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Abstract: The nuclear fuel cycle is the series of stages that nuclear fuel materials go 

through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel 

cycle implemented in the United States; in which an appropriate form of the fuel is 

irradiated through a nuclear reactor only once before it is disposed of as waste.  

The discharged fuel contains materials that can be suitable for use as fuel. Thus, different 

types of fuel recycling technologies may be introduced in order to more fully utilize the 

energy potential of the fuel, or reduce the environmental impacts and proliferation 

concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied 

in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle 

alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for 

Advanced Fuel Cycle Analysis), the impact of a number of recycling technologies and the 

associated fuel cycle options is explored in the context of the U.S. energy scenario over 

100 years. Particular focus is given to the quantification of Uranium utilization, the amount 

of Transuranic Material (TRU) generated and the economics of the different options 

compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC 

are likely to dominate the nuclear energy supply system for the period considered due to 

limitations on availability of TRU to initiate recycling technologies. While the introduction 

of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy 

system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.  
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Nomenclature  

CAFCA: Code for Advanced Fuel Cycle Analysis MT: Metric Ton 

CR: Conversion Ratio MTHM, tHM: Metric Ton of Heavy Metals 

EPRI: Electric Power Research Institute MWd: Mega Watt Day 

FBR: Fast Breeder Reactor NEI: Nuclear Energy Institute 

FP: Fission Products OTC: Once Through Cycle 

FR: Fast Reactor O&M: Operations and Maintenance 

GWe: Electric Giga Watt PWR: Pressurized Water Reactor 

kW: Kilo Watt Pu: Plutonium 

LWR: Light Water Reactor RBWR: Reduced Moderation Boiling 

Water Reactor 

MA: Minor Actinides SWU: Separative Work Unit 

MIT: Massachusetts Institute of Technology TRU: Transuranic Material 

MOX: Mixed Oxide Fuel U: Uranium 

 

1. Introduction 

Since the beginning of application of nuclear energy for civilian electricity supplies, several issues 

related to its deployment were identified: sustainability (both on the resource supply as well as on the 

treatment of used fuel to extend the supply of energy), health and environmental impact, proliferation of 

materials useable as weapons and economic competitiveness became part of an intense and continuous 

debate around this energy source. Despite more than 50 years of experience and many technological 

improvements, the same issues are still debated today in comparing nuclear energy to other energy 

sources and in optimization of the energy portfolio of developed and developing countries [1,2].  

To properly address those issues, however, it is necessary to study not only the performance of nuclear 

reactors per se, but also of the entire system in which they are expected to operate, namely the 

corresponding nuclear fuel cycle (see Figure 1). Such an analysis should model and represent all the 

individual stages of the nuclear fuel cycle as well as the interactions between them.  

The methodology of nuclear fuel cycle system analysis can therefore help bring a better 

understanding of the strengths and weaknesses of fuel cycle alternatives [3–5]. The analysis of 

complex systems like the Nuclear Fuel Cycle can be approached in two ways: static and dynamic 

analysis. Static analysis implies the use of steady-state models which commonly assume equilibrium 

states and commercial maturity of the involved technologies. Those models do not take into account 

the time-dependent nature of a dynamically evolving system like the nuclear fuel cycle. In particular, 

the nuclear industry is characterized by long time scales, of the order of tens of years, and actions 

taken today may not have a significant impact until several years later. Indeed in a nuclear fuel cycle, it 

can require decades/centuries to approach quasi-state equilibrium between the deployed technologies. 

Therefore, when analyzing the performance of nuclear fuel cycle options, it is important to use a 

dynamic analysis approach. The time dependent behavior of the system accounts for time delays, 

dynamic feedbacks and constraints, which, compared to the corresponding steady state analysis, 
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negatively impact the performance of candidate fuel cycles, and thus should be properly taken into 

account [6–8]. 

Figure 1. Schematic of the nuclear fuel cycle stages.  

 

1.1. Code for Advanced Fuel Cycle Analysis Developed at MIT  

Over the past ten years a tool for nuclear fuel cycle dynamic analysis, named CAFCA (Code for 

Advanced Fuel Cycle Analysis) has been developed at MIT. The current version is coded in the 

System Dynamics-VENSIM platform and is the systems analysis tool used to produce the results 

reported in the MIT Nuclear Fuel Cycle Study [9,10]. CAFCA has been the object of an extensive 

benchmarking exercise together with other state of the art nuclear fuel cycle analysis codes [11–13]. 

The nuclear fuel cycle model built in CAFCA includes non-linear connections, feedback loops and 

constraints typical of complex systems evolving over time. As inputs, CAFCA accepts assumptions on 

the energy scenario to be simulated (in particular the nuclear energy demand growth rate) as well as on 

the fuel cycle strategy and the reactor technologies assumed to be available for the specific scenario. 

As outputs, CAFCA provides several data and metrics of interest in nuclear fuel cycle analysis, such 

as: the installed capacities over time of the available reactor technologies, nuclear waste streams, 

uranium consumption, economics, etc. (see Figure 2). 
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Figure 2. Code for Advanced Fuel Cycle Analysis (CAFCA) input/output logic.  

 

In CAFCA, several fuel cycle schemes (such as Once Through Cycle, Twice Through Cycle, Fast 

Burner Cycle, Fast Breeder Cycle) are available and can be selectively activated. In addition, several 

reactor technologies can be coupled with the desired fuel cycle scheme, such as UO2 Fueled LWRs, 

mixed UO2-PuO2 (MOX) Fueled LWRs, UO2 Fueled RBWRs, Metal Fueled FRs, Oxide Fueled FRs 

and Uranium-235 initiated FRs. The FR designs available in CAFCA cover a wide range of conversion 

ratios, from pure fast burner to fast breeder reactor [11,14–17]. CAFCA is a discrete time code, which 

adopts a continuous flow approach to mass balances in the system (i.e., no fuel batches) and deals with 

equilibrium core calculations. The code does not actively perform any reactor physics calculation or 

isotope tracking and, as such, the spent fuel composition for a given reactor technology is fixed and 

can be specified by the user. Previous benchmark between CAFCA and other codes that account for 

isotopic decay [11] showed that the impact of not explicitly tracking isotopes on the results was not 

large [12]. CAFCA tracks the amount of TRU in the system by performing mass balances on the 

cumulative amount of TRU as specified in spent fuel composition input tables. Alternatively, it is 

possible to externally use a neutronic depletion code and use more refined calculations to estimate the 

isotopic composition of spent fuel.  

2. Reference Case Scenario and Fuel Cycle Options 

All the cases examined in this paper represent the U.S. energy scenario and in particular start from 

the existing LWR fleet, considering also the amount of spent fuel currently in dry interim storage or in 

spent fuel pools at the reactor sites. For all cases, a nuclear energy demand growth rate of 2.5% per 

year from 2020 on will be assumed (following a slower increase from 100 GWe to 120 GWe in 2020); 

the spent LWR fuel legacy is assumed to be 56,800 tHM and a minimum cooling time after discharge 

of 5 years before reprocessing for all the types of fuel. Those represent the same set of assumptions 



Sustainability 2012, 4 2381 

 

 

used to produce the results discussed in the MIT study on the future of nuclear fuel cycle [9,11]. 

Sensitivity studies to various assumptions have been made in the MIT study, and showed that 

conclusions derived from the base line case of 2.5% do not change within a growth range between 1% 

and 4%. In order to allow full comparison with the results discussed in the MIT study, the same base 

line case of 2.5% growth rate per year is analyzed in this paper, even if we recognize that current 

projections may see nuclear growing around 2% per year.  

The energy growth rate is one of the key assumptions impacting the presented results and therefore 

the reader should be aware that assuming a significantly different energy growth rate may change the 

quantitative results and trends discussed in this paper. Similarly, also different assumptions on 

reprocessing facilities, their deployment schedule and capacity can have significant impact on  

the results. In this paper, thermal reprocessing facilities are characterized by a unit capacity of  

1000 tHM/year, with a deployment rate limited to one plant every four years. Fast reprocessing 

facilities are, on the other hand, characterized by unit capacity of 500 tHM/year (for FR CR = 1.0 and 

FR CR = 1.23) and 200 tHM/year (for FR CR = 0.75) and a deployment rate limited to 1 plant every 

two years. The deployment rates were also assumed to be doubled after 2050 (for thermal reprocessing 

plants) and 2065 (for fast reprocessing plants). 

The base-line scenario as fuel cycle option will be the once-through cycle based on the current 

LWR design. A number of alternative fuel cycle and recycling technologies (see Section 2.1) will then 

be explored and compared to the results obtained for the OTC cycle scenario. It is recognized that the 

analyzed fuel cycle alternatives do not cover the entire range of options and that some of them, such 

as, for example, “modifies open” cycles with the deployment of traveling wave reactors may have 

considerable impact on several metrics of interest, such as uranium and SWU utilization as well as 

required reprocessing capacity. 

2.1. Alternative Fuel Cycles and Recycling Technologies  

Other than the OTC cycle based on LWR technology, the impact of introducing the following fuel 

cycle options and recycling technologies will be explored in this paper: 

(1) Twice-Through Cycle, characterized by one time Pu recycling in LWRs as MOX fuel; 

(2) Closed Fuel Cycle characterized by TRU multi recycling in fast burners  

(FR CR = 0.75); 

(3) Closed Fuel Cycle characterized by TRU multi recycling in self-sustaining fast reactors 

(FR CR = 1.0); 

(4) Closed Fuel Cycle characterized by TRU multi recycling in self-sustaining epithermal 

light water reactors (RBWR CR = 1.0); 

(5) Closed Fuel Cycle characterized by TRU multi recycling in fast breeders  

(FBR CR = 1.23); 

(6) Closed Fuel Cycle characterized by TRU multi recycling in fast burners (FR CR = 0.75) 

with LWRs being replaced by U-235 initiated FRs; 

(7) Closed Fuel Cycle characterized by TRU multi recycling in self-sustaining fast reactors 

(FR CR = 1.0) with LWRs being replaced by U-235 initiated FRs; 
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(8) Closed Fuel Cycle characterized by TRU multi recycling in fast breeders (FBR  

CR = 1.23) with LWRs being replaced by U-235 initiated FRs. 

Specific assumptions are made regarding the introduction dates of the recycling technologies and of 

the reprocessing plants needed for fuel cycle closure. Most of the assumptions are taken directly from 

the MIT fuel cycle study [9,11]; here only the main ones will be listed as well as the ones for cases 4, 

6, 7, 8, which are additional scenarios to the one described in the fuel cycle study [9]. For the  

Twice-Through scenario (recycling case 1), the first thermal reprocessing plant starts operation in 2025 

and the separated plutonium is immediately used to make MOX fuel. In the scenarios involving fast 

reactors (cases 2, 3 and 5), the first thermal reprocessing plant starts in 2035 and conventional fast 

reactors (oxide fueled designs are considered in this paper, but the fuel cycle evolution would not be 

significantly altered if a different fuel material was considered) and reprocessing plants are introduced 

in 2040. Conventional fast reactors considered in this study are sodium-cooled fast reactors and 

specifically three designs characterized by different conversion ratios: 0.75 (burner fast reactor),  

1.0 (self-sustaining fast reactor) and 1.23 (breeder fast reactor). The data for the fast reactor designs 

considered in this study are taken from [9,11,17,18] and summarized in Table 1. 

Table 1. Relevant Data for Conventional FR Designs. 

Reactor Type FR CR = 0.75 FR CR = 1.0 FR CR = 1.23 

Capacity Factor 0.85 0.85 0.85 
Cycle Length (year) 0.747 1.19 1.92 
Specific Power (kW/kgHM) 72.16 59.7 27.09 
Discharge Burnup (MWd/kgHM) 99.6 73 103.23 
TRU enrichment (%) 21.21 13.86 8.90 
Unit power (GWe) 1 1 1 
Fuel Annual loading (MTHM) 8.203 11.192 14.84 
Fuel Core mass (MTHM) 36.47 45.5 97.13 
Residency time (year) 4.44 4 5.75 

2.1.1. RBWR Design 

The RBWR (Reduced Moderation Boiling Water Reactor) is a Light Water Reactor design derived 

from the existing Boiling Water Reactor technology [19], which aims at achieving a self-sustaining 

fissile material conversion ratio (CR = 1.0). To do so, the amount of water inventory in the core region 

responsible for neutron energy moderation is reduced, and as a consequence the average void fraction 

and steam quality is higher than a typical BWR design [20]. As a result, the neutron spectrum is also 

harder, which reduces neutron parasitic captures in the coolant while favoring neutron capture in the 

fuel (mainly due to the presence of U-238), and relying more on fissions by the epithermal energy 

neutrons making possible the achievement of a high conversion ratio in a design based on light water 

cooled reactor technology [19–21]. From a fuel cycle point of view, in which the focus is on the mass 

balances more than on the reactor technology deployed, such a design should be compared with a more 

typical self-sustaining metal cooled fast reactor design. Table 2 reports the main data of interest for the 

two designs (RBWR [21] and FR CR = 1.0 [11]) available for use in CAFCA. The data are normalized 

for the same electrical output, namely 1000 MWe.   
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Table 2. Relevant data for the Reduced Moderation Boiling Water Reactor (RBWR) and 

FR CR = 1.0 Designs.  

Reactor Type RBWR FR CR = 1 

Capacity Factor 0.9 0.85 
Cycle Length (year) 1 1.19 
Number of batches 4.62 3.42 
Specific Power (kW/kgHM) 29.65 59.7 
Discharge Burn Up (MWd/kgHM) 45 73 
Residency time (year) 4.62 4.06 
Fuel Annual loading (MTHM) 21.55 11.192 
Fuel Core mass (MTHM) 107 45.5 
TRU enrichment 0.1235 0.1386 

As can be seen, the specific power (the power per unit fuel mass) for the self-sustaining fast reactor 

is twice that of the RBWR design, and as a result the fuel core mass and the annual loading are much 

larger for the RBWR than for the self-sustaining fast reactor. This suggests that the deployment of the 

RBWR may be slower because of the larger TRU requirement; on the other hand being based on LWR 

technology, the RBWR could potentially be commercially available earlier than the self-sustaining fast 

reactor (we made the assumption of introducing the RBWR in 2025, while fast reactors are introduced 

in 2040). A fuel cycle code like CAFCA can help compare the impact of the two designs from a fuel 

cycle point of view; these respective results are reported in Section 3.  

2.1.2. U-235 Initiated Fast Reactor Design 

As discussed in the MIT Fuel Cycle Study, the rate of introduction of traditional fast reactors over 

time is limited by the availability of separated TRU from LWR spent fuel, which represents the real 

bottleneck for a fast deployment of a FR fleet. This limitation is associated with the capacity of spent 

fuel reprocessing facilities making impossible the full use of the spent fuel legacy, which represents 

the source of fuel for the initial installation of fast reactor in a closed fuel cycle perspective.  

To overcome this limitation and allow for a quicker introduction of fast reactor technologies, an 

alternative has been studied at MIT [22,23] for using U-235 initiated fast reactors, which would require 

U-235 enriched fuel, at higher levels than the light water reactors but within the allowable 20% limit 

on civilian use of enriched uranium. Therefore, use of the same chain of supply already in place for the 

existing fleet would continue, without requiring reprocessing facilities and separation of TRU material 

to start up and feed the fast reactor. Three designs characterized by three different fuel forms have 

been studied (oxide, metal and carbide); in this paper only the oxide fueled U-235 initiated fast reactor 

design will be presented and its fuel cycle performance characterized. It is also expected that the other 

two designs would show similar performance characteristics with respect to the fuel cycle.  

Table 3 reports the main design data of interest for the U-235 initiated FR and a typical LWR design.  
  



Sustainability 2012, 4 2384 

 

 

Table 3. Relevant data for the U-235 initiated FR-UO2 and for the LWR designs. 

Reactor Type U-235 initiated FR Light Water Reactor 

Capacity Factor 0.85 0.90 
Cycle Length (year) 1.22 1.5 
Specific Power (kW/kgHM) 81.10 38.7 
Discharge Burnup (MWd/kgHM) 166.00 50 
U235 enrichment 18.45% 4.23% 
Unit power (GWe) 1.00 1.00 
Fuel Annual loading (MTHM) 4.73 19.5 
Fuel Core mass (MTHM) 28.86 87.77 
Residency time (year) 6.10 4.5 

As can be seen, the two designs are quite different; in particular discharge burnup, specific power 

and U-235 enrichment. As a result, the fuel mass balances are quite different, but the total U-235 

content in the core is similar and that will also bring about similar natural uranium requirement, as 

shown in Section 3. It is also interesting to observe the significantly different composition of the 

discharged fuel from the LWR and FR designs considered in this paper (Table 4). 

Table 4. Composition of spent fuel for the U-235 initiated FR, LWR and conventional  

FR designs. 

Reactor Type U-235 initiated FR LWR FR CR = 0.75 FR CR = 1.0 FR CR = 1.23 

Spent fuel cooling time 5 years 5 years 5 years 5 years 5 years 
U fraction 75.91% 93.56% 70.12% 78.30% 84.02% 
Pu fraction 7.65% 1.15% NA NA 10.15% 

MA fraction 0.33% 0.13% NA NA 0.23% 
TRU fraction 7.98% 1.28% 19.20% 14.04% 10.38% 
FP fraction 16.11% 5.16% 10.68% 7.66% 5.60% 

The spent fuel composition is different because of the different neutron spectrum and as a result, the 

relative TRU content in the spent fuel coming from the U-235 initiated fast reactor design is about six 

times the TRU content in a typical LWR spent fuel per unit mass of spent fuel (while burnup is about 

three times larger). This suggests that the stream of spent fuel from U-235 initiated fast reactors would 

be extremely valuable for reprocessing and TRU separation to be then used to build a conventional FR 

fleet and increase the rate of introduction of conventional FRs compared to what can be achieved with 

an LWR fleet. In addition, the introduction of U-235 initiated fast reactor (USFRs) could make 

unnecessary the reprocessing and recycling of the spent LWR fuel as feed fuel to conventional fast 

reactors. Thermal reprocessing of spent LWR fuel is expensive given the low concentration of the 

fissile content and the required revision of regulatory frameworks. It is also more challenging than the 

reprocessing of spent FR fuel also because of the much smaller TRU content. The LWR spent fuel 

legacy would be, in such a case, simply sent to the geological repository and fast reprocessing 

deployed with the introduction of USFRs will feed a fleet of conventional FRs and achieve fuel cycle 

closure. CAFCA gives priority to recycling technologies (in this case conventional FRs) as long as 

enough separated TRU material is available for fresh FR fuel. USFRs, similarly to how LWRs are 
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treated in the other closed fuel cycle scenarios, are installed to make up the remaining difference 

between energy demand and current installed capacity. In all scenarios considered, conventional FRs 

spent fuel is continuously recycled in fast reprocessing plants to take advantage of its high TRU 

content, as shown in Table 4. Figure 3 shows schematically how fuel cycle closure would be realized 

in the two cases (with and without thermal reprocessing). In both cases, there will be two streams of 

spent fast reactor fuel to be reprocessed. Furthermore, in both cases, U-235 Initiated fast reactors are 

introduced to replace entirely the LWR fleet following its decommissioning schedule. 

Figure 3. Fuel cycle closure through U-235 initiated and conventional fast reactors. 

 

In this paper we investigate the deployment of U-235 fast reactor followed by fuel cycle closure 

through the deployment of three different conventional fast reactor designs characterized by three 

different conversion ratio values (CR = 0.75, CR = 1.0, CR = 1.23 corresponding to scenarios 6, 7 and 

8 respectively as listed in Section 2). In all cases the initiated U-235 fast reactor fleet will be 

introduced first in 2040 and will gradually replace the LWR fleet following its decommissioning 

schedule. The USFRs base case scenarios presented and discussed in the next section include also 

thermal reprocessing of spent LWR fuel.  

3. Results and Discussion 

The impact of various fuel cycle options in the context of the U.S. energy scenario is presented in 

this section. In particular, over the span of 100 years, four metrics will be shown: the number of 

reactors installed, the uranium utilization, the total amount of TRU in the system and the economics of 

the nine fuel cycle options listed and discussed in Section 2.  
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Figure 4. LWR Installed capacities over time. 

 

Figure 4 shows the installed capacities of LWRs for all scenarios. The installed capacity of LWR is 

maximum for the OTC case, for which it is the only reactor technology available. The OTC line 

represents also indirectly the total electricity generation capacity required to satisfy the energy demand 

growth rate described in Section 2. Therefore, for the closed fuel cycle scenarios deploying recycling 

technologies, the lower the LWR installed capacity line, the higher the penetration of recycling 

technologies over time. The fast breeder reactor scenario shows the lowest need for LWR installed 

capacity, followed closely by the self-sustaining fast reactor scenario [9,11]. In the LWR installed 

capacity plot, all the U-235 initiated fast reactor scenarios collapse into a single line, corresponding to 

the retirement of the existing LWR fleet over time and assuming life extension to 60 years for all the 

existing plants. This is because, as already mentioned in Section 2, the LWR fleet is assumed to be 

replaced by the U-235 initiated fast reactors starting in 2040, a fuel cycle closure is achieved in 2040 

with the introduction of conventional fast reactor designs. Figure 5 shows the installed capacity of  

U-235 initiated fast reactors over time for the three different fast reactor technologies to be coupled for 

fuel cycle closure. Initially (2040–2050) U-235 initiated FRs are needed to replace the LWR fleet 

being decommissioned. Between 2060 and 2080, following the introduction of conventional FRs 

which have priority in CAFCA, fewer U-235 initiated FRs are needed to satisfy the energy demand 

growth. Finally, after 2090 consistently with the slowing down in the conventional FRs installed 

capacity (which follows the availability of separated TRU), additional U-235 initiated FRs are needed. 

The installed capacity of U-235 initiated fast reactors was found to be highest for the CR = 0.75 and 

conventional FR cases, while lowest for the CR = 1.23 conventional FR case, depending on the 

conventional FR installed capacity in the three cases, shown in Figures 6–8. 
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Figure 5. U-235 Initiated FR installed capacities over time. 

 

Figure 6. Fast breeder reactor installed capacities over time. 

 

Figure 6 shows the fast breeder reactors capacity installed over time for the reference scenario and 

for the scenario with U-235 initiated fast reactors. As can be seen, thanks to the high TRU stream out 

of U-235 initiated fast reactors, the number of conventional fast breeder reactors that can be installed is 

larger than in the reference scenario in 2110. This supports the deployment of U-235 initiated  

fast reactors as a booster technology for fuel cycle closure through conventional fast reactor  

technology. Similar results can be observed also in Figures 7 and 8 for CR = 0.75 and CR = 1.0  

recycling technologies. 
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Figure 7. Self-sustaining reactor (CR = 1.0) installed capacities over time. 

 
Figure 8. Fast reactor (CR = 0.75) installed capacities over time. 

 

The plateau in the installed capacity of conventional FRs that can be observed in Figures 6–8 

reflects the temporary limited amount of separated TRU following the LWR decommissioning 

schedule and the initially limited number of fast reprocessing plants. After 2065, however, enough fast 

reprocessing plants are available to sustain a steeper growth of conventional FRs. 

It is possible to summarize the findings from Figures 4 through 8 reporting the installed capacities 

for all reactor technologies as follows: 
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 LWR’s are the dominant technology for each energy scenario, excluding the ones 

characterized by the introduction of U-235 initiated Fast Reactors. This is reinforced in 

Tables 5 and 6; 

 U-235 initiated Fast Reactors help increase the penetration of fast reactors in the energy 

supply over time. By 2100, the increase is almost a factor of 30% compared to the  

reference scenarios; 

 RBWR technology can be installed in larger numbers than conventional CR = 1.0 fast 

reactors until 2060, when the trend inverts itself because of the much lower TRU 

requirement for the conventional FR design compared to the RBWR design; 

Table 5. Summary of the installed capacity in 2050 and 2100 for reference  

case scenarios. 

 

LWR-UO2 installed 

Capacity (GWe) 

MOX installed 

Capacity (GWe) 

FR CR = 0.75 

installed 

Capacity (GWe) 

RBWR installed 

Capacity (GWe) 

FR CR = 1.0 

installed 

Capacity (GWe) 

FR CR = 1.23 

installed 

Capacity (GWe) 

Date 2050 2100 2050 2100 2050 2100 2050 2100 2050 2100 2050 2100 

LWR 250 859 0 0 0 0 0 0 0 0 0 0 

MOX 209 767 41 92 0 0 0 0 0 0 0 0 

FR CR = 0.75 233 617 0 0 20 263 0 0 0 0 0 0 

RBWR 203 670 0 0 0 0 50 193 0 0 0 0 

FR CR = 1.0 228 527 0 0 0 0 0 0 23 351 0 0 

FR CR = 1.23 233 494 0 0 0 0 0 0 0 0 21 395 

Table 6. Summary of installed capacity in 2050 and 2100 for U235 initiated FR scenarios. 

 

LWR-UO2 installed 

Capacity (GWe) 

FR CR = 0.75 installed 

Capacity (GWe) 

FR CR = 1.0 installed 

Capacity (GWe) 

FR CR = 1.23 installed 

Capacity (GWe) 

U-235 FR Installed 

Capacity (GWe) 

Date 2050 2100 2050 2100 2050 2100 2050 2100 2050 2100 

U-235in FR FR 

CR = 0.75 
144 4 19 370 0 0 0 0 99 531 

U-235in FR FR 

CR = 1.0 
144 4 0 0 22 479 0 0 96 426 

U-235in FR FR 

CR = 1.23 
144 4 0 0 0 0 18 514 100 397 

Two other metrics of interest are the natural uranium requirement and the total amount of 

transuranic (TRU) material in the system, shown in Figure 9 and 10 for all the scenarios analyzed.  
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Figure 9. Cumulative natural uranium requirement over the simulation period. 

 

Figure 10. Total amount of TRU in the system. 

 

As can be seen, the introduction of recycling technologies reduces the natural uranium requirement 

compared to the OTC reference scenario. The introduction of U-235 initiated fast reactors reduces the 

natural uranium requirement compared to the OTC case, but requires more uranium than the 

conventionally started fast reactors which do not rely on any mined uranium. 

The total amount of transuranic material in the system exhibits different trends compared to what is 

seen for natural uranium requirement. Recycling technologies, while not requiring mined uranium, 

may have in fact a positive, neutral or negative transuranic impact according to their conversion ratio. 
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Examining the reference cases first, Figure 10 shows that, except for the Fast Breeder Reactor 

scenario, the deployment of recycling technologies reduces the amount of TRU in the system 

compared to the OTC scenario. In particular, the fast burner scenario (CR = 0.75) is characterized by 

the minimum amount of TRU in the system. The fast breeder (CR = 1.23) reactor scenario, due to the 

conversion ratio of the recycling technology being greater than one, is characterized by a larger 

amount of TRU in the system compared to the OTC scenario.  

The introduction of U-235 initiated fast reactor causes the amount of TRU in the system to be larger 

than any of the other reference cases especially between 2040 and 2060 when U-235 initiated fast 

reactors are installed at a high rate. This is because of the high TRU content in the U-235 initiated fast 

reactor spent fuel compared to the amount of TRU in light water reactors spent fuel (see Table 4).  

The combination of U-235 initiated fast reactors and fast breeder reactors increases the amount of TRU 

by about 50% compared to the OTC cycle.  

Of course the amount of TRU in the system does not tell the form or the location of TRU.  

Figure 11 shows the distribution of TRU for the CR = 1.0 reference scenario among reactor cores, 

cooling storage, interim storage, reprocessing and fuel fabrication plants and waste. As can be seen, the 

amount of TRU under waste form in a closed fuel cycle is extremely small, and most TRU actively 

stays in the fuel cycle and keeps being recycled.  

Figure 11. Distribution of TRU in the system for the FR CR = 1.0 scenario.  

 

Another metric of interest is the required industrial capacity for enrichment technologies, which is 

also relevant to the proliferation resistance of a given nuclear fuel cycle option. Figure 12 shows the 

total SWU consumption per year for all the fuel cycle scenarios analyzed. The introduction of 
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recycling technologies reduces the SWU requirement, in particular for the U-235 initiated fast reactor 

scenarios. However, the demand for enrichment is increasing over time in all the scenarios analyzed. 

In addition, the difference in the U-235 enrichment value between LWR and U-235 initiated FRs 

should also be separately taken into consideration, recognizing that higher U-235 enrichment also 

reduces the additional SWU needed to produce a significant quantity of highly enriched uranium from 

civilian feed stock.  

Figure 12. Total SWU consumption per year. 

 

Figure 13. Thermal reprocessing installed capacity. 

 

Figure 13 shows the development of thermal reprocessing capacities in the analyzed scenarios. 

Recall that the unit capacity is 1000 tHM/year and that can be added at a limited rate of one plant each 
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four years until 2050, after which the rate doubles, and that thermal reprocessing is introduced in 2025 

for the MOX and RBWR scenario vs. 2035 in U-235 initiated and conventional FR scenarios.  

Figures 14–16 show the development of the fast reprocessing capacity for different conversion ratios  

of recycling technologies. Recall that the unit capacity is 200 tHM/year in the burner case, and  

500 tHM/year in the self-sustaining and breeder scenarios, and both units can be added each two years, 

until 2065, before doubling that rate is allowed.  

Figure 14. Fast reprocessing installed capacity for FR CR = 0.75 scenarios. 

 

Figure 15. Fast reprocessing installed capacity for CR = 1.0 scenarios. 
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Figure 16. Fast reprocessing installed capacity for FBR scenarios. 

 

As expected, by switching to U-235 initiated FRs, the need for thermal reprocessing is reduced, 

while more fast reprocessing facilities are needed to reprocess a much larger amount of spent fast 

reactor fuel compared to the conventional fast reactor scenarios. 

Figures 17 and 18 show the dynamic levelized cost of electricity and the fuel cycle cost component 

of levelized cost of electricity, calculated according to the waste-base accounting scheme [11], as a 

function of time for all the scenarios analyzed. The main assumptions underlying this economic 

analysis are fully described in [9,11]. Table 7 summarizes the most relevant ones (with recycling costs 

included in fuel fabrication costs): 

Table 7. Summary of main assumptions for economic analysis. 

Economic Assumptions-Overnight Costs 

Uranium Ore Purchase ($/kgHM) 100 
Depleted Uranium Purchase ($/kgHM) 10 
Yellow Cake Conversion ($/kgHM) 10 
Enrichment ($/SWU) 160 
LWR Fuel Fabrication ($/kgHM) 250 
MOX Fuel Fabrication ($/kgHM) 2000 
FR Fuel Fabrication ($/kgHM) 2000 
LWR Construction Cost (M$/GWe) 4000 
FR Construction Cost (M$/GWe) 4800 
O&M Cost [M$/(GWe*year)] 70 
Disposal of Spent UO2 Fuel ($/kgIHM) 687 
Disposal of Spent MOX Fuel ($/kgIHM) 4550 
Disposal of MA, FP, TRU ($/kg) 3250 
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Figure 17. Levelized cost of electricity.  

 

Figure 18. The fuel cycle cost component of levelized cost of electricity. 
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characterized by the introduction of U-235 initiated fast reactors show a considerably higher levelized 

cost of electricity due to the larger deployment of fast reactors to replace the existing LWR fleet.  

Figure 18 shows a component of the levelized cost of electricity, namely the fuel cycle cost. In this 

case trends are different and favor the use of recycling technologies which are characterized by a lower 

fuel cycle cost compared to the OTC fuel cycle. However, the order of magnitude of this part of cost is 

about 12% of the total cost of electricity and the difference in capital costs has a higher influence on 

the total cost.  

The observed oscillations are due to the implemented methodology of dynamic levelized cost of 

electricity that takes into consideration the specific composition of the reactor fleet at each point in 

time and over the lifetime of the installed reactors [11].  

4. Conclusions  

This paper analyzed different fuel cycle options for the U.S. nuclear energy. Besides the existing once 

through cycle, a number of recycling technologies that more fully utilize the energy potential of uranium 

and lead to reduced content of actinides in the wastes of the fuel cycle are analyzed. In all cases 

considered, the LWR was found to be the dominant technology over the century because of the limited 

availability of TRU material for the installation of recycling technologies over time. This trend could be 

changed by deploying a higher fissile conversion ratio reactor to replace the existing LWR fleet, in 

particular the U-235 initiated Fast Reactors, whose spent fuel has a much higher TRU enrichment and is 

therefore more valuable in a closed fuel cycle perspective. It was shown that the replacement of the LWR 

fleet with the U-235 initiated fast reactor design allows for a much higher penetration (up to a factor of 2) 

of recycling technologies, namely conventional fast reactors. The closure of nuclear fuel cycle through 

the deployment of recycling technologies was also shown to reduce the natural uranium requirement 

over time, while the amount of transuranics into the system may also increase, depending on the 

characteristics and the fissile material conversion ratio of the reactor design installed. Even in the cases 

of recycling technologies in which the absolute amount of TRU increases compared to the OTC cycle, 

only a very small fraction of the total TRU ends up in the waste (namely, losses from the reprocessing 

plants and reprocessing facilities). The accumulation over several recycling cycles of isotopes making 

the handling of spent fuel more difficult over time was not explicitly taken into consideration, and may 

impact the results especially beyond the time range analyzed.  

When examining the economics, the OTC based on LWR technology shows the least levelized cost 

of electricity, since the recycling technologies, in particular fast reactors, are assumed to have 20% 

higher capital costs. The fuel cycle component of the levelized cost of electricity, on the other hand, is 

lower for most recycling technologies, also because of the corresponding lower natural uranium 

requirement. However, the fuel cycle cost is a relatively small fraction of the total (about 1/8); the 

difference in the capital cost is ultimately what causes the levelized cost of electricity to favor the 

LWR once through cycle as long as the supplies of uranium remain available at moderate costs. 
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