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Abstract: This study applied a broad continuum of risk analysis methods including  

mean-variance and coefficient of variation (CV) statistical criteria, second-degree 

stochastic dominance (SSD), stochastic dominance with respect to a function (SDRF), and 

stochastic efficiency with respect to a function (SERF) for comparing income-risk 

efficiency sustainability of conventional and reduced tillage systems. Fourteen years 

(1990–2003) of economic budget data derived from 35 treatments on 36 experimental plots 

under corn (Zea mays L.) and soybean (Glycine max L.) at the Iowa State University 

Northeast Research Station near Nashua, IA, USA were used. In addition to the other 

analyses, a visually-based Stoplight or “probability of target value” procedure was 

employed for displaying gross margin and net return probability distribution information. 

Mean-variance and CV analysis of the economic measures alone provided somewhat 
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contradictive and inconclusive sustainability rankings, i.e., corn/soybean gross margin and 

net return showed that different tillage system alternatives were the highest ranked 

depending on the criterion and type of crop. Stochastic dominance analysis results were 

similar for SSD and SDRF in that both the conventional and reduced tillage system 

alternatives were highly ranked depending on the type of crop and tillage system. For the 

SERF analysis, results were dependent on the type of crop and level of risk aversion. The 

conventional tillage system was preferred for both corn and soybean for the Stoplight 

analysis. The results of this study are unique in that they highlight the potential of both 

traditional stochastic dominance and SERF methods for distinguishing economically 

sustainable choices between different tillage systems across a range of risk aversion. This 

study also indicates that the SERF risk analysis method appears to be a useful and easily 

understood tool to assist farm managers, experimental researchers, and potentially policy 

makers and advisers on problems involving agricultural risk and sustainability.  

Keywords: agriculture; tillage systems; stochastic dominance; economic budgeting; risk 

analysis; sustainability  

 

1. Introduction 

Interest in tillage systems that reduce the number of cultivation steps has increased steadily 

worldwide over the past two decades. These reduced tillage systems—commonly called reduced till, 

no-till, low till, limited till, or conservation till—potentially have the ability to reduce wind and water 

erosion, conserve soil moisture, and improve soil structure. Although the possible agronomic benefits 

of reduced tillage systems are easy to recognize, the economic benefits can be less evident and may 

lead to questions of long-term sustainability. Many studies have found that using reduced tillage 

systems reduces input costs such as fuel, labor, and machinery repair/depreciation costs [1,2]. 

However, lower production costs found in reduced tillage systems may be offset by increased chemical 

costs for many crops [3-5]. Consequently, many studies comparing net income between conventional 

and reduced tillage systems are contradictory, especially when the impact of soil type and climate 

conditions on the economic sustainability of reduced tillage systems is considered. For example, 

generally better economic performance for reduced tillage systems has been noted for well-drained 

soils and warmer climates [6,7] and poorer performance noted for poorly drained soils and cooler 

climates [8-10]. 

Despite potential benefits, many farmers are still reluctant to adopt reduced tillage systems. One 

contributing factor is that farmers lack knowledge about risks related to tradeoffs between the upfront 

(or short-term) costs of implementing reduced conservation management practices compared to long-

term economic benefits that might be expected in the future (such as reduced variability). The overall 

purpose of this paper is to examine how an understanding of risk-return tradeoffs can affect the 

ranking or preferability of reduced tillage systems. While the majority of studies investigating the 

economic sustainability of reduced tillage systems have largely ignored risk (i.e., only average net 

income between conventional and reduced tillage systems is typically compared), a number of studies 
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have attempted to address farm business risk issues through the application of stochastic dominance 

approaches to better account for risk aversion behavior. Klemme [3] used first and second-degree 

stochastic dominance (FSD and SSD, respectively) techniques to rank tillage systems on a net return 

basis to examine assumptions concerning various levels of risk avoidance. Lee et al. [11] compared 

mean-variance and stochastic dominance techniques for farmer adoption of reduced tillage practices in 

a central Indiana watershed. Williams et al. [12] used SSD to compare reduced tillage systems with 

conventional tillage systems for wheat and sorghum in western Kansas. Larson et al. [13] used FSD 

and SSD to evaluate how using cover crops with various applied nitrogen rates affected net revenue 

from no-till corn production in western Tennessee. De Vuyst and Halvorson [14] used FSD and SSD to 

rank the economics of eighteen continuous cropping/crop-fallow experimental treatments in the 

Northern Great Plains as influenced by tillage system and nutrient management. Pendell et al. [7] used 

stochastic dominance to examine the net return of continuous corn production using conventional and 

no-till tillage systems to quantify the value of carbon sequestration credits needed to encourage farmer 

adoption of carbon sequestration programs. 

A more recent method of stochastic dominance, called stochastic efficiency with respect to a 

function (SERF), orders a set of risk-efficient alternatives instead of finding a subset of dominated 

alternatives [15] and uses the concept of certainty equivalents (CEs) instead of cumulative distribution 

functions (CDFs) for each alternative (as in the case of FSD and SSD). Hardaker et al. [16] state that 

SERF provides an approach consistent with the subjective expected utility (SEU) hypothesis, in such 

way that SERF narrows the choice to an efficient set and thus has stronger discriminating power than 

conventional stochastic dominance techniques. A major hypothesis of SERF is that the decision-maker 

would be risk averse enough to accept a sure lower expected value versus a high unsure expected 

value. Grove [17] and Grove et al. [18] conducted a stochastic efficiency analysis and optimization of 

alternative agricultural water use and conservation strategies. Results showed that the portfolio of 

irrigation schedules for a risk averse farmer may include those with high production risk, due to the 

interaction of resource use between deficit irrigation alternatives when water is limited. Lien et al. [19] 

used SERF within a whole-farm stochastic modeling framework to analyze organic and conventional 

cropping systems in eastern Norway. SERF methodology was also applied by Lien et al. [20] to 

analyze optimal tree replanting on an area of recently harvested forestland. Pendell et al. [21] 

examined the economic potential of using no-till and conventional tillage with both commercial 

nitrogen and cattle manure to sequester soil carbon in continuous corn production in northeastern 

Kansas. SERF was employed to determine preferred production systems under various risk preferences 

and to calculate utility-weighted certainty equivalent risk premiums for estimating carbon credit values 

needed to motivate adoption of systems that sequester higher levels of carbon. Watkins et al. [22] used 

SERF to evaluate the profitability and risk efficiency of Arkansas rice production management under 

no-till from the perspective of both the tenant and the landlord. Results indicated that risk-neutral and 

risk averse tenants would benefit from no-till management, and that risk-neutral landlords would be 

indifferent between either no-till or conventional till. Archer and Reicosky [23] evaluated the effects of 

no-till and five tillage system alternatives: fall residue management (Fall RM), Fall RM + strip-tillage 

(ST), spring residue management (Spring RM), Spring RM + ST, and Fall RM + Subsoil, relative to 

conventional moldboard plow and chisel plow tillage systems on corn and soybean yields and 

economic risks and returns. SERF risk analysis showed tillage system preferences ranked as: Fall  
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RM > no-till > Fall RM + ST > Spring RM + ST, Spring RM > chisel plow > Fall RM + Subsoil > 

moldboard plow for risk neutral or risk averse producers facing uncertain yield, crop price, and input 

price conditions. Archer and Reicosky [23] concluded that ST and no-till might be economically viable 

alternatives to conventional tillage systems for corn and soybean production in the northern Corn Belt. 

Grove and Oosthuizen [24] used an expected utility optimization model and SERF to evaluate deficit 

irrigation economics within a multi-crop setting while taking into account the increasing production 

risk of deficit irrigation. They concluded that, although deficit irrigation was stochastically more 

efficient than full irrigation under limited water supply conditions, irrigation farmers would not 

voluntarily choose to conserve water through deficit irrigation and would require compensation to do 

so. Finally, Williams et al. [25] examined the economic potential of producing a wheat and grain 

sorghum rotation with three different tillage strategies (conventional, reduced, and no-till) compared 

with the Conservation Reserve Program (CRP) in a semiarid region. They used enterprise budgeting 

and SERF to determine the preferred management strategies under various risk preferences. Results 

indicated that CRP would be the preferred strategy for more risk averse managers, i.e., only individuals 

who were risk-neutral or slightly risk averse would prefer crop production to continued CRP enrollment. 

To our knowledge, this study represents the first attempt to apply a continuum of risk analysis 

methods for comparing the economic sustainability (through income-risk efficiency) of conventional 

and reduced tillage systems. Each method provides different insights about risk and returns; therefore, 

the purpose of comparing different methods (applied to the same problem) is to elicit additional 

information to better understand the impacts of each tillage system alternative on farm sustainability 

(where risk is concerned). Fourteen years (1990–2003) of economic budget data collected from 35 

treatments on 36 plots with continuous corn (Zea mays L.) and corn-soybean (Glycine max L.) rotation 

cropping systems at the Iowa State University Northeast Research Station near Nashua, IA, USA were 

used. The field research experimental study was initiated in 1977; Chase and Duffy [8] previously 

analyzed economic data (net return) for the years 1978–1987. The specific objective of this research 

was to utilize SSD, stochastic dominance with respect to a function (SDRF), and SERF approaches to 

stochastically evaluate the economic sustainability (gross margin and net return) of four different 

tillage system alternatives (chisel plow, moldboard plow, no-till, and ridge-till) on continuous corn and 

corn/soybean rotation cropping systems. We analyze the tillage system alternatives across a continuum 

of risk since the risk aversion level of the decision-maker is typically unknown; therefore, risk efficiency 

of the tillage alternatives is calculated using a range of assumed risk aversion levels. It is important to note 

that farmers balance tradeoffs between risk and profitability in their own personal way (i.e., attitudes 

towards risk depend on being a risk taker, risk neutral, risk avoider, or somewhere in between these 

three levels). The SSD, SDRF, and SERF methods allow a non-biased comparison of risk and return 

tradeoffs with reasonable assumptions about how a farmer might value them, thereby avoiding having 

to directly ask individuals about their specific risk choices. In addition to the stochastic dominance and 

SERF analyses, we conduct a non-stochastic analysis of the tillage system alternatives using  

mean-variance and coefficient of variation (CV) statistical criteria approaches for the purpose of initial 

comparison and sustainability ranking. Finally, we apply a straightforward complementary method, the 

probability of target value or Stoplight approach, for analyzing and visually displaying the 

probabilistic information contained in the tillage system CDFs. 
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2. Materials and Methods 

2.1. Field Study 

Data for our study were obtained from 36, 0.4-ha plots located at the Iowa State University Northeast 

Research Station near Nashua, IA, USA (43.0°N, 92.5°W). The experimental plots were established to 

quantify the impact of management practices on crop production and water quality [26,27]. The soils are 

predominantly Floyd loam (fine-loamy, mixed, mesic Aquic Hapludolls), Kenyon silty-clay loam 

(fine-loamy, mixed, mesic Typic Hapludolls) and Readlyn loam (fine-loamy, mixed, mesic Aquic 

Hapludolls) with 30 to 40 g kg−1 (3 to 4%) organic matter [28]. These soils are moderately well to 

poorly drained, lie over loamy glacial till, and belong to the Kenyon-Clyde-Floyd soil association. Soil 

slopes varied from 1 to 3% among the various plots. The field experiments were established on a 15 ha 

research site in 1977 using a randomized complete block design with three replications. The seasonal 

water table at the site fluctuates from 20 to 160 cm and subsurface drainage tubes/pipes (10 cm in 

diameter) were installed in the fall of 1979 at 120 cm depth and 29 m apart. Three experimental phases 

were conducted from 1978–1992, 1993–1998, and 1999–2003. From 1978–1992, there were four 

tillage treatments (chisel plow, moldboard plow, no-till, and ridge-till) under two different cropping 

sequences (continuous corn and both phases of a corn-soybean rotation). Crop yield was the primary 

measurement from 1978–1989. Experimental data collected starting in 1990 included tile drain flow, 

nitrate concentration in tile drain flow, residual nitrogen (N) in soil, and crop yield, biomass, and plant 

N uptake. From 1993-98, there were two tillage treatments (chisel plow and no-till), with eight N 

management treatments (e.g., different rates, times of application, fertilizer type and/or swine manure) 

for chisel plow and four N treatments for no-till with no change in the number of crop sequences. The 

experimental data collected remained essentially the same as from 1990–1992 with the addition of 

runoff. Continuous corn was replaced with both phases of the corn-soybean rotation in 1999 and the 

experiments were continued along with ten fertilizer and swine manure treatments in the chisel plow 

system and two swine manure treatments in the no-till system. All plots received swine manure and/or 

urea-ammonium-nitrate (UAN) fertilizer each cropping season, with the swine manure applied in 

either fall or spring using application rates based on N or phosphorus (P) needs for the  

corn-soybean/soybean-corn rotations. Experimental measurements from 1999–2003 again focused on 

tile drain flow, nitrate concentration in drain flow, soil N, and crop yield, biomass, and N uptake.  

Table 1 lists the major management practices by treatment (e.g., tillage and cropping systems) from 

1990 to 2003 for the Nashua experiment.  

2.2. Economic Budget Data and Analysis 

Economic budgets for 1990 to 2003 were developed as part of the web-based USDA Natural 

Resources Conservation Service (NRCS)—EconDoc exchange tool. Primary data sources for the study 

included both Nashua experimental records and USDA National Agricultural Statistical Services 

(NASS) published data. The economic budget approach was used to summarize the per unit (hectare) 

revenue, gross margin (revenue—operating costs), and net return (revenue—total costs). This resulted 

in 504 treatment (cropping/tillage system) observations (Table 1) of enterprise budget data with 

detailed information about revenue, operating costs, overhead costs, total costs, gross margin, and net 
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return stored in the EconDoc economics information network. Historical market prices for commercial 

brands of each input (e.g., seeds, fuels, fertilizer, pesticides, and herbicides, hours of machinery used, and 

labor hours used) were calculated to determine the input costs for each plot in each specific year during 

the 1990–2003 period. Additional details on the total cost of production for each tillage system for the 

period prior to the experimental phase analyzed in this study are described in Chase and Duffy [8]. Total 

net return to management for each of the four tillage systems was calculated for the Nashua 

experimental plots by subtracting the total production costs (including overhead costs) from the 

corresponding gross return. Overhead cost is the part of the production cost allocated to each plot 

based on the overall farm expenses rather than those of the specific plot, such as machinery not 

specialized for a certain crop. Examples of overhead costs are the interest paid on an equipment loan or 

management costs directly related to production. To determine gross return, we used average annual 

prices for corn and soybeans from NASS county data records and annual yields reported by the Nashua 

experiment station. In addition to net return, gross margin for each of the four tillage systems were 

calculated by subtracting the operating costs from the corresponding gross return. Gross margin 

represents the enterprise’s contribution towards covering the fixed costs and generation of profit after 

operating costs have been covered [29]. The net return and gross margin data were then discounted to 

reflect the net present values and averaged across the experimental replications.  

Table 1. Major management practices by treatment at the Northeastern Research and 

Demonstration Farm, Nashua, IA from 1990–2003*. 

Treatment 

ID 

Treatment 

period 

Cropping/tillage 

system 

No. of 

treatment 

observations 

 
Treatment 

ID 

Treatment 

period 

Cropping/tillage 

system 

No. of 

treatment 

observations 

1 1990–1992 CC/NT 9  19 1993–1998 CC/CP 18 

2 1990–1993 CS/NT 15  20 1994–2003 CS/CP 30 

3 1990–1992 SC/NT 9  21 1993–2003 SC/CP 27 

4 1990–1992 CC/CP 9  22 2000–2003 CS/CP 12 

5 1990–1993 CS/CP 18  23 2001–2003 SC/CP 9 

6 1990–1992 SC/CP 9  24 1993–1998 CC/CP 18 

7 1990–1992 CC/MP 9  25 1994–2003 CS/CP 30 

8 1990–1992 CS/MP 9  26 1993–2003 SC/CP 33 

9 1990–1992 SC/MP 9  27 1999 CC/CP 6 

10 1990–1992 CC/RT 9  28 2000–2003 CS/CP 12 

11 1990–1992 CS/RT 9  29 2000–2003 SC/CP 12 

12 1990–1992 SC/RT 9  30 2000 CC/CP 3 

13 1994–1998 CS/NT 15  31 2001–2003 CS/CP 9 

14 1993–2000 SC/NT 27  32 2001–2003 SC/CP 9 

15 1994–1999 CS/CP 21  33 2000–2003 CS/NT 12 

16 1993–2000 SC/CP 27  34 2001–2003 SC/NT 9 

17 1994–1999 CS/NT 18  35 1999–2000 SC/CP 6 

18 1993–1998 SC/NT 18       
*CS: corn-soybean rotation with corn during even years; SC: soybean-corn rotation  

with corn during odd years; CC: continuous corn; CP: chisel plow; RT: ridge-till;  

MP: moldboard plow; NT: no-till. 
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It is important to emphasize that both gross margin and net returns were used to explore risk-return 

tradeoffs in this study and that government subsidy income was not included. Conventional wisdom 

considers gross margin (i.e., the revenue above the total costs for each enterprise budget) to be a more 

useful indicator for long-term farm planning. Net returns are a useful short-term planning tool to 

compare one enterprise to another, but can be misleading if used to disqualify farm enterprises with 

low net returns that still contribute towards long-term fixed farm costs. For example, a farmer may 

decide to continue producing a certain crop even though the crop revenue covers the production cost 

but does not cover the total cost. The farmer makes this decision because any contribution beyond the 

production cost is better than the alternative of having other costs (e.g., a fixed cost such as the cost of 

a long-term investment) left uncovered. Therefore, we consider both gross and net returns since each 

contributes unique information. 

Although examining mean values for economic performance measures is useful, it is also important 

to examine variability to determine if risk affects the decision to use one system or another. Nearly all 

farm managers are risk averse, i.e., most will accept fewer dollars of return for fewer dollars of 

variability or loss. Each decision maker trades off risk and return at their own rate, so it is difficult to 

prescribe a specific strategy for any one manager, but some initial conclusions can be made with the 

use of statistical criteria such as mean-variance and coefficient of variation (CV) [16]. Risk averse 

farm managers generally prefer systems that have both the largest mean gross margin or net return and 

smallest variance. The advantage of the CV criterion is that it simplifies the criteria to a single value 

for each alternative and eliminates ambiguity. The CV criterion works well if the means of all the 

alternatives are similar and not close to zero. A disadvantage of the CV criterion is that it ignores the 

skewness and extreme downside risks associated with some alternatives. 

2.3. Stochastic Dominance Techniques 

A detailed discussion of the usefulness of stochastic dominance decision criteria can be found in 

Robison and Barry [30]. Boggess and Ritchie [31] and Williams et al. [32] also present the rationale 

and application of various techniques. The theoretical attractiveness of stochastic dominance analysis 

lies in its non-parametric orientation, i.e., it does not require a full parametric specification of the 

preference of the decision-maker and the statistical distribution of the choice alternative [4,33,34]. As 

previously discussed, several decision criteria for stochastic dominance exist including FSD, SSD and 

SDRF. Given two alternatives, A and B, each with a probability distribution of outcomes defined by a 

CDF, A dominates B in the FSD sense if the CDF of A is always below and to the right of the CDF of 

B. SSD holds for those decision makers who are risk neutral or risk averse, thus the applicable range of 

the absolute risk aversion coefficient ra (a measure of how much a person would pay to avoid risk) for 

the SSD criterion is from 0 to +∞. The rule selects distributions that are preferred by all risk averse 

decision makers as being risk-efficient, irrespective of their degree of risk aversion. Strategies that are 

SSD efficient will have a smaller area under their cumulative probability distribution than those that 

are not, as the area is summed across the observations of net return from lowest to highest. Although 

more powerful than FSD, SSD often leaves a large number of choices as being risk-efficient. To 

improve the discriminating power of SSD, Meyer [35] proposed SDRF that is a more general notion of 

stochastic dominance. This rule helps to identify risk-efficient options for the class of decision makers 
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whose risk aversion coefficients are bounded by lower and upper values. The smaller the range of risk 

aversion coefficients, the more powerful is the criterion. The SDRF criterion orders the choices by 

defining intervals using the ra absolute risk aversion coefficients. These risk-preference intervals are 

bounded by a lower risk aversion coefficient, raL, and an upper risk aversion coefficient, raU, which 

characterize the general degree of risk aversion for a manger. A risk-efficient set of strategies will 

include the choices preferred by each manager having risk preferences consistent with the restrictions 

imposed by the lower to upper interval. A comprehensive review of SDRF is provided by  

Cochran [36]; King and Robison [37] and Robison and Barry [30] also present further discussion of 

these concepts and the technique. 

Unlike the stochastic dominance techniques presented above which typically find a set or subset of 

dominated alternatives, SERF identifies and orders utility efficient alternatives in terms of certainty 

equivalents (CEs) for a specified risk preference. Hardaker et al. [15] state that the SERF procedure 

can potentially find a smaller set of preferred strategies (i.e., has stronger discriminating power) 

compared to stochastic dominance approaches in addition to being more transparent and easier to 

implement. The CE of a risky alternative (in this study the type of tillage system) is the amount of 

money at which the decision maker is indifferent between the certain dollar value and the risky 

alternative. That is, the CE is the sure amount of money with the same utility as the expected utility of 

a risky alternative [38] and can be calculated by taking the inverse of the utility function U: 

CE (w, r(w)) = U−1 (w, r(w)) (1)  

where w is the initial wealth and r(w) represents the risk aversion coefficient with respect to wealth. 

Strategies with higher CEs are preferred to those with lower CEs and interpretation of the CEs is 

straightforward because, unlike utility values, they may be expressed in monetary terms [19]. To 

calculate the CEs using SERF, various types of utility functions can be used (e.g., power, negative 

exponential, quadratic, log-log). In this study, similar to that of Pendell et al. [21], we assume a 

negative exponential form for the utility function: 

U(w) = −exp(−ra(w)) (2)  

where ra(w) is the absolute risk aversion coefficient (ARAC) with respect to wealth. Given a random 

sample of size n from alternative w with i possible outcomes, the estimated CE can be defined as: 

})w)w(rexp(
n

1
ln{())w(r,w(CE

n

i

)w(r

1

iaa
a∑

−

−=  (3)  

A negative exponential utility function conforms to the hypothesis that managers prefer less risk to 

more given the same expected return and assumes managers have constant absolute risk aversion [20]. 

Under this assumption, managers view a risky strategy for a specific level of risk aversion the same 

without regard for their level of wealth. Babcock et al. [39] state this functional form is often used to 

analyze farmers’ decisions under risk. The decision rule for SERF is to rank the risky alternatives 

(within the decision makers specified risk aversion coefficient) from the most preferred (i.e., the 

highest CEs at specified levels of risk aversion) to the least preferred (i.e., the lowest CEs at specified 

levels of risk aversion). Richardson et al. [40] presents a utility-weighted risk premium (RP) that is 

calculated once the strategies are ranked using the CE results (i.e., the risk premium changes as the 
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degree of risk aversion increases or decreases). This is accomplished in Equation (4) by subtracting the 

CE of a baseline (often a less preferred) strategy B from the CE of an alternative (often a preferred) 

strategy A where: 

RP(A, B, ra) = CE(A, ra) − CE(B, ra) (4)  

The RP, a utility weighted risk premium for a risk-preferring to risk averse decision maker, reflects the 

minimum amount ($/ha for the tillage system alternatives considered in this study) that will have to be 

paid to a decision maker to justify a switch from alternative A to B [15]. 

2.4. The Stoplight or Probability of Target Value Procedure 

Methods that rely on evaluating CDFs can be difficult for many people to understand. A 

“probability of target value” or “stoplight” graph relies on CDF information but is a more visually 

appealing depiction of probabilistic information. The Stoplight procedure [40] calculates the 

probability of a measure (e.g., mean gross margin or net return) exceeding an upper cutoff value, being 

less than a lower cutoff value, or having a value between the upper and lower cutoff values (the cutoff 

values can be input directly from the decision maker). Like a stoplight, the three ranges are assigned 

colors of red (less than the lower cutoff value), yellow (between the upper and lower cutoff values), 

and green (exceeding the upper cutoff value). 

2.5. Risk Simulation Analyses 

The Simetar© 2008 risk analysis software [40] was used to perform the SDRF and the SERF 

analyses. Simetar© 2011 (not yet released to the public) with improved SSD methodology was used 

for the SSD analysis. For the SDRF stochastic dominance analysis, seven intervals (three negative, 

three positive, and one encompassing risk neutrality) of absolute risk aversion coefficients were used 

to categorize risk-preferring to risk averse behavior. King and Robison [37] suggested that most 

intervals based on whole-farm analysis should be established between −0.0001 to +0.001. A study 

conducted with Kansas farm managers by Thomas [41] suggested that the range could be −0.0005 to 

+0.005. Many studies normalize the range of risk against wealth. The relation between absolute and 

relative risk aversion is ra(w) = rr(w)/w where rr(w) is the relative risk aversion coefficient with respect 

to wealth (w) [15]. Anderson and Dillon [42] proposed a general classification of degrees of risk 

aversion, based on rr(w), in the range of 0.5 (hardly risk averse) to approximately 4 (extremely risk 

averse). Average wealth (i.e., gross margin and net return) in this study ranged from $247.05/ha (corn 

net return) to $371.03/ha (soybean gross margin) across the tillage system alternatives. Assuming a 

10% return (R) on the value of the assets with a normal debt to asset (DA) ratio of 20%, the ARAC at 

the extremely risk averse level can be calculated as: 

)
R

w
(*)DA0.1(

0.4
ARAC

−

=  
(5)  

Using Equation 5 and the average wealth values presented above, calculated ARAC values ranged 

from 0.0013 to 0.0021. The ARAC upper limit (raU) was expanded slightly to 0.003 (to encompass the 

ARAC value of 0.0021) with a corresponding ARAC lower limit (raL) of 0.0 (i.e., a risk neutral 
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condition). Therefore, the preference intervals used for the SDRF analysis were: (1) 0.0 to 0.0005 (risk 

neutral); (2) 0.0005 to 0.001; (3) 0.001 to 0.002; and (4) 0.002 to 0.003 (risk averse). For the SERF 

analyses, gross margin and net return CE curves by crop (corn and soybean) for the tillage system 

alternatives were produced by calculating 25 CE values for each curve over the entire range (0.0 to 

0.003) of absolute risk aversion. The STOPLIGHT function in Simetar© 2008 was used to perform the 

Stoplight analysis. The user must specify two probability targets (a lower target and an upper target) 

for the Stoplight analysis. For this study, the upper cutoff target corresponds to one standard deviation 

above the mean and the lower cutoff target corresponds to one standard deviation below the mean. 

3. Results 

3.1. Mean-Variance and CV Analysis 

Table 2 shows that the moldboard plow and ridge-till tillage systems had the highest mean gross 

margin for corn, while the no-till and moldboard plow systems had the highest mean gross margin for 

soybean. No tillage system alternative exhibited the largest mean and smallest variance across the four 

corn and soybean gross margin and net return combinations. For corn gross margin, the moldboard 

plow tillage system had the largest mean and smallest variance. For soybean gross margin, the no-till 

system had the largest mean but also had a much higher variance than the moldboard plow tillage 

system, indicating a larger degree of risk relative to the expected return (i.e., there would be a 

significant amount of net income given up to reduce risk with the no-till system). Table 3 shows that 

the mean-variance analysis for net return was the exact opposite (with respect to corn and soybean) 

compared to gross margin. That is, for soybean net return the moldboard plow tillage system had the 

largest mean and the smallest variance, and for corn the no-till system had a larger mean net return 

than the moldboard plow system but also a much larger variance. The no-till and moldboard plow 

tillage systems had the highest mean net return for both corn and soybean. Tables 2 and 3 show that 

the moldboard plow and ridge-till distributions are platykurtic, i.e., they display excess negative 

kurtosis. In terms of shape, a platykurtic distribution has a lower, wider peak around the mean  

(i.e., a higher probability than a normally distributed variable of values near the mean) and thinner tails 

(if viewed as the height of the probability density, i.e., a lower probability than a normally distributed 

variable of extreme values). Overall, the system with the least amount of risk for gross margin and net 

return, if measured by variance alone, was the moldboard plow tillage system. Based on the  

mean-variance statistical criteria, Tables 2 and 3 show that there would be little motivation for a farm 

manager to use either the chisel plow or the ridge-till systems as both systems in general had lower 

mean gross margins and net returns with higher variances for chisel plow than for the other two tillage 

systems. However, it is worth noting that the ridge-till tillage system had lower variances than the  

no-till system for all the corn and soybean gross margin and net return combinations.  
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Table 2. Corn and soybean gross margin for the Nashua, IA tillage system alternatives. 

 Gross margin ($/ha) 

 Chisel plow Moldboard plow No-till Ridge-till 

Corn     

Mean 300.18 364.31 310.19 320.43 

Variance 17350.2 10520.6 13502.4 12805.2 

Coefficient of 

variation (CV) 
0.44 0.28 0.37 0.35 

Skewness −0.40 0.63 0.22 0.27 

Kurtosis 0.02 −1.42 −0.56 −1.02 

Range 
636.42 

(−73.15–563.27) 

291.20 

(236.10–527.30) 

493.32 

(69.46–562.78) 

357.19 

(150.70–507.89) 

Soybean     

Mean 364.48 371.88 427.33 320.44 

Variance 27712.3 4191.3 27370.4 8361.3 

Coefficient of 

variation (CV) 
0.46 0.17 0.39 0.29 

Skewness 0.46 0.21 0.39 0.29 

Kurtosis 0.07 −1.72 −0.13 −0.75 

Range 
753.83 

(92.10–845.93) 

163.38 

(288.93–452.31) 

699.17 

(102.57–801.74) 

240.88 

(164.32–405.20) 

Table 3. Corn and soybean net return for the Nashua, IA tillage system alternatives. 

 Net return ($/ha) 

 Chisel plow Moldboard plow No-till Ridge-till 

Corn     

Mean 236.49 257.29 282.32 212.11 

Variance 35298.9 10545.2 27652.4 13301.0 

Coefficient of 

variation (CV) 
0.79 0.40 0.59 0.54 

Skewness 0.33 0.59 0.84 0.19 

Kurtosis −0.10 −1.37 0.43 −0.98 

Range 
825.62 

(−261.14–564.48) 

300.02 

(123.71–423.73) 

620.96 

(34.22–655.18) 

370.96 

(32.30–403.26) 

Soybean     

Mean 247.15 302.29 281.46 249.73 

Variance 10656.4 4443.6 21824.2 8983.2 

Coefficient of 

variation (CV) 
0.42 0.22 0.52 0.38 

Skewness 0.42 0.22 0.52 0.38 

Kurtosis −0.42 −1.71 −0.03 −0.78 

Range 
727.17 

(−156.22–570.95) 

168.37 

(214.30–382.67) 

789.29 

(−162.59–626.70) 

246.79 

(87.76–334.55) 

 

As indicated previously, farm managers will give up income for reduced variability. If the manager 

accepts a dollar less of return for a dollar less of risk (standard deviation) at a one-to-one ratio, the CV 
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can be used as a reasonable decision criterion. For corn and soybean gross margin and net return, the 

chisel plow and no-till systems had the highest CVs with the moldboard plow tillage system having the 

lowest CVs, thus indicating a lower amount of risk (Tables 2 and 3). Moldboard plow tillage system 

CVs for corn and soybean gross margin and net return ranged from 0.17 to 0.40 which indicated that 

the standard deviation was consistently less than one-half of the mean. It is interesting to note that the 

gross margin and net return CVs in Tables 2 and 3 were substantially higher than the CVs for total 

revenue and total cost (data not shown). In theory, a producer could examine only mean-variance and 

CV risk-tradeoff results and simply decide which tillage system alternative is best; however, this may 

be difficult in practice in that these criteria often exhibit high variability and can result in contradictive 

and inconclusive rankings. Application of more sophisticated risk-based methodology, such as 

stochastic dominance or SERF, can help farm managers and decision makers see these tradeoffs more 

clearly with very few additional assumptions. 

3.2. Stochastic Dominance Analysis 

3.2.1. Second-degree Stochastic Dominance (SSD) 

The corn and soybean gross margin CDFs for the Nashua, IA tillage system alternatives are shown 

in Figures 1 and 2, respectively, with the corn and soybean net return CDFs shown in Figures 3 and 4, 

respectively. Since the CDFs intersect each other at multiple points, including intersection on the 

negative tails, first-degree stochastic dominance is inconclusive and the decision maker would require 

additional information (based on the area underneath each point of the CDF) offered by second-degree 

stochastic dominance (SSD). The ranking results of the SSD analysis are presented in Tables 4 and 5. 

For corn gross margin (Table 4), SSD analysis of the tillage system alternatives (reading dominance 

from left to right across the table rows) shows that the moldboard plow tillage system alternative 

dominated all other tillage system alternatives and the chisel plow tillage system alternative did not 

dominate any other tillage system.. The results for the no-till and ridge-till tillage system alternatives 

were mixed, i.e., these two tillage system alternatives dominated some but not all of the other tillage 

system alternatives.  

SSD analysis of soybean gross margin indicates that the moldboard plow tillage system alternative 

dominated the ridge-till and chisel plow tillage system alternatives but not the no-till system. In 

contrast to corn gross margin, both the ridge-till and chisel plow tillage system alternatives did not 

dominate any other alternative (Table 4).  

SSD analysis of corn net return was nearly identical to corn gross margin with the exception that the 

ridge-till tillage system alternative dominated the no-till system for corn gross margin but not for net 

return (Table 5). Interestingly, the soybean net return SSD analysis was also nearly identical to the 

soybean gross margin SSD analysis—the only difference was that the ridge-till tillage system 

alternative dominated the chisel plow system for soybean net return but not for gross margin.  
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Figure 1. Corn gross margin cumulative distribution functions (CDFs) for the Nashua, IA 

tillage system alternatives. 

 

 

Figure 2. Soybean gross margin cumulative distribution functions (CDFs) for the Nashua, 

IA tillage system alternatives. 
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Figure 3. Corn net return cumulative distribution functions (CDFs) for the Nashua, IA 

tillage system alternatives. 

 
 

Figure 4. Soybean net return cumulative distribution functions (CDFs) for the Nashua, IA 

tillage system alternatives. 
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Table 4. Corn and soybean gross margin second-degree stochastic dominance (SSD) 

analysis for the Nashua, IA tillage system alternatives. 

 Chisel plow 
Moldboard 

plow 
No-till Ridge-till 

SSD 

dominance 

ranking level 

Corn      

Chisel plow --- Not dominant Not dominant Not dominant 4 

Moldboard plow Dominant --- Dominant Dominant 1 

No-till Dominant Not dominant --- Not dominant 3 

Ridge-till Dominant Not dominant Dominant --- 2 

      

Soybean      

Chisel plow --- Not dominant Not dominant Not dominant 3 

Moldboard plow Dominant --- Not dominant Dominant 1 

No-till Dominant Not dominant --- Not dominant 2 

Ridge-till Not dominant Not dominant Not dominant --- 3 

      

 

Table 5. Corn and soybean net return second-degree stochastic dominance (SSD) analysis 

for the Nashua, IA tillage system alternatives. 

 Chisel plow 
Moldboard 

plow 
No-till Ridge-till 

SSD 

dominance 

ranking level 

Corn      

Chisel plow --- Not dominant Not dominant Not dominant 3 

Moldboard plow Dominant --- Dominant Dominant 1 

No-till Dominant Not dominant --- Not dominant 2 

Ridge-till Dominant Not dominant Not dominant --- 2 

      

Soybean      

Chisel plow --- Not dominant Not dominant Not dominant 3 

Moldboard plow Dominant --- Not dominant Dominant 1 

No-till Dominant Not dominant --- Not dominant 2 

Ridge-till Dominant Not dominant Not dominant --- 2 

 

The above results indicate that the moldboard plow and no-till tillage system alternatives were the 

most preferred (i.e., ranked either first or second) for all SSD analyses, with the exception of corn 

gross margin. In this case, Table 4 shows that the ridge-till tillage system alternative was the second 

most preferred after the moldboard plow tillage system alternative. However, these results may not be 

conclusive in that a known weakness of SSD is that it does not rigorously discriminate between 

distributions at all levels. This is problematic for analyzing many economic scenarios in agriculture 

because the most risk is usually at the distribution tails (i.e., very low levels of gross margin or net 

return). For example, in Figure 2, the no-till tillage system alternative clearly dominates the ridge-till 

system in every case except the lower outcomes where the CDFs cross at approximately 0.10 in 

cumulative probability. SSD assumes risk aversion so it cannot rank the no-till tillage system 

alternative as dominant over the ridge-till system (or vice versa). SSD accounts for the possibility that 
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some decision makers possess an absolute risk aversion parameter that is so large that the utility of a 

small difference at the lowest observation is extraordinarily important. In empirical work, it is often 

found that these two forms of analysis are not discriminating enough to yield useful results, meaning 

that the efficient set can still be too large to be easily manageable [37,43,44]. Moreover, as noted in 

relation to loss aversion, allowing for extreme risk aversion is unrealistic. Therefore, there is a case for 

using SDRF, which allows for tighter restrictions on risk aversion. 

3.2.2. Stochastic Dominance with Respect to a Function (SDRF) 

As previously discussed, the SDRF analysis was performed using four intervals (bounds) for the 

lower (raL) and upper (raU) and absolute risk aversion coefficients. The tillage system alternative 

rankings based on generalized SDRF are presented in Tables 6 and 7. SDRF rankings are shown for 

the most preferred (ranking = 1st) to the least preferred (ranking = 4th) for the tillage system 

alternatives. For corn gross margin, the SDRF tillage system alternative rankings (from the most 

preferred to least preferred) were identical for all ARAC intervals (i.e., from risk neutral to extremely 

risk averse): moldboard plow, ridge-till, no-till, and chisel plow (Table 6). For soybean gross margin, 

the no-till and ridge-till tillage system alternatives were ranked the highest and lowest, respectively, for 

all ARAC intervals. Similar to soybean gross margin, for corn net return the no-till and ridge-till tillage 

system alternatives were ranked the highest and lowest, respectively, for all ARAC intervals with the 

exception of the extremely risk averse ARAC level (0.002 to 0.003) where the chisel plow tillage 

system alternative was the lowest ranked (Table 7). For soybean net return, the moldboard plow tillage 

system alternative was the highest ranked followed by the no-till tillage system alternative (Table 7). 

The SDRF results in Table 4 are quite similar to the SSD results in that the moldboard plow and no-till 

tillage system alternatives were the most preferred (i.e., ranked either first or second across nearly all 

risk aversion levels) with the exception of corn gross margin. Identical to the SSD analysis, the SDRF 

corn gross margin analysis in Table 6 shows the ridge-till tillage system alternative as the second most 

preferred (after the moldboard plow tillage system alternative).  

Table 6. Corn and soybean gross margin stochastic dominance with respect to a function 

(SDRF) analysis for the Nashua, IA tillage system alternatives. 

 SDRF dominance ranking level 

Absolute risk aversion coefficient 

(ARAC) level 
1st 2nd 3rd 4th 

Corn     

0.0 to 0.0005 (Risk neutral) Moldboard plow Ridge-till No-till Chisel plow 

0.0005 to 0.001 Moldboard plow Ridge-till No-till Chisel plow 

0.001 to 0.002 Moldboard plow Ridge-till No-till Chisel plow 

0.002 to 0.003 (Risk averse) Moldboard plow Ridge-till No-till Chisel plow 

Soybean     

0.0 to 0.0005 (Risk neutral) No-till Moldboard plow Chisel plow Ridge-till 

0.0005 to 0.001 No-till Moldboard plow Chisel plow Ridge-till 

0.001 to 0.002 No-till Moldboard plow Chisel plow Ridge-till 

0.002 to 0.003 (Risk averse) No-till Moldboard plow Chisel plow Ridge-till 
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Table 7. Corn and soybean net return stochastic dominance with respect to a function 

(SDRF) analysis for the Nashua, IA tillage system alternatives. 

 SDRF dominance ranking level 

Absolute risk aversion coefficient 

(ARAC) level 
1st 2nd 3rd 4th 

Corn     

0.0 to 0.0005 (Risk neutral) No-till Moldboard plow Chisel plow Ridge-till 

0.0005 to 0.001 No-till Moldboard plow Chisel plow Ridge-till 

0.001 to 0.002 No-till Moldboard plow Chisel plow Ridge-till 

0.002 to 0.003 (Risk averse) No-till Moldboard plow Ridge-till Chisel plow 

Soybean     

0.0 to 0.0005 (Risk neutral) Moldboard plow No-till Ridge-till Chisel plow 

0.0005 to 0.001 Moldboard plow No-till Ridge-till Chisel plow 

0.001 to 0.002 Moldboard plow No-till Ridge-till Chisel plow 

0.002 to 0.003 (Risk averse) Moldboard plow No-till Ridge-till Chisel plow 

Richardson et al. [40] strongly proposed using SERF methodology if SDRF analysis calculated 

different efficient sets and also to determine the precise ARAC level where the efficient set changes. 

3.2.3. Stochastic Efficiency with Respect to a Function (SERF) 

For ease in interpreting the SERF results, the CEs of the tillage system alternatives can be graphed 

on the vertical axis against risk aversion on the horizontal axis over the range of the ARAC values. 

Where the lines intersect, the strategies are equivalent to each other in terms of risk aversion. SERF 

results for corn and soybean gross margin and net return are shown in Figures 5–8. Figure 5 shows the 

gross margin CE results for all ARAC values for the tillage system alternatives under corn. The results 

show that the rankings do not appreciably change as risk aversion increases and that the moldboard 

plow tillage system was preferred across the entire range of risk aversion. For a risk neutral decision 

maker, the overall difference between the gross margin of the tillage system alternatives was ~$75/ha. 

This indicates the risk preferring farmer would need to receive ~$75/ha to be indifferent between the 

moldboard plow tillage system (highest ranked) and the chisel plow system (lowest ranked), and less 

than $75/ha for the no-till and ridge-till systems with nearly identical rankings. The difference in gross 

margin between the tillage system alternatives remained nearly constant as the risk aversion increased 

(Figure 5). Under extreme risk aversion (ARAC = 0.003), the farmer would need to receive ~$60/ha to 

be indifferent between the moldboard plow tillage system and the no-till system and ~$80/ha to be 

indifferent between the moldboard plow tillage system and the chisel plow tillage system. The gross 

margin CE results for all ARAC’s for the tillage system alternatives under soybean are presented in 

Figure 6. The no-till tillage system alternative was the most preferred and the ridge-till tillage system 

alternative the least preferred across the entire range of risk aversion. Similar to the SERF CE 

calculations for corn gross margin in Figure 5, the soybean gross margin CE calculations in Figure 6 

show a CE range of ~$50 to $60/ha between the tillage system alternatives across the entire range of 

risk aversion.  
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Figure 5. SERF corn gross margin certainty equivalents (CEs) for the Nashua, IA tillage 

system alternatives. 

 

 

Figure 6. SERF soybean gross margin certainty equivalents (CEs) for the Nashua, IA 

tillage system alternatives. 
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The net return CE results for all ARAC values for the tillage system alternatives under corn and 

soybean are shown in Figures 7 and 8, respectively. The corn net return results in Figure 7 show that 

the no-till tillage system alternative was the most preferred until the ARAC reached a moderate level 

of risk aversion (ARAC = 0.0015) at which point moldboard plow was the most preferred tillage 

system alternative.  

Figure 7. SERF corn net return certainty equivalents (CEs) for the Nashua, IA tillage 

system alternatives. 

 
 

The chisel plow and ridge-till tillage system alternatives switch between the third and least most 

preferred system, respectively, again at a moderate level of risk aversion (i.e., ARAC = 0.0015). The 
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Figure 8. SERF soybean net return certainty equivalents (CEs) for the Nashua, IA tillage 

system alternatives. 
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“indifference” payment between no-till and moldboard plow increases to ~$60/ha for the extremely risk 

averse (i.e., ARAC = 0.003) decision maker. Similar to Figure 9a for corn gross margin, all soybean net 

return risk premiums for the no-till, ridge-till, and chisel plow tillage systems were negative. 

Figure 9. (a) Corn gross margin risk premiums (RPs) relative to moldboard plow for the 

Nashua, IA tillage system alternatives; (b) Soybean gross margin risk premiums (RPs) 

relative to moldboard plow for the Nashua, IA tillage system alternatives. 

(a) 

 
(b) 
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Figure 10. (a) Corn net return risk premium (RPs) relative to moldboard plow for the 

Nashua, IA tillage system alternatives; (b) Soybean net return risk premium (RPs) relative 

to moldboard plow for the Nashua, IA tillage system alternatives. 

(a) 
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3.3. Stoplight Analysis 

The Stoplight visualization tool is effective when the objective of the decision maker is to 

determine the probability of an outcome between upper and lower cutoff values when analyzing 

alternatives. Figure 11 illustrates the probability of having a corn and soybean gross margin  

(Figures 11a,b) or net return (Figures 11c,d) of plus (upper cutoff value) or minus (lower cutoff value) 

one standard deviation of the mean for each tillage system, based on the cumulative probability 

functions (e.g., Figures 1–4). The upper and lower cutoff values ($/ha), respectively, are 

$433.00/$182.00 for corn gross margin (Figure 11a); $543.31/$218.00 for soybean gross margin 

(Figure 11b); $423.16/$72.30 for corn net return (Figure 11c); and $375.73/$142.57 for soybean net 

return (Figure 11d). Figures 11a,b clearly show that if the decision maker is interested in the downside 

risk associated with gross margin then the moldboard plow tillage system is preferred as there was no 

probability range less than the lower cutoff value (i.e., one standard deviation below the mean) for this 

system. The moldboard plow tillage system is again preferred if the decision maker is interested in the 

probability of achieving a higher mean gross margin. The Stoplight net return analyses for corn and 

soybean in Figures 11c,d are similar to the gross margin results in that the moldboard plow tillage 

system is preferred regardless of whether the objective of the decision maker is to minimize risk or 

maximize net return. An additional piece of useful information that the Stoplight analysis can provide 

is the probability of obtaining a negative gross margin or net return. When the lower cutoff value 

($/ha) is set to 0.0 (instead of minus one standard deviation) there is zero probability that corn or 

soybean gross margin (across all tillage system alternatives) will be negative. For corn and soybean net 

return and a lower cutoff value ($/ha) of 0.0, only the chisel plow tillage system for corn and the no-till 

system for soybean had a probability of a negative return (10% and 3%, respectively). The Stoplight 

results shown in Figure 11 are comparable to the SERF analysis results with the exception that the 

moldboard plow tillage system was superior in all cases. For the SERF results, the no-till system was 

preferred for soybean gross margin at all but the extreme level of risk aversion, and the ridge-till 

system was preferred for corn net return at all levels of risk aversion. 

Figure 11. Stoplight analysis results for (a) corn gross margin, (b) soybean gross margin, 

(c) corn net return, and (d) soybean net return. 
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Figure 11. Cont. 

 

 

4. Discussion 

The above results indicate that the moldboard plow and no-till tillage system alternatives were 

more risk efficient compared to the other tillage systems, especially for farm managers who are 

relatively more risk averse. Chase and Duffy [8] found that the moldboard plow system produced 

statistically significant higher returns to land, labor, and management than the other Nashua, IA tillage 

systems for the years 1978–1987. Similar to this study, Klemme [3] showed that no-till tillage systems 

were dominated (using FSD and SSD) by conventional tillage systems for a corn-soybean rotation in 

north-central Indiana. However, the results must be qualified in that for the Nashua, IA data set used in 

our study (1990–2003), both environmental (e.g., hail in 1994–1995) and management changes  

(e.g., a reduction in chemical fertilizer rates between 1990–1993 and 1994–1999 on most plots) 

occurred which could have affected yield and yield variability during the study period [45]. 

Furthermore, Klemme [3] stated that changes in yields or costs, such as reduced herbicide costs 

through improved weed control in no-till planting, could lead to quite different tillage system rankings 

for risk averse farmers (and consequently improve the relative attractiveness of no-till). This 

observation was confirmed by Williams et al. [25] who noted that in the current economic 

environment the volatility of input costs may play nearly as big a role in tillage and cropping decisions 

as commodity prices.  

Despite the fact that many studies comparing net income between conventional and reduced tillage 

systems are contradictory, there is a growing scientific consensus that environmental and other 

sustainability benefits of reduced tillage systems may outweigh potential disadvantages [46,47]. Chase 

and Duffy [8] long ago pointed out that, despite the oftentimes superior performance of conventional 

tillage systems, “the adoption of conservation tillage practices can be accomplished without lowering 

economic returns or significantly increasing chemical use.” Indeed, Figures. 5-8 show that the no-till 

and ridge-till reduced tillage systems performed very well, even with the moldboard plow tillage 

system included in the analysis. For the SDRF and SERF analyses, the no-till tillage system alternative 

was more risk efficient for soybean gross margin and corn net return compared to the other tillage 

system alternatives. Furthermore, no-till may require less labor which might allow more off-farm 

income or alternatively the farmer could have a larger farm. In other words, farmers using no-till may 
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have higher general income that is not reflected in farm gross margin or net return. It is important to 

note that: (1) traditional stochastic dominance and SERF analyses focus strictly on economic 

sustainability without consideration of other externalities (e.g., soil quality) which may render a 

conventional tillage system environmentally unsustainable in the long term; and (2) most studies 

comparing economic and/or environmental data between conventional and reduced tillage systems 

omit an important area that affects profit and sustainability—the impact on farm business risk. If 

decisions are made without considering risk, the decision maker can easily determine which strategy is 

best, the one with the greatest average net income [48]. When decisions are made considering risk, 

such as in agriculture, the decision maker cannot use such a simple rule because the economic return 

for each alternative is a distribution of returns rather than a single value [5]. In this study, we have used 

various risk analysis methodologies to expand upon this concept, i.e., the application of traditional 

stochastic dominance and SERF methods for quantifying the effects of experimental designs on 

economic sustainability outcomes when comparing alternative production systems over time. 

5. Summary and Conclusions 

The primary goal of this study was to explore several risk ranking methods including SSD, SDRF, 

and SERF to generate economic sustainability rankings for conventional and reduced tillage systems 

using 14 years (1990–2003) of economic budget data collected from 35 treatments on 36 plots at the 

Iowa State University Northeast Research Station near Nashua, IA, USA. Four tillage system 

alternatives (chisel plow, moldboard plow, no-till, and ridge-till) were analyzed. For the stochastic 

dominance analysis, the tillage system alternatives were ranked using second-degree stochastic 

dominance (SSD) and stochastic dominance with respect to a function (SDRF). For the SERF analysis, 

certainty equivalent (CE) values for gross margin and net return by crop were calculated for each 

tillage system alternative. In addition to the stochastic dominance and SERF analyses, an  

economic analysis of the tillage system alternatives was also performed using simple statistical  

(e.g., mean-variance and CV) measures. Finally, the visually-based Stoplight method was employed 

for displaying gross margin and net return probability distribution information at cutoff points one 

standard deviation above and below mean values.  

Statistical analysis of the economic measures alone provided somewhat contradictive and  

non-conclusive rankings, e.g., examination of the mean-variance and CV results for corn and soybean 

gross margin and net return showed that different tillage system alternatives were the highest ranked 

depending on the criterion and the type of crop (corn or soybean). Stochastic dominance analysis 

results were very similar for both SSD and SDRF, i.e., for both methods the moldboard plow or no-till 

tillage system alternatives were ranked either first or second with the exception of the ridge-till system 

which was ranked second for corn gross margin. SERF analysis results were dependent on the type of 

crop, economic outcome of interest (gross margin or net return) and level of risk aversion. The 

moldboard plow tillage system was preferred across the entire range of risk aversion for corn gross 

margin and soybean net return. The no-till tillage system alternative was preferred across the entire 

range of risk aversion for soybean gross margin. For the corn net return SERF analysis, the no-till and 

moldboard plow tillage system alternatives were both preferred depending on the level of risk 

aversion. For the Stoplight analysis, the moldboard plow tillage system was preferred for corn and 
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soybean regardless of whether the objective of the decision maker was to minimize risk or maximize 

gross margin or net return. In summary, the risk analysis results indicate that: (1) there was no single 

tillage system alternative that was consistently preferred across the SSD, SDRF, and SERF analyses 

for both type of crop and gross margin/net return; and (2) the chisel plow tillage system alternative was 

never preferred (i.e., ranked first) for any of the risk analysis methods. 

Our study illustrates that using the SERF methodology to examine gross margin and net return risk 

can be a useful component in analyzing tillage system sustainability. However, the difference in tillage 

systems, considering risk, may be difficult to discern because environmental/management changes and 

production cost instability can cause one tillage system to be selected over another. Our results also 

show that using statistical or semi-quantitative methods to rank tillage system alternatives may lead to 

ambiguous conclusions. Even with quantitative assessments, the typical absence in commonly 

advocated methods (e.g., mean-variance) of a systematic way to accommodate risk aversion seems 

unsatisfactory. The traditional stochastic dominance and SERF methods of tillage system assessment 

illustrated herein help to overcome these limitations. However, stochastic dominance and SERF 

approaches for assessing tillage system sustainability based primarily upon economics may not tell the 

whole picture, i.e., it is often more productive to focus on the distributions of possible risky outcomes 

that, in farming as in other forms of business, may be due to many causes such as unpredictable 

weather or a shift in market prices [15]. Another important factor that is difficult to measure (but could 

affect yield and subsequently gross margins/net returns) is the time it takes the farm operator to master 

the management of a new tillage system. Furthermore, the manager’s perception of risk associated 

with each tillage system is often highly qualitative, and may be the driving factor in the selection 

decision. Nevertheless, the results of this study are important in that they highlight the potential of 

traditional stochastic dominance and SERF methods for quantifying income-risk sustainability 

between different tillage systems (across a range of risk aversion levels). 

Several limitations of the study should be mentioned to better assist with interpretation of the 

results. Similar to Pendell et al. [21] and others, we have used a single utility function (negative 

exponential) that approximates an inter-temporal utility function. Future research should consider 

alternative utility functions for SERF such as the power, expo-power, and log utility functions. In 

addition, this study does not explicitly consider the impact of time, i.e., the results should be 

considered applicable only to the time period of the study and not to future data. Finally, we have 

illustrated the use of a traditional stochastic dominance and SERF framework for the problem of 

evaluating alternative tillage systems based on long-term experimental data. The primary sustainability 

attribute considered was risk attitude with regard to income. However, as previously stated, farmers 

have multiple farm management objectives when considering farm sustainability including managing 

financial risk, managing institutional risk (e.g., maintaining government program eligibility), and 

evaluating soil conservation or environmental benefits. Thus, it is difficult to select whether a reduced 

tillage system or which tillage system is generally best for all farm managers, each of whom will have 

personal preferences on how they perceive system risk.  
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