secondary peak would likely never materialize, 

since the near-term gap between supply and demand, with little time for world economies to react and 

adapt, would force large-scale fuel- and technology-switching, following much the same logic 

discussed in Section 2. Further implications of the inability to increase supply are discussed in the final 

section of this paper. More details of this model are presented elsewhere [45], but it must be pointed 

out that, due to its simplicity and lack of economic dynamics, the results are again simply indicative of 

the potential for a near-term peak. 

Figure 9. Possible production trajectories under assumptions of growth rates that reflect 

past history (a) or for significantly more rapid growth rates (b). Total conventional 

ultimately recoverable resource (URR) is 2,500 Gb (OPEC, Rest of the World (ROW), 

enhanced oil recovery (EOR), Arctic); URR for oil sands and shale oil assumed to be  

1,000 Gb each. Included in shale is light, tight oil, although that is a recognized to be a 

different unconventional source. 

 
    (a)       (b) 
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There is a further interesting feature that arises out of this analysis. We note that non-conventional 

and other sources begin production well before the “easier” and cheaper sources of oil are depleted 

and, in fact, well before they peak in production in most cases. A rational approach to optimal 

exploitation of natural resources would lead one to expect a sequential extraction of resources, starting 

with the cheapest, progressing to the next more expensive category, etc. [74]. Since, however, within 

each category, we can rather think that there will be an overlapping progression of logistic-like curves, 

there is a need to pull forward in time the extraction of more-expensive resources before the  

less-expensive resources are fully depleted. The resulting rapid increase in costs and, therefore, prices 

of liquid fuels is illustrated schematically in Figure 10 (a), with output data from the deterministic 

logistic extraction model shown in Figure 10 (b). 

Figure 10. Cost availability curves.(a) schematic marginal production cost curves. In this 

representation, extraction costs for each individual resource contribute to an overall curve 

that increases much more rapidly than one would expect from a “rational” extraction 

sequence, always proceeding from the cheapest available resource to the next most 

expensive, etc. Concrete results from the deterministic logistic model of extraction of 

different resource grades is shown in (b). A linear increase in costs would be predicted 

from a perfectly sequential extraction of resources; the output of the model shows that the 

average cost is close to that linear approximation, but the marginal cost is usually  

much higher. 

 
(a) 
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Figure 10. Cont. 

 
(b) 

The starting point for this figure is data for extraction cost and recoverable quantity estimates from 

the IEA [72]. Since we model for each resource a logistic-type curve in production, as overall demand 

increases and depletion of a given resource sets in, although there may be 50% or more of the resource 

still in place, it is necessary to start extracting the next most expensive resource; if the markets are 

functioning properly, this will only work if the price paid for that resource covers the increased 

extraction costs. Effectively, the curves published by IEA [72] and, more recently, by Aguilera [75] 

represent “cost availability curves” and should not be read as a snapshot in time of the amount of 

resource available at a given cost or to be considered as marginal extraction cost curves. As shown in 

Figure 10 (b), as soon as the growth rate of production of one resource begins to slow, as it must, to 

meet rising demand, a new resource must be tapped. That new resource has a higher extraction cost 

and, therefore, demands a higher market price to be viable. This dynamic automatically means that the 

owners of the less expensive resources capture the scarcity rent; in other words, the shift of extraction 

cost curves leads to a situation that would cause some to ask, “If there is so much cheap oil in the 

ground, why are the prices so high right now?” Current estimates of costs of producing various types 

of oil show maximum costs of $80/barrel, although the vast majority of oil is being produced for under 

$30/barrel [69]. 

2.9. Reserves-to-Production Ratio 

Resources of oil in the ground can be divided into several different categories that have been 

mentioned in the passing previous section: conventional crude oil, natural gas liquids,  

non-conventional oil shale (kerogen), light tight oil (shale oil), etc. Furthermore, as exploration 

proceeds, resources become better defined, both geologically and economically. A common 
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categorization of reserves, that fraction of the resource base that is technologically and economically 

recoverable, is based on probabilities of extraction feasibility. “Proved” or 1P reserves are generally 

taken to exist with a 90% likelihood, whereas “probable” or 2P reserves will have a 50% likelihood of 

availability. Defining exact reserve quantities is therefore inherently uncertain [14,33,36,76].  

The most easily available data are for 1P reserves [70]. The ratio of declared reserves to current 

production is often quoted as the “years left” for a resource. This quantity was critically analyzed in 

LtG as being very misleading for a system with growing production. As we see in Figure 11, for the 

UK and Norway, R/P has little relation to production itself. In the UK, R/P has been increasing during 

the time of steepest production decline, whereas in Norway, R/P has leveled out, with production 

decreasing sharply [34]. Sorting out reserves information for crude oil alone is difficult; the growth 

seen in reserves data is augmented by the addition of some of the non-conventional sources mentioned 

above. From year to year, the reserves data do show increases, even in the face of continued 

production, as new reserves taken from the “resources” category become economically viable and are 

more than enough to make up for decreases in reserves due to production. 

Figure 11. Yearly production (blue squares) and the reserves-to-production ratio  

(red triangles) for the UK and Norway 

Note that this interpretation of the R/P ratio is somewhat different from what is often used.  

Those who are technological and resource optimists rightly criticize the fact that this ratio means little, 

since it is almost certain that current reserves will increase and that R/P reflects a static view of 

resources. However, it is rarely pointed out that a constant or even a continually increasing  

reserve-to-production ratio can be consistent with an actual decline in production of the resource. 

Thus, it really is the case that this ratio means nothing at all as a diagnostic of a potential peak in world 

oil production. A detailed discussion of depletion and R/P ratios using more detailed modeling can be 

found elsewhere [77]. 
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Declared reserves of oil do continue to grow, as reported in the BP Statistical Review of World 

Energy [34]. Some authors have claimed that reserves, especially in the case of OPEC countries, are 

possibly overstated, due to production quotas in the 1980s that were based on declared reserves [14]. 

Several countries showed sudden and dramatic increases in declared reserves from one year to another, 

often of 100% or more, without convincing evidence of large discoveries. Notwithstanding these 

possibilities, the more important point is that made above. 

2.9. Past History of Depletion and Optimism.  

It is certainly clear that fossil fuels represent finite resources and, therefore, cannot be extracted 

indefinitely. In Figure 12, the actual past production for two countries, Norway and Mexico, are shown 

using EIA data. Each year in the International Energy Outlook (IEO), the EIA projects future 

production for different countries and regions. In several cases, projections were repeatedly made for 

peak production coming several years in the future for countries whose peak production was already in 

the past. For example, production in Norway has been in decline since 2000 (Figure 12 (a)), although 

the EIA continued to project increases for several years after that peak. Similarly, for the UK, 

predictions of future increases in production came well after production had begun to decline.  

More recently, Mexico, with a large fraction of its production coming from the large Cantarell field, 

has seen decreasing production (Figure 12 (b)) and at a rapid rate. 

Figure 12. Yearly production from (a) Norway and (b) Mexico (both with blue diamonds), 

together with projections by the EIA for future production from various volumes of the 

International Energy Outlook, as labeled. 
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The point here is not as much the unsurprising one that various countries have passed peak 

production, but rather, that one of the agencies most actively involved in forecasting the availability of 

resources could be so much in error and always in the direction of being overly-optimistic. One can 

imagine that in the case of some countries, making predictions of future production is difficult due to 

political issues (Iraq or Iran, for example) or due to a lack of certainty in the investment environment, 

leading to sub-optimal long-term decisions being made. However, Norway and the UK clearly do not 

fall into that category. 

Previous examples of “peaking” include the mining of anthracite coal in the U.S. and production of 

coal in England. Anthracite is a high-quality, low-sulfur coal, but our maximum rate of yearly 

production occurred in the very early part of this century, as shown in Figure 13. There were certainly 

more reasons than simply geological exhaustion that led to declining production, but geology just as 

clearly played a role in production decline. Likewise, in England, coal, which had been the fuel of the 

industrial revolution, went into production decline on the eve of the First World War, as has been 

discussed in the context of optimistic estimates of world coal resources by Rutledge [78]. 

Figure 13. Yearly production of anthracite in the U.S. 

 

As mentioned in the introduction, the current peak oil debate was preceded over a century ago by 

the debate in England over peak coal. The economist and philosopher of science, W. Stanley Jevons, 

wrote about the threat to British economic prosperity if coal production were not to keep pace with 

internal demand brought about by increasing wealth and population [10]. His son, H. Stanley Jevons, 

writing a few decades later, had the advantage of the latest complete data from the British Geological 

Survey and put together what we might now term an integrated assessment model [11], including 

projections of population growth, demand for coal based on growing wealth and, most importantly, 

estimating the availability of coal at given extraction costs, based on geology and technological 

progress in being able to extract coal economically. 
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Figure 14. Production of coal in England. Historical production is shown in three 

segments: up to 1865, when W.S. Jevons wrote The Coal Question; from 1865 to  

1912, when his son wrote about coal, and then production after 1912. The triangles show 

projections made by H.S. Jevons in 1912 using careful geological and  

socioeconomic projections. 

 

The results of his projections are shown in Figure 14. The different regions of data represent the 

historical record to 1865, when W. Stanley Jevons started worrying about coal-mine exhaustion in 

Britain, followed by production data between 1865 and 1912, the data available to H. Stanley Jevons. 

The latter estimated peak production in about 2100, at a production level approximately three times 

that of 1912. In actuality, production started declining in the very year that his work was published, 

never to increase significantly again. Total coal production in Britain will eventually reach somewhat 

less than 30 Gt; extrapolating the estimates of Jevons would lead to a conclusion that roughly ten-times 

as much coal should have been available. It is often claimed that a key feature of the peak oil debate is 

that those warning of a peak are always too pessimistic [79], but an argument can be made that there is 

a significant record of intelligent observers being overly optimistic as well. In spite of the production 

record of coal in England, it was not until the 1960s, a half-century after the peak, that official surveys 

of estimated ultimate coal production were decreased from 200 Gt to the more realistic  

30 Gt range [78]. 

It may be pointed out that the actual coal resource in the ground in the UK, fields that extend under 

the English Channel to continental Europe, may still be very large. However, this is precisely the point 

about oil resources and part of the often heated discussion between those who accept a near-term 

(decade or less) peak in oil production and those who see no danger in the near future [75].  
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Resources in the ground may be very large, but extractability at acceptable costs may limit what is 

eventually recovered, as will a turn to alternatives. 

3. Discussion: Consequences of Peak Oil 

There are two final reasons as to why peak oil should be taken seriously, although with a different 

reading of that phrase. The first involves the economic consequences of a shortage of liquid fuels for a 

world addicted to oil, especially for transportation needs. Secondly, although it might seem to be a 

benefit to the earth’s climate for us to run into a shortage of liquid fossil fuels, the opposite may very 

well be the case. 

If we are at or near a peak in the production of oil, the dynamics of supply and demand will 

undoubtedly drive prices of oil significantly higher. Soon after the beginning of the recession that 

started in 2007, there was some speculation about the relationship between high oil (and other energy) 

prices and that economic downturn. Hamilton examined the connection using examples from past oil 

price-spikes and subsequent recessions [7]. Perhaps more interestingly, although still somewhat 

tenuous, is the thought that high energy prices might be tied to an increase in mortgage delinquencies 

[8]; we have seen even now, after the recession is officially past, that the housing sector played a key 

role in both the bubble that preceded the recession and the lack of significant recovery since. If there is 

even a modicum of truth to the thesis linking high oil prices to economic distress, it behooves us to 

take seriously even a slight chance of peak oil. Various aspects of the linkage between oil supply and 

the economy have been presented by several authors [31,80–83]. 

The tight correlation between oil consumption and economic growth, discussed in Section 2, and 

the consequences just mentioned, is one of the feedback loops that lies at the heart of the original 

Limits to Growth model. Our transportation systems have developed slowly over the past century, such 

that there is an inherent difficulty of breaking the link between existing infrastructure and the fuel that 

feeds that infrastructure [9]. 

The second additional interpretation of the challenge posed by peak oil is that of climate change. 

Fossil fuel resource scarcity or bottlenecks on production would seem at first glance to be exactly  

what is needed to prevent carbon dioxide emissions from driving the climate system into a potentially 

dangerous new state. However, even fairly pessimistic estimates of recoverable fossil fuel resources  

do not limit emissions sufficiently to avoid going well beyond a 2 °C target of global average  

increase with respect to pre-industrial temperature (roughly, 450 ppmv atmospheric CO2  

concentration) [81,84–88]. 

Beyond the question of how large the carbon resource might be, there is a further danger to the 

climate from substitutions that can and will be made. As EROEI drops for conventional oil, each unit 

of produced oil has embodied in it more CO2 emissions than earlier units of the same energy source. 

More importantly, as conventional oil becomes more scarce, non-conventional resources become more 

economically viable in the sense that higher market prices will likely lead to some resources moving 

from the resources to reserves category, as has been the case with oil sands over time. On the other 

hand, high prices for energy, including oil, might place constraints on the amount of available capital 

for creating a large new infrastructure in unconventional oil production. Some of these may not result 

in significantly higher CO2 emissions (e.g., shale oil), but others may have a large effect. One example 
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in the latter category is the oil sands industry in Canada [87,89]; another example might be the 

conversion of coal to liquid fuels, with concomitant increase in emissions compared to fuels from 

conventional oil. In each of these cases, peak conventional oil production, which would be expected to 

lead to an overall decrease in demand for liquid fuels, might still imply an increase or little decrease in 

carbon emissions that would itself force the world up against another limit to growth—that of the 

atmosphere to absorb excess carbon, which had been buried in the ground for tens of millions of years, 

in a very short period measured in only decades. 

4. Conclusions  

A variety of indicators for an approaching scarcity of extractable resources has been presented in 

this paper. No single indicator can be said to prove that peak oil is near; however, gathering together 

many strands of evidence helps solidify the case that this is something to take seriously and that it will 

likely have consequences that could be avoided with sufficient advance planning. A UK Energy 

Research Centre report of 2009 found little evidence to support a peak in oil production occurring  

after 2030, for example [16]. Given time scales needed for making an energy transition, this would be 

a near-term peak [9]. Our focus has been on conventional oil resources and feasible production; there 

will inevitably be increased substitution of conventional oil by other liquid fuels and, perhaps, 

electrification of the transportation sector in the long term. As was the case with Malthus in the early 

19th century, in the 1950s, when M. King Hubbert first broached the possibility of peak U.S. oil 

production, and even more so in the 1970s after publication of Limits to Growth, it is still unpopular to 

suggest that natural resources might set an upper bound on the exponential growth of human 

socioeconomic systems. 

Although the subject of this survey paper is the near-term limit to production of conventional oil, 

implicitly there is a broader theme under consideration. To the extent which our energy system is 

based on finite fossil resources and we continue to rely on and extract this one-time endowment, we 

will require increasing amounts of ancillary resources for each unit of final energy production.  

For example, energy inputs to the extraction sector will continue to increase, thereby decreasing the 

EROEI [17,42]. Many non-conventional resources also require extraction of water; depending on the 

region, water availability can begin to set limits on both fossil fuel extraction and on the production of 

electricity [18,90]. As modern biomass gains in share of the energy system, not only will we release 

increasing amounts of carbon dioxide to the atmosphere, but climate change impacts will begin to set 

limits to further growth as well. In one sense, it is not precisely the issue of peak oil that should be of 

greatest concern. Perhaps the main contribution of Limits to Growth was to bring into focus the 

importance of interconnected feedback loops between large numbers of natural and socioeconomic 

systems. The concept of peak oil has never been about an absolute limit to extraction of the last gram 

of carbon from the earth, but rather about patterns of extraction of the cheap conventional oil to which 

we have become addicted and that are effectively limited by a combination of above-ground factors.  

The question as to whether there will be limits to growth is, in the end, seemingly one of a 

fundamental belief position [91]. On the one extreme are those who feel there can be no limits, either 

because there are nearly infinite supplies of fossil fuels or because human societies will always find the 

necessary substitutes and do so in a timely fashion. This view has been borne out for the most part by 
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the history of the past two centuries or so. However, even two centuries is not a long period of time 

compared to the several millennia over which human society has developed. Therefore, those who 

point out the limits of our ability to exploit natural systems, including fossil fuels, water and the 

atmosphere, are effectively pointing out that we will at some point return to the need for a balanced 

solar budget. Many international and national agencies, universities and companies are realizing the 

necessity of a significant change from the habits of the past century. The fact that we are taking note of 

the pressures being placed on multiple systems at the present moment, in the first half of the 21st 

century, is exactly the key message that was delivered by Limits to Growth forty years ago. 
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