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Abstract: Artificial intelligence has significantly transformed educational practices across
disciplines. This study investigated the cognitive-behavioral mechanisms underpinning
mathematics teachers’ engagement with Al teaching tools through an extended technology
acceptance model. Utilizing structural equation modeling with data from 500 mathematics
educators, we delineated psychological pathways connecting perceptual variables to tech-
nology engagement and pedagogical outcomes. Results revealed that perceived usefulness
functioned as the primary determinant of Al engagement, while perceived ease of use
operated exclusively through sequential mediational pathways, challenging conventional
technology acceptance paradigms. Domain-specific factors, such as teacher Al literacy and
mathematics teaching beliefs, emerged as significant mediators that conditioned technology-
related behavioral responses. The mediators in this study illustrated differential attitudinal
mechanisms through which perceptual variables transformed into engagement behav-
iors. These findings extended technology acceptance theories in educational contexts by
demonstrating how domain-specific cognitive structures modulated perception-behavior
relationships in professional technology adoption in mathematics education.

Keywords: technology acceptance model; mathematics education; artificial intelligence;
teacher engagement; mathematics literacy; structural equation modeling; teacher beliefs;
educational technology

1. Introduction
1.1. Research Background and Problem Statement

Educational technologies have driven profound educational reform on a global scale.
This transformation has fundamentally reshaped the roles of educational stakeholders, re-
sources, and tools [1]. The proliferation of generative artificial intelligence (Al) technologies
in educational contexts represents a particularly consequential contemporary development.
These innovations have precipitated complex psychological responses among mathemat-
ics educators, reconfiguring their cognitive appraisal processes and decisions regarding
technology integration into teaching practice [2,3]. These cognitive-behavioral responses
manifest through intricate psychological mechanisms. Educators assess technological af-
fordances against established pedagogical schemas, navigate perceived implementation
risks, and ultimately enact behavioral engagement patterns that determine instructional
outcomes [4].
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Integrating artificial intelligence technologies into education offers multidimensional
affordances that transcend traditional instructional modalities, precipitating fundamental
reconsiderations of pedagogical approaches across disciplines [5]. Specifically, Al tech-
nologies in mathematics education facilitate adaptive learning environments that respond
dynamically to individual cognitive trajectories, thereby cultivating personalized learning
pathways calibrated to students’” developmental readiness [3]. These technologies have
substantively enhanced mathematical conceptualization through sophisticated visualiza-
tion algorithms, making abstract mathematical constructs accessible through multiple
representational modalities; they have further expanded students’ cognitive engagement
with complex mathematical structures [6].

Furthermore, Al-enabled analytics systems provide unprecedented granularity in
formative assessment mechanisms, enabling the real-time diagnostic evaluation of stu-
dent comprehension patterns and procedural misconceptions that traditional assessment
methodologies often fail to identify [7]. The algorithmic adaptivity of Al teaching tools facil-
itates automated problem generation calibrated to optimal cognitive challenge thresholds.
Such tools create instructional scaffolding and systematically advance students’ procedu-
ral fluency toward conceptual mastery through appropriately sequenced mathematical
tasks [8]. Critically, these technological affordances operate not as substitutive mechanisms
displacing educator agency but rather as augmentative tools that amplify teachers’ instruc-
tional capacities [2]. Such technology applications have enabled educators to reallocate
cognitive resources from routine procedural facilitation toward higher-order pedagogical
functions, including conceptual scaffolding and mathematical reasoning development [2].

Introducing these Al-enabled capabilities into mathematics instruction holds substan-
tial promise for advancing sustainable educational development by improving instructional
efficiency, cognitive accessibility, and learning outcome equity. Those benefits collectively
underscore the significance of examining the psychological mechanisms where mathematics
educators engage with these evolving technological resources.

The cognitive architecture supporting technology adoption decisions encompasses
multiple interconnected dimensions. These include instrumental assessments regarding
effectiveness enhancement, procedural evaluations of implementation complexity, and
normative cognition concerning alignment with established pedagogical values. Within
this dynamic psychological landscape, mathematics educators function as cognitive agents.
Their technology-related decision processes significantly modulate how technological affor-
dances translate into instructional behaviors and subsequent educational outcomes [9]. The
interaction between technology, educators, and content demonstrates crucial importance
for the sustainable development of educational assessment, technology integration, and
pedagogical reform.

A particularly consequential psychological tension emerges between frameworks of
technological acceptance and deeply entrenched epistemological belief structures regard-
ing mathematics instruction [10]. This cognitive dissonance materializes in the perceived
incongruence between technological utility assessments and pedagogical coherence evalua-
tions. Educators’ philosophical orientations toward mathematical knowledge construction
frequently conflict with the algorithmic learning models underpinning Al systems [9]. The
cognitive resolution of these tensions constitutes a critical psychological process. This pro-
cess determines whether technological innovations become meaningfully integrated within
existing belief structures or remain perpetually peripheral to core instructional designs
and modes. This complex interplay between cognitive belief structures and technological
appraisal processes represents a significantly undertheorized domain within educational
technology adoption research in domain-specific explorations.
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The extant literature has predominantly examined isolated attitudinal components
of Al implementation in mathematics education. These components include cognitive
perceptions, affective responses, or behavioral utilization patterns. Al chatbots can be
introduced into learning environments to strengthen learning engagement and motiva-
tion [11]. Nevertheless, a comprehensive theoretical framework elucidating the integrated
cognitive-behavioral mechanisms whereby teachers’ technological appraisals influence
engagement remains conspicuously absent [12,13]. This theoretical gap presents a sub-
stantial impediment to progress. It restricts the development of psychologically informed
interventions aimed at facilitating adaptive technological integration. Without a nuanced
understanding of the cognitive-behavioral pathways connecting technological perceptions
to adoption behaviors, educational institutions risk substantial investment in technological
infrastructure without corresponding psychological preparation. Such preparation must
address the cognitive barriers and behavioral facilitators of effective technology integration.

Consequently, the current study aims to address a critical gap in the technology accep-
tance literature, establishing a domain-specific comprehensive framework for explaining
and predicting Al teaching tool adoption among mathematics teachers. We propose and
empirically validate an integrated cognitive-behavioral framework that elucidates these
complex psychological mechanisms to sustainably support future-oriented reform and
implementation of Al-assisted education. To establish complex interconnections between
multiple variables, structural equation modeling (SEM) techniques are chosen for the
current study, representing the practice of a set of sophisticated multi-variable statistical
approaches that excel in inter-relationship explorations (e.g., [14]). SEM has the capac-
ity to simultaneously assess multiple interdependent relationships while accounting for
measurement error—a critical consideration when operationalizing latent psychological
constructs such as perceptions, beliefs, and literacy. This analytical procedure involved a
two-phase approach: first establishing measurement model validity through confirmatory
factor analysis, followed by the structural model assessment to evaluate hypothesized
causal pathways.

1.2. Research Objectives and Significance

The primary objective of this investigation is to delineate the cognitive-behavioral
pathways through which mathematics teachers’ perceptual appraisals of Al teaching
tools influence their engagement patterns and perceived impacts on student mathe-
matical literacy outcomes [15]. By conceptualizing teacher engagement as a multidi-
mensional response encompassing both utilization frequency and psychological invest-
ment, this study transcends simplistic adoption—outcome correlations that have charac-
terized many existing studies. Instead, we seek to elucidate the mediating psychological
mechanisms—particularly domain-specific knowledge structures and belief systems—that
modulate the relationship between cognitive technology appraisals and behavioral engage-
ment manifestations [10].

Theoretically, this investigation will significantly contribute to the literature on tech-
nology integration in future-oriented mathematics education. It integrates two previously
disparate theoretical frameworks: technology acceptance models and teacher belief system
theories [13]. This theoretical synthesis enables a more comprehensive psychological lens
to examine the complex interplay between technological perceptions, domain-specific
cognitive structures in mathematics education, and engagement patterns that collectively
determine the implementation effectiveness of technology-enhanced teaching. By extend-
ing conventional technology acceptance frameworks to specialized cognitive constructs
relevant to educational contexts, particularly the perceived risks of implementing Al
technologies and domain-specific belief structures, this study advances the theoretical
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understanding of how professional cognitive schemas condition technology-related be-
havioral decisions in specialized disciplinary domains [15]. This approach should better
prepare and inform future technological designs and applications.

The practical significance of this research lies in its potential to inform psychologi-
cally sophisticated interventions aimed at facilitating mathematics teachers’ effective and
sustainable Al integration into pedagogical practice [8]. By identifying specific determi-
nants and mediators that facilitate or impede successful Al technology implementation in
mathematics education, this study provides empirical guidance for psychological interven-
tion initiatives, professional development programs, and institutional policies. This study
will enable more effective educational interventions to optimize technological utilization
and modern educational reform through targeted cognitive restructuring and behavioral
activation approaches. Furthermore, the findings offer valuable insights for educational
technology developers seeking to design Al tools that accommodate educators’ cognitive
frameworks and behavioral implementation preferences and satisfy educational needs,
thereby enhancing their adoptability and sustainable utilization [13].

2. Literature Review and Theoretical Background
2.1. Cognitive Determinants of Technology Acceptance and Adoption

The cognitive architecture underlying technology adoption decisions represents a
complex interplay of perceptual, evaluative, and attributional processes that transcend
simplistic utilitarian assessments [16]. These cognitive structures are particularly nuanced
in education, as they intersect with pedagogical epistemologies that are often crystallized
through longstanding professional practice [17].

As one of the most influential technology acceptance and adoption models and theo-
ries, the technology acceptance model (TAM) was originally conceptualized by Davis [18]
and subsequently refined through numerous theoretical iterations (e.g., [19,20]), which pro-
vided a foundational cognitive framework for understanding how mental representations
of technological affordances translated into behavioral adoption intentions. The model’s
core perceptual constructs—perceived usefulness and perceived ease of use—functioned
as primary cognitive appraisals that subsequently conditioned behavioral response ten-
dencies [21]. Numerous studies extended this classic model to external predictors and
outcomes in cognitive, behavioral, affective, and social aspects [20,22,23]. This classic
model captured several core variables, such as perceived usefulness and perceived ease
of use.

Perceived usefulness constitutes a cognitive evaluation of the instrumental value
of a technology, representing the subjective assessment of how technological implemen-
tation would enhance task performance. This cognitive appraisal operates as a direct
determinant of behavioral intention and is particularly salient in professional contexts
where performance efficacy is paramount [17]. The cognitive processing of usefulness
perceptions is inherently domain-specific as it necessitates the mental simulation of poten-
tial implementation scenarios within existing instructional frameworks. In mathematics
education specifically, this cognitive evaluation process involves complex assessments
of how Al teaching tools might augment concept representation, facilitate procedural
skill development, enhance problem-solving scaffolding, or enable formative assessment
mechanisms [6,24].

Perceived ease of use represents a cognitive assessment of the anticipated effort expen-
diture, which functions both directly and indirectly on behavioral intention formation [21].
This cognitive parameter assumes particular significance in educational contexts where
cognitive load considerations are already substantial due to the multifaceted demands
of classroom orchestration. Within mathematics education specifically, this cognitive ap-
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praisal encompasses anticipated effort requirements for technological mastery, interface
navigation, instructional integration, and task facilitation during technology-mediated
learning activities [7].

The adaptation of the TAM to Al's educational applications necessitated the expansion
of its cognitive parameters to accommodate domain-specific mental models and risk as-
sessments that characterize pedagogical technology adoption [25]. Notably, perceived risk
emerged as a critical cognitive determinant in Al-empowered education, encompassing
the assessment of potential negative outcomes across multiple dimensions: algorithmic
reliability, data privacy, intellectual property, student cognitive autonomy, and pedagog-
ical displacement [26]. Alongside problematic technology use, such risk cognitions and
concerns might result in technology stress and anxiety [14], operating as inhibitory fac-
tors within the broader adoption decision architecture. Thus, it functioned as a cognitive
counterweight to perceived benefits in the mental calculus of technology acceptance [27].

Contemporary cognitive elaborations of technology acceptance frameworks further
recognized the mediating role of social-cognitive factors, particularly subjective norms
and institutional facilitating conditions, which acknowledged how individual cognitive
processing was embedded within broader social cognition networks [27]. This social-
cognitive dimension was especially pronounced in educational institutions, where depart-
mental cultures, administrative messaging, and collegial influence significantly shaped
individual cognitive appraisals of technological innovation. The present investigation
aimed to extend this cognitive framework by examining how domain-specific cognitive
structures—specifically mathematical pedagogical beliefs and Al literacy—modulated the
relationship between general technological perceptions and specific engagement patterns
among mathematics educators.

2.2. Engagement Patterns in Educational Technology Contexts

Engagement with educational technologies constitutes a multidimensional response
pattern that transcends the binary notion of adoption versus rejection; instead, it manifests
across a continuous spectrum of implementation behaviors characterized by variations in
frequency, duration, intensity, and sophistication [28,29]. This repertoire encompasses ob-
servable actions ranging from exploratory (experimental technology utilization), adaptive
(customization to specific instructional contexts), and integrative (incorporation within es-
tablished pedagogical routines) to transformative behaviors (fundamental reconfiguration
of instructional approaches to leverage technological affordances) [30,31]. The conceptual
complexity of technology engagement underscores the inadequacy of unidimensional
conceptualizations and highlights the need for multifaceted frameworks to capture this
concept. For instance, earlier theories specified the behavioral, emotional, agentic, cognitive,
and social aspects of engagement (e.g., reflected in [14]).

Within mathematics education specifically, engagement with Al teaching tools exhib-
ited domain-specific manifestations across instructional phases. Preparatory engagement
included AI utilization for problem generation, concept exemplification, and differentiated
material development. Instructional engagement encompassed real-time implementation
of Al-augmented demonstrations, interactive problem-solving, and adaptive assessment
mechanisms. Post-instructional engagement involved Al-facilitated feedback provision,
learning analytics interpretation, and instructional refinement based on algorithmic perfor-
mance insights [30]. The temporal distribution of these engagement behaviors reflected the
complex patterns that characterized meaningful technology integration into specialized
educational domains.

The psychological antecedents of these engagement patterns extended beyond mere
intention formation to encompass a complex array of cognitive, affective, and contextual de-
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terminants [32]. Cognitive determinants include technology-related knowledge structures,
self-efficacy beliefs, outcome expectancies, and implementation planning capacities; affec-
tive determinants encompass emotional responses, including technological enthusiasm,
implementation anxiety, and satisfaction with previous technology encounters; contextual
determinants involve institutional support structures, resource availability, professional
development opportunities, and collegial behavioral modeling [33]. This multifaceted
determinant structure highlighted the complex psychological foundations underlying
engagement with technology adoption.

A particularly critical psychological dimension of engagement was technological lit-
eracy, which constituted the specialized knowledge architecture that enabled effective
technological implementation [34]. For Al teaching tools specifically, this literacy com-
prised multiple knowledge domains: algorithmic literacy (understanding computational
processes underlying Al systems), data literacy (comprehending how training data influ-
ences system outputs), and application literacy (knowledge of effective implementation
strategies) [35-37]. These knowledge structures functioned as enabling factors for sophisti-
cated engagement behaviors, facilitating progression from superficial technology utilization
to pedagogically transformative implementation approaches [38]. Technological literacy
and readiness were considered solutions to technostress in higher educational contexts
among students [39], which could presumably apply to other educational stakeholders.
Thus, the significant role of technology literacy has been increasingly noticed in the Al era,
along with the changing landscape of technologies and their applications.

The relationship between engagement and technological literacy was characterized
by reciprocal causality: initial engagement fostered literacy development through expe-
riential learning, which subsequently enabled more sophisticated engagement behaviors
in recursive developmental cycles [32]. This dynamic inter-relationship was moderated
by several factors, including institutional scaffolding, professional learning communities,
and individual self-regulatory capacities. Research suggested that engagement-literacy
developmental trajectories exhibited distinct patterns across technology implementation
phases: Early-stage engagement primarily enhanced functional knowledge components,
while sustained engagement progressively developed critical evaluative capacities through
reflective implementation experiences [40].

The present investigation extended this engagement framework by examining how
various psychological determinants—specifically, technological perceptions, contextualized
teacher Al literacy, and pedagogical beliefs—could collectively shape engagement patterns
with Al teaching tools in mathematics education contexts. By conceptualizing engage-
ment as a multidimensional construct rather than a simplistic adoption metric, this study
would seek to illuminate the complex psychological mechanisms through which cogni-
tive appraisals translate into observable implementation behaviors, ultimately influencing
educational outcomes [41].

2.3. Domain-Specific Cognitive Structures as Psychological Mediators

Mathematics teachers’ beliefs constituted specialized cognitive architectures that func-
tioned as interpretive schemas, through which technological innovations were evaluated,
categorized, and ultimately embraced or rejected. These domain-specific belief struc-
tures operated as cognitive mediators that filtered perceptual inputs, conditioned affective
responses, and ultimately shaped implementation decisions regarding educational tech-
nologies [42]. The mediational function of these belief systems was particularly pronounced
when technological innovations potentially disrupted established instructional paradigms
or challenged core pedagogical assumptions—conditions frequently associated with Al
implementation in mathematics education.
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The cognitive composition of mathematics teaching beliefs encompasses multiple
interconnected dimensions that collectively form coherent mental models of effective in-
struction. Epistemological beliefs concern the nature of mathematical knowledge, ranging
from instrumentalist perspectives (mathematics as a collection of rules and procedures) to
constructivist orientations (mathematics as conceptual understanding developed through
exploration and discovery) [43]. Pedagogical beliefs address optimal instructional ap-
proaches, spanning a continuum from direct instruction (emphasizing procedural fluency
through demonstration and practice) to inquiry-based methodologies (prioritizing student-
centered exploration and mathematical reasoning) [44]. Evaluative beliefs encompass con-
cepts of mathematical proficiency assessment, ranging from product-oriented approaches
(focusing on solution accuracy) to process-oriented frameworks (emphasizing strategy
sophistication and metacognitive awareness).

The cognitive centrality and stability of these belief structures rendered them pow-
erful mediators of technological acceptance processes. Beliefs function as cognitive filters
through which teachers evaluate the congruence between technological affordances and
their instructional priorities, with greater perceived alignment facilitating higher acceptance
and more sustainable technology adoption behaviors [45]. This filtering mechanism oper-
ates through cognitive consistency principles: technologies perceived as reinforcing existing
belief structures encountered minimal resistance, while those presenting potential belief
contradictions triggered cognitive dissonance that frequently manifested as implementa-
tion resistance or superficial adoption patterns [46]. Consequently, the same technological
innovation could elicit dramatically different adoption responses across teachers with
divergent belief structures, even within identical institutional contexts.

The mediational function of teacher beliefs extended beyond initial acceptance deci-
sions to influence implementation depth and sustainability. Teachers with constructivist
epistemological orientations generally demonstrated greater receptivity to technological
innovations that facilitated student-centered exploration, conceptual visualization, and
personalized learning pathways—affordances frequently associated with sophisticated Al
teaching tools [47]. Conversely, teachers with instrumentalist orientations might perceive
these technological affordances as potentially undermining procedural mastery or diluting
instructor authority. These contrasting cognitive interpretations of identical technological
features illuminated how belief structures fundamentally reconfigured the psychological
significance of technological innovations.

The technological domain of artificial intelligence introduced unique cognitive ten-
sions within mathematics educators’ belief systems. Al teaching tools frequently embodied
specific mathematical epistemologies that might align or conflict with teachers’ established
belief architectures, thereby conditioning both adoption decisions and implementation
approaches [48]. These cognitive tensions were particularly evident in Al applications
that employed machine learning algorithms to generate alternative solution pathways or
adaptive problem sequences, that is, issues diverging from teachers’ preferred instructional
progression [49]. Similarly, Al tools that emphasized procedural efficiency through auto-
mated calculation or symbolic manipulation might conflict with teachers’ beliefs regarding
the developmental importance of cognitive struggle and procedural mastery [50].

The dynamic interplay between technological implementations and belief structures
created potential for reciprocal influences, wherein successful technology integration expe-
riences could gradually reconfigure aspects of teachers’ belief systems through cognitive
accommodation processes [51]. This bidirectional relationship underscores the complex
cognitive dynamics underlying technology acceptance in specialized educational domains,
where technological innovations simultaneously function as objects of cognitive evalua-
tion and potential catalysts for belief evolution. The present investigation built upon this
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theoretical foundation by examining how teachers” mathematics-specific belief structures
mediated the relationship between technological perceptions and engagement, thereby
illuminating the cognitive mechanisms through which general acceptance parameters
translated into domain-specific implementation approaches.

2.4. Research Model and Hypotheses

The theoretical framework underpinning this study integrates the extended technol-
ogy acceptance model with constructs from the theory of teachers’” belief systems. This
integration comprehensively captures the complex determinants of mathematics teach-
ers’ engagement with Al tools and the subsequent impacts on educational outcomes [52].
This integrated model posits that teachers’ perceptions of Al teaching tools—specifically
perceived usefulness, perceived ease of use, and perceived risks—could influence their
engagement with these technologies, which in turn affected students” mathematical literacy
according to teachers’ perceptions [53]. Crucially, the relationships between teachers” Al
technology perceptions and outcomes were mediated by two key constructs, i.e., teachers’
Al literacy and mathematics teaching beliefs. These factors collectively determine how
effectively teachers could leverage Al affordances to enhance students’ learning outcomes
and sustainable improvements in mathematics teaching.

The preceding theoretical examination illuminated a sophisticated cognitive-behavioral
architecture, wherein teachers’ technological perceptions, domain-specific knowledge struc-
tures, and epistemological belief systems functioned as interconnected determinants of
technology engagement and educational outcomes. Building upon the reviewed theo-
retical constructs, cognitive determinants of technology acceptance [16,18], engagement
patterns [32], and domain-specific cognitive mediators [42], we formulated the following
hypotheses (Figure 1):

Teachers’ technological Teachers” Al Literacy
perceplions i (TAL)
. Hla e rrmmssssmrsssiissssssssssasanaaas .
Perceived Usefulness : H2a H3a(-) H4a H4b : Al adoption outcomes :
(PU) : H1ld Perceived Impact on
H%b i+ Mathematics Literacy
: H2d : (PIML)
Perceived Ease of Use : t
(PEOU) : H3d (- Hic : H6
H2b © i |
: H2c : * Teacher Al Engagement
: : TAE
Perceived Risk : H3c (-) (TAE)
PR : H5b : :
(PR) P H3b(-) HSa ~ e
. Teachers’ Mathematics Beliefs

(TMB)
Figure 1. A hypothesized research model.

H1. Perceived usefulness significantly and positively predicts (a) teachers’ Al literacy, (b) teach-
ers’ mathematics beliefs, (c) teachers” Al engagement, and (d) the perceived impact on students’
mathematics literacy.
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H2. Perceived ease of use significantly and positively predicts (a) teachers’ Al literacy, (b) teach-
ers” mathematics beliefs, (c) teachers’ Al engagement, and (d) the perceived impact on students’
mathematics literacy.

H3. Perceived risk significantly and negatively predicts (a) teachers” Al literacy, (b) teachers’
mathematics beliefs, (c) teacher Al engagement, and (d) the perceived impact on students’ mathe-
matics literacy.

H4. Teachers” Al literacy significantly and positively predicts (a) teacher Al engagement and (b) the
perceived impact on students’ mathematics literacy.

H5. Teachers’ mathematics beliefs significantly and positively predict (a) Teacher Al engagement
and (b) the perceived Impact on students’ mathematics literacy.

H6. Teacher Al engagement significantly and positively predicts the perceived impact on students’
mathematics literacy.

These hypotheses collectively reflect the complex and multi-variate nature of tech-
nology integration into educational contexts and acknowledge the critical role of teacher
agency in determining how technological affordances translate into pedagogical practices
and learning outcomes [54,55]. In the following sections, we present the methodologies
employed to test this model.

3. Research Methodology
3.1. Research Design and Sample

The current investigation employed a cross-sectional survey design to examine the
inter-relationships between mathematics teachers’ perceptions of Al teaching tools, be-
liefs, Al literacy, and engagement and the impacts on students” mathematical literacy
outcomes [56] (Appendix A). This methodological approach facilitated the simultaneous
examination of multiple theoretical constructs within naturalistic educational settings while
maintaining the systematic measurement of key variables [57]. Though cross-sectional de-
signs inherently constrained causal inference, this approach provided an appropriate initial
framework for examining associations among the focal constructs—teacher perceptions
about Al tools, Al engagement, Al literacy, discipline-specific teaching beliefs, and student
achievements [58].

The sampling procedure implemented a multistage stratified sampling strategy to
enhance population representativeness across diverse educational contexts [59]. The initial
sampling frame encompassed secondary mathematics teachers from 47 schools within
four administrative districts, stratified according to school type (public/private), geograph-
ical location (urban/suburban/rural), and socioeconomic indicators. These stratification
parameters were established to mitigate selection biases that might otherwise compromise
external validity [60]. Sample size determination proceeded through a priori power analysis
using G*Power 3.1.9.7 software, with parameters established based on structural equation
modeling requirements (x = 0.05, power = 0.80, anticipated effect size = 0.30). To account for
potential non-responses and incomplete data (estimated at 25%), we distributed invitations
to a total number of participants that exceeded the minimum required sample size.

Each participating teacher provided responses for one intact mathematics class, thus
creating teacher—class pairs as the primary unit of analysis. The demographic section
collected information regarding the teachers’ gender, age, teaching experience, educational
qualifications, duration of Al experience, and Al usage frequency. This comprehensive
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demographic profiling could enhance the interpretability of findings within specific educa-
tional contexts [61].

3.2. Measurement Tools
3.2.1. Extended Technology Acceptance Model Scales

Teachers’ perceptions regarding Al teaching tools were assessed using a contextualized
adaptation of established TAM instrumentation, encompassing three primary dimensions:
perceived usefulness, perceived ease of use, and perceived Al risks. The perceived useful-
ness (PU) subscale, comprising three items adapted from Davis [18] and Scherer et al. [62],
assessed teachers’ evaluation of Al tools” contribution to instructional effectiveness, their
efficiency, and their differentiation capacity [63]. The perceived ease of use (PEOU) subscale,
also containing three items derived from Davis [18] and Teo [64], measured teachers’ assess-
ment of Al tools’” comprehensibility and learnability, as well as integration simplicity [65].
The perceived Al risks (PR) subscale, consisting of three items adapted from Featherman
and Pavlou [66] and Wang et al. [67], evaluated teachers’ concerns regarding technolog-
ical dependency, mathematical accuracy, and algorithmic bias [68]. All items employed
five-point Likert scales ranging from “strongly disagree” (1) to “strongly agree” (5), with
appropriate reverse coding for risk-related items.

The instruments underwent comprehensive psychometric evaluation in previous
research, demonstrating satisfactory reliability coefficients and validity indicators across
diverse educational contexts. The adapted measures were pilot-tested with a representative
sample of mathematics teachers (n = 42), who were not included in the main study, to verify
the instrument’s clarity, relevance, and contextual appropriateness [69,70].

3.2.2. Teachers’” Al Literacy and Engagement Measures

Teachers” Al literacy (TAL) was assessed using a three-item instrument adapted from
Ng [71] and Peterson et al. [72], measuring teachers’ capacity to critically evaluate Al-
generated mathematics content, comprehend Al’s capabilities and limitations, and adapt
Al materials to specific learning objectives [73]. Teachers” Al engagement (TAE) was mea-
sured using a three-item scale adapted from Schaufeli et al. [74] and Ifinedo [75], assessing
experimentation frequency with diverse Al applications, enthusiasm regarding classroom
Al integration, and the systematic evaluation of Al effectiveness across mathematical
domains [76]. Both constructs utilized five-point response scales, with Al literacy employ-
ing agreement ratings and Al engagement utilizing frequency assessments ranging from
“never” (1) to “very often” (5).

The psychometric properties of these instruments were established in previous educa-
tional technology research, with factor analysis studies confirming their construct validity
and internal consistency. The current study implemented these measures with minor
adaptations to ensure contextual relevance for mathematics education settings [77].

3.2.3. Teachers’ Mathematics Teaching Beliefs Questionnaire

To include teachers’ mathematics teaching beliefs (TMB), their epistemological and
pedagogical orientation toward mathematics instruction were assessed using a five-item in-
strument, synthesizing elements from Peterson et al. [72] and Stipek et al. [78]. This measure
evaluated beliefs regarding (1) guided exploration versus direct instruction, (2) conceptual
understanding versus procedural fluency, (3) error tolerance in mathematical learning,
(4) technology’s complementary role in instruction, and (5) multiple solution pathway
encouragement [79]. Five-point Likert scales captured agreement levels, with higher scores
indicating constructivist orientations emphasizing conceptual understanding, student
autonomy, and multiple representation utilization.
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This instrument was selected based on its theoretical alignment with the contemporary
mathematics education literature, and it has demonstrated psychometric properties in
previous studies investigating teacher belief systems. Content validity was further estab-
lished through expert review involving mathematics education researchers and experienced
practitioners [80].

3.2.4. Student Mathematical Literacy Assessment

To measure the teacher-perceived impact on students” mathematics literacy (PIML),
it was operationalized using a five-item instrument aligned with the PISA Mathematics
Framework [81] and Wilkins [82]. This variable could capture teachers’ observations of
Al tools” impact on students’ (1) mathematical problem formulation abilities, (2) concept
and procedure application proficiency, (3) mathematical result interpretation capacity,
(4) problem-solving persistence, and (5) mathematics learning engagement [83]. This
five-point scale ranged from “strong negative impact” (1) to “strong positive impact” (5),
assessing perceived changes in student capabilities attributable to Al implementation.

While acknowledging the inherent limitations of teacher-reported outcome measures,
this approach was selected for several methodological reasons. (1) It facilitates consistent
assessment across diverse curricular contexts where standardized achievement measures
might lack content validity, (2) it enables evaluation of multidimensional literacy constructs
beyond computational proficiency, and (3) it accommodates the diverse implementation
timelines across participating classrooms [84].

3.3. Data Collection and Analysis
3.3.1. Data Collection Procedures

Data collection proceeded through a systematic multi-phase process designed to maxi-
mize response quality while minimizing the administrative burden on participants [85].
Following institutional review board approval and administrative permissions from par-
ticipating schools, teachers received electronic invitations containing project information,
consent documentation, and personalized survey links. Survey administration employed a
secure web-based platform with data encryption protocols that safeguarded participant
confidentiality while enabling automated response validation and completion monitoring.

Quality control mechanisms included (1) attention check items strategically embedded
within survey instruments, (2) forced-response options for critical variables with logical
validation parameters, (3) timestamp monitoring to identify potentially rushed or inat-
tentive responses, and (4) follow-up verification for anomalous response patterns. These
protocols aimed to minimize missing data and ensure response integrity. For incomplete
submissions, participants received automated reminders with personalized survey links,
enabling completion without data duplication. All data collection procedures adhered
to institutional ethical guidelines regarding voluntary participation, informed consent,
confidentiality protections, and secure data storage.

3.3.2. Measurement Model Validation

The analytical approach employed Mplus 8.3 to perform a two-phase structural equa-
tion modeling procedure, beginning with measurement model validation followed by
structural model assessment [86], which is commonly adopted in structural equation
modeling studies in educational domains (e.g., [22,87]). The measurement phase utilized
confirmatory factor analysis (CFA) with robust maximum likelihood estimation to ac-
commodate potential non-normality in indicator distributions. This approach enabled
the simultaneous evaluation of all measurement instruments within an integrated model,
allowing examinations of both discriminant and convergent validity.
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The measurement validation process examined several psychometric properties: (1) in-
dicator reliability through standardized factor loadings, (2) construct reliability using
Cronbach'’s alpha and composite reliability indices, (3) convergent validity through average
variance extracted (AVE) calculations, and (4) discriminant validity using the Fornell-
Larcker criterion. Model refinement, if necessary, would proceed through an iterative
process guided by both statistical considerations (modification indices and standardized
residuals) and theoretical coherence, ensuring that any specification modifications main-
tained conceptual integrity while improving empirical fit.

3.3.3. Structural Model Analysis

Hypothesis testing employed structural equation modeling with bootstrapping proce-
dures to evaluate direct, indirect, and total effects within the proposed theoretical frame-
work [88]. This analytical approach offered several advantages for examining complex
inter-relationships, such as (1) simultaneous estimation of multiple dependence relation-
ships, (2) accommodation of latent variables with multiple indicators, (3) explicit modeling
of measurement error, and (4) assessment of mediating mechanisms within an integrated
analytical framework [89].

The hypothesized structural model specified teacher technology perceptions (per-
ceived usefulness, ease of use, and risks) as exogenous variables influencing Al literacy
and mathematics teaching beliefs; teaching beliefs and Al literacy sequentially influenced
teacher Al engagement, ultimately influencing the perceived impact on students” mathe-
matical literacy. Mediation analysis would employ bootstrapping with 5000 resamples to
generate bias-corrected confidence intervals for indirect effects, providing robust inference
regarding mediating mechanisms without assuming normal sampling distributions [90].
This approach would enable the decomposition of total effects into direct and specific
indirect pathways, facilitating the nuanced interpretation of multi-variate relationships
within the theoretical framework [91].

Model adequacy assessment employed multiple fit indices to overcome limitations
associated with exclusive reliance on chi-square statistics, which is sensitive to sample size
and minor model misspecifications [92]. Model evaluation would incorporate absolute and
incremental fit indices to provide a comprehensive assessment of model adequacy: the
x? test (acknowledging its sensitivity to sample size), RMSEA with 90% confidence intervals
(assessing the approximation error with precision estimation), CFI and TLI (comparing
model fit against null and independence baselines), and SRMR (evaluating the average
standardized residual magnitude) [93,94]. Additionally, alternative model specifications
would be systematically evaluated to mitigate confirmation bias and explore potential theo-
retical refinements, enhancing the robustness of conclusions regarding the hypothesized
mediation framework [95].

4. Research Results
4.1. Descriptive Statistics and Sample Characteristics

The demographic composition of our sample provided essential contextual param-
eters for interpreting technology acceptance patterns among mathematics educators. As
depicted in Table 1, the gender distribution (53% female and 47% male) approximates
the demographic structure of the broader mathematics teacher population, enhancing the
generalizability of findings within technology acceptance research. The sample’s age distri-
bution (M = 38.46 years, SD = 8.74) and professional experience spectrum (M = 12.83 years,
SD = 7.35) were particularly salient for technology acceptance investigations, as they
spanned cohorts with potentially divergent technological socialization patterns—a critical
consideration when applying extended TAM frameworks in educational settings [62,63].
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Table 1. Descriptive statistics of respondent characteristics and key constructs.
Variable Categories/Statistics Frequency/Value Percentage/SD
Demographic Characteristics
Gender Female 265 53.00%
Male 235 47.00%
Age (years) Mean 38.46 8.74
Range 24-58 -
Teaching Experience (years) Mean 12.83 7.35
<5 years 102 20.40%
5-10 years 148 29.60%
11-20 years 165 33.00%
>20 years 85 17.00%
Grade Level Elementary 165 33.00%
Middle School 178 35.60%
High School 157 31.40%
School Type Public 308 61.60%
Private 129 25.80%
Charter/Other 63 12.60%
Al Experience (months) Mean 26.72 17.53
Range Mar-62 -
Al Usage Frequency Daily 97 19.40%
Several times weekly 174 34.80%
Weekly 129 25.80%
Monthly/Less frequently 100 20.00%
Construct Measures
Perceived Usefulness (PU) Mean 3.39 1.19
Perceived Ease of Use (PEOU) Mean 3.45 1.2
Perceived Al Risks (PR) Mean 3.38 1.28
Teacher’s Al Literacy (TAL) Mean 3.32 1.22
Teacher’s Al Engagement (TAE) Mean 3.39 1.22
Teacher’s Mathematics Beliefs (TMB) Mean 3.36 1.23
Perceived Impact on Mathematics Mean 341 101

Literacy (PIML)

The institutional diversity of the sample—with representation across elementary
(33.0%), middle (35.6%), and high school (31.4%) levels, and across public (61.6%), private
(25.8%), and charter/alternative (12.6%) institutions—provided a robust basis for examining
technology acceptance mechanisms across varied pedagogical contexts. This diversity
strengthened the ecological validity of our findings, addressing a notable limitation in
previous TAM applications in specialized educational domains [25,26].

The participants” experience with Al teaching tools (M = 26.72 months, SD = 17.53)
revealed that our sample extended beyond early adoption phases, suggesting that reported
attitudes likely reflected substantive engagement rather than novelty effects that con-
founded previous technology acceptance studies. The usage frequency distribution—with
54.2% reporting at least weekly utilization—indicated sufficient engagement for meaningful
assessment of the constructs central to our theoretical framework.

The consistency in mean scores across primary constructs (ranging from 3.32 to 3.45 on
a five-point scale) warranted theoretical interpretation. The observed pattern, with teacher
Al literacy (TAL) demonstrating the lowest mean (M = 3.32, SD = 1.22) and perceived ease
of use (PEOU) registering the highest (M = 3.45, SD = 1.20), suggested a potential theoretical
tension between technical facility with Al tools and deeper pedagogical integration—a
pattern consistent with domain-specific elaborations of the TAM in knowledge-intensive
professional contexts [17,21].
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4.2. Measurement Model Assessment

Prior to hypothesis testing, we conducted a rigorous psychometric evaluation of
our measurement instruments to establish their theoretical and statistical reliability and
validity. The internal consistency reliability coefficients (Cronbach’s «) ranged from 0.773
(perceived Al risks) to 0.869 (perceived impact on mathematics literacy), all exceeding
the conventional threshold of 0.700 [86]. These values, presented in Table 2, indicated
substantive measurement fidelity across our theoretical constructs.

Table 2. Measurement Scales and Psychometric Properties.

Construct Abbreviation Items Cronbach’s « AVE

Perceived Usefulness (PU) PU 3 0.857 0.777

Perceived Ease of Use (PEOU) PEOU 3 0.838 0.756
Perceived Al Risks (PR) PR 3 0.773 0.688

Teacher’s Al Literacy (TAL) TAL 3 0.839 0.757

Teacher’s Al Engagement (TAE) TAE 3 0.841 0.760
Teacher’s Mathematics Beliefs (TMB) TMB 5 0.866 0.652
Perceived Impact on Mathematics Literacy (PIML) PIML 5 0.869 0.656

The convergent validity assessment yielded average variance extracted (AVE) values
ranging from 0.652 (teacher’s mathematics beliefs) to 0.777 (perceived usefulness), surpass-
ing the established criterion of 0.500 (Table 2). This indicated that our constructs explained
between 65.2% and 77.7% of the variance in their respective indicators, a substantial im-
provement over previous implementations of the TAM in educational technology contexts,
where convergent validity was marginally established [27].

Discriminant validity was rigorously established using the Fornell-Larcker criterion.
As Table 3 demonstrates, the square root of AVE for each construct on the diagonal in bold
consistently exceeds inter-construct correlations, confirming that each construct captures a
distinct theoretical dimension rather than alternative manifestations of the same underlying
phenomenon. The correlation matrix further reveals theoretically consistent relationships
among key variables, with the strongest associations observed between teachers’” Al engage-
ment and the perceived impact on mathematics literacy (v = 0.604, p < 0.001) and between
perceived usefulness and teachers” Al Engagement (v = 0.596, p < 0.001). These correlation
patterns aligned with the TAM’s theoretical emphasis on perceived usefulness as a primary
driver of technology engagement [18,62].

Table 3. Construct correlation matrix and discriminant validity.

PU PEOU PR TAL TAE TMB PIML
PU 0.881
PEOU 0.494 0.869
PR —0.185 —0.098 0.829
TAL 0.348 0.382 —0.057 0.870
TAE 0.596 0.392 —0.248 0.508 0.872
TMB 0.147 0.179 —0.042 0.333 0.348 0.807
PIML 0.528 0.376 —0.215 0.429 0.604 0.414 0.810

The measurement model demonstrated excellent fit across all indices. Table 4
presents the model fit indices, the recommended values, and the model evaluation re-
sults: x2/df = 1.106, which is substantially below the conservative threshold of 3.000;
RMSEA = 0.021 (90% CI = [0.000, 0.034]), indicating excellent fit with narrow confidence
intervals; and CFI = 0.991 and TLI = 0.989, both exceeding the rigorous 0.950 benchmark.
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The SRMR value of 0.048 further confirms the model’s precision in reproducing the empiri-
cal covariance structure. These fit statistics collectively exceeded the parameters typically
reported in TAM studies in educational contexts [25,27], establishing a robust foundation
for subsequent structural analysis.

Table 4. Measurement model fit indices.

Fit Index Value Threshold Interpretation
x2/df 1.106 (282.143/255) <3.00 Excellent
RMSEA 0.021 <0.08 Excellent
RMSEA 90% CI [0.000, 0.034] Upper bound < 0.08 Excellent
RMSEA p-value 1.000 >0.05 Excellent
CFI 0.991 >0.95 Excellent
TLI 0.989 >0.95 Excellent
SRMR 0.048 <0.08 Excellent

4.3. Structural Model Results
4.3.1. Cognitive Processing Pathways to Mathematics Teachers” Al Literacy and
Belief Structures

The structural equation model elucidated the complex psychological architecture
through which cognitive appraisals influence domain-specific knowledge structures and
belief systems (Table 5 and Figure 2). Hypothesis testing revealed that perceived ease of use
(PEOU) significantly activates cognitive pathways to teachers” Al literacy (TAL) (3 = 0.597,
p < 0.001), confirming H2a. The substantial magnitude of this cognitive processing pathway
suggests that perceptions of technological accessibility function as critical cognitive precur-
sors catalyzing the development of domain-specific technological knowledge structures
among mathematics educators. This finding extended conventional technology acceptance
frameworks by illuminating the specific cognitive mechanism through which general acces-
sibility perceptions facilitated specialized knowledge acquisition and integration, a process
particularly salient in knowledge-intensive professional domains where technological
mastery requires substantial cognitive investment.

Table 5. Structural model path coefficients.

Hypotheses and Paths Cszzrflg;re‘ﬁtz ?[(31) S.E. t-Value p-Value ng;g:)iils
Effects on Teacher Al Literacy (TAL)

Hla: PU — TAL 0.003 0.105 0.032 0.974 Not supported
H2a: PEOU — TAL 0.597 0.104 5.746 <0.001 Supported
H3a: PR — TAL 0.107 0.080 1.342 0.180 Not supported
Effects on Teacher Mathematics Beliefs (TMB)

Hi1b: PU — TMB —0.121 0.112 —1.081 0.280 Not supported
H2b: PEOU — TMB 0.328 0.114 2.872 0.004 Supported
H3b: PR — TMB 0.061 0.085 0.724 0.469 Not supported
Effects on Teacher Al Engagement (TAE)

Hlc: PU — TAE 0.522 0.073 7.185 <0.001 Supported
H2c: PEOU — TAE —0.012 0.100 —0.116 0.908 Not supported
H3c: PR — TAE —0.185 0.063 —2.935 0.003 Supported
H4a: TAL — TAE 0.327 0.075 4.360 <0.001 Supported

Hb5a: TMB — TAE 0.268 0.055 4.870 <0.001 Supported
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Table 5. Cont.
Standardized Hypothesis
Hypotheses and Paths Coefficient (B) S.E. t-Value p-Value Support
Effects on Perceived Impact on Mathematics Literacy (PIML)
Hé6: TAE — PIML 0.308 0.124 2.492 0.013 Supported
H4b: TAL — PIML 0.049 0.086 0.572 0.568 Not supported
H5b: TMB — PIML 0.256 0.063 4.050 <0.001 Supported
H1d: PU — PIML 0.269 0.115 2.340 0.019 Supported
H2d: PEOU — PIML 0.066 0.096 0.686 0.493 Not supported
H3d: PR — PIML —0.161 0.064 —2.506 0.012 Supported
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Figure 2. SEM path diagram.

Contrary to the theoretical postulation in Hla, perceived usefulness (PU) demon-
strated an insignificant cognitive pathway to teachers” Al literacy (3 = 0.003, p = 0.974). This
null effect suggested a fundamental psychological distinction between utility-oriented and
knowledge-oriented cognitive processing in specialized instructional domains. The absence
of a direct cognitive linkage between usefulness perceptions and literacy development
indicated that instrumental evaluations of technological utility operated through distinct
psychological mechanisms that bypassed knowledge construction processes, a nuanced
cognitive processing distinction that challenged the universality of standard causal technol-
ogy acceptance architectures. Similarly, perceived Al risks (PR) exhibited an insignificant
influence on teachers’ Al literacy (f = 0.107, p = 0.180), rejecting H3a and suggesting
that risk-related cognitive appraisals influenced behavioral responses through alternative
psychological mechanisms rather than through knowledge structure modifications.

Regarding cognitive pathways to belief systems, PEOU demonstrated a significant
influence on teachers” mathematics beliefs (TMB) (3 = 0.328, p = 0.004), confirming H2b and
illuminating how perceptions of technological accessibility activate cognitive restructuring
processes that modify domain-specific epistemological schemas. This finding suggests
that cognitive ease assessments could initiate belief accommodation processes, wherein
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existing pedagogical schemas incorporate technological elements, particularly when those
technologies are perceived as cognitively accessible. However, neither PU (3 = —0.121,
p =0.280) nor PR (p = 0.061, p = 0.469) established significant cognitive pathways to teacher
belief structures, which rejects H1b and H3b, respectively. This differential pattern of cogni-
tive influence reveals a theoretically significant distinction: while accessibility perceptions
could initiate belief modification processes, utility and risk assessments operate through
psychologically distinct mechanisms that bypass explicit belief restructuring, a cognitive
processing differentiation with substantial implications for understanding how various
technological perceptions influence professional belief systems in specialized domains.

4.3.2. Psychological Determinants of Teachers” Al Engagement

The analysis of the psychological architecture underlying teachers” Al engagement
(TAE) revealed a sophisticated constellation of cognitive and knowledge-based deter-
minants with differential influence magnitudes. Perceived usefulness emerged as the
predominant cognitive determinant of teachers” Al engagement (3 = 0.522, p < 0.001),
supporting Hlc and confirming the central psychological proposition that utility appraisals
function as the primary activating mechanisms for technology-related behavioral responses.
The substantial magnitude of this cognitive-behavioral pathway indicates the primacy of
instrumental evaluations in professional decision-making contexts, where performance
optimization constitutes a central motivational concern.

Teachers’ Al literacy manifested as the second most potent psychological determinant
of teachers” Al engagement (3 = 0.327, p < 0.001), confirming H4a and illuminating the crit-
ical role of domain-specific knowledge structures in facilitating technology implementation
behaviors. This finding revealed how specialized technological knowledge functions as
a psychological enabler that transforms general implementation intentions into specific
behavioral manifestations, a psychological process often undertheorized in conventional
technology acceptance frameworks that emphasize perceptual factors while neglecting
knowledge-based behavioral determinants. Teachers’ mathematics beliefs demonstrated
a comparable influence on Al engagement (3 = 0.268, p < 0.001), supporting H5a and re-
vealing how domain-specific epistemological schemas condition technological engagement
through cognitive consistency mechanisms, wherein implementation behaviors align with
underlying belief structures.

Perceived Al risks (PR) exhibited a significant inhibitory effect on teachers” Al En-
gagement (TAE) ( = —0.185, p = 0.003), confirming H3c and demonstrating how risk
cognitions functioned as psychological barriers to implementation behaviors through pro-
tective psychological mechanisms. The comparative influence magnitude of this inhibitory
pathway (approximately one-third of the magnitude of the facilitating usefulness pathway)
suggested a psychological counterbalancing process, wherein positive utility appraisals
attenuated behavioral inhibition stemming from risk perceptions—a cognitive-behavioral
balancing mechanism that explains the ambivalent implementation responses frequently
observed in educational technology contexts.

A particularly noteworthy finding involved the absence of a direct cognitive influence
of perceived ease of use on teachers” Al engagement (3 = —0.012, p = 0.908), rejecting
H2c and challenging a fundamental proposition of conventional technology acceptance
models. This finding necessitated substantial theoretical reconceptualization. In specialized
educational contexts, accessibility perceptions appeared to operate exclusively through
indirect psychological mechanisms (via knowledge and belief structures) rather than di-
rectly activating behavioral responses. This processing distinction indicates a complex
psychological architecture, wherein perceptions of ease influence knowledge development
and belief modification, which subsequently shape behavioral manifestations—a sequential
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cognitive-behavioral mechanism that transcends the direct perception-behavior linkages
postulated in traditional acceptance frameworks.

4.3.3. Determinants of Perceived Educational Outcomes: Cognitive and Behavioral
Influence Pathways

The structural model revealed a sophisticated psychological architecture underlying
determinants of the perceived impact on students” mathematics literacy (PIML). Teachers’
Al engagement demonstrated a substantial direct effect on PIML (3 = 0.308, p = 0.013), con-
firming H6 and illuminating how behavioral implementation patterns function as critical
experiential mechanisms through which various psychological factors ultimately influence
outcome assessments. This finding revealed the essential mediational role of behavioral
engagement in the perception—outcome relationship, suggesting that behavioral implemen-
tation experiences provide critical feedback that shapes educational impact evaluations.

Teachers” mathematics beliefs established a significant direct cognitive pathway to
perceived impacts on students” mathematics literacy ( = 0.256, p < 0.001), supporting H5b
and revealing how epistemological schemas independently shape perceptions of technolog-
ical educational effectiveness. This finding extended conventional technology acceptance
frameworks by demonstrating how domain-specific belief structures directly influence
outcome assessments beyond their effects on implementation behaviors, a cognitive pro-
cessing mechanism that explains how identical technological implementations produce
divergent effectiveness evaluations among educators with different belief systems. This
psychological process underscores the powerful interpretive function of belief structures in
professional evaluation contexts.

Perceived usefulness demonstrated a direct cognitive influence on the perceived
impact on students’” mathematics literacy (3 = 0.269, p = 0.019), confirming H1d and re-
vealing how utility appraisals shape effectiveness perceptions through dual psychological
pathways, i.e., directly through cognitive association mechanisms and indirectly through
behavioral implementation experiences. This dual-process influence architecture illumi-
nates how instrumental evaluations of technological utility operate simultaneously through
cognitive and behavioral channels to shape overall effectiveness assessments. Similarly, the
perceived Al risks establish a significant negative cognitive pathway to outcome percep-
tions (B = —0.161, p = 0.012), supporting H3d and revealing how risk cognition similarly
influences effectiveness evaluations through parallel psychological mechanisms.

Contrary to theoretical postulations, teachers” Al literacy exhibited an insignificant di-
rect cognitive pathway to the perceived impact on students” mathematics literacy (3 = 0.049,
p = 0.568), failing to support H4b. This unexpected finding revealed a nuanced psychologi-
cal distinction: while technological knowledge structures enable behavioral implementa-
tion, their influence on outcome assessments operates predominantly through experiential
feedback derived from behavioral engagement rather than through direct cognitive asso-
ciation mechanisms. This processing differentiation suggests that knowledge structures
function primarily as behavioral enablers rather than direct determinants of effectiveness
evaluations—a psychologically significant distinction for understanding how technological
competence influences outcome perceptions in professional contexts.

Similarly, perceived ease of use demonstrated an insignificant direct cognitive pathway
to the perceived impact on students” mathematics literacy (3 = 0.066, p = 0.493), rejecting
H2d but further supporting the interpretation that accessibility perceptions operate exclu-
sively through indirect psychological mechanisms in specialized educational domains. This
finding reinforces the conceptualization of PEOU as an antecedent factor that influences out-
come perceptions entirely through sequential mediational mechanisms rather than through
direct cognitive associations, a processing architecture substantially divergent from conven-
tional technology acceptance formulations that posit direct perception—outcome linkages.
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4.4. Mediation Analysis Reveals Theoretical Mechanisms and Causal Pathways

To elucidate the mechanisms through which the TAM constructs influence perceived
educational outcomes, we conducted a bootstrapping-based mediation analysis (5000 re-
samples), a methodologically robust approach for testing complex mediation patterns
in structural equation models [88,89]. This analysis is summarized in Table 6 and re-
veals theoretically significant mediational pathways that elaborate on conventional causal
TAM structures.

Table 6. Mediation analysis of indirect effects.

Standardized

Indirect Path Effect S.E. t-Value p-Value 95% CI
Indirect Effects through Teachers” Al

Literacy (TAL)

PU — TAL — PIML 0.000 0.005 0.032 0.975 [—0.010, 0.010]
PEOU — TAL — PIML 0.029 0.052 0.566 0.571 [—0.073, 0.131]
PR — TAL — PIML 0.005 0.010 0.505 0.613 [—0.015, 0.025]
Indirect Effects through Teachers’

Mathematics Beliefs (TMB)

PU — TMB — PIML —0.031 0.030 —1.038 0.299 [—0.090, 0.028]
PEOU — TMB — PIML 0.084 0.037 2.268 0.023 [0.011, 0.157]
PR — TMB — PIML 0.016 0.023 0.698 0.485 [—0.029, 0.061]
Indirect Effects through Teachers’ Al

Engagement (TAE)

PU — TAE — PIML 0.161 0.068 2.367 0.018 [0.028, 0.294]
PEOU — TAE — PIML —0.004 0.031 —0.117 0.907 [—0.065, 0.057]
PR — TAE — PIML —0.057 0.029 —1.991 0.047 [—0.114, —0.001]
TAL — TAE — PIML 0.101 0.046 2.176 0.030 [0.010, 0.192]
TMB — TAE — PIML 0.082 0.036 2.320 0.020 [0.013, 0.152]
Serial Mediation Effects

PU — TAL — TAE — PIML 0.000 0.011 0.032 0.974 [—0.022, 0.022]
PEOU — TAL — TAE — PIML 0.060 0.030 1.989 0.047 [0.001, 0.119]
PR — TAL — TAE — PIML 0.011 0.009 1.169 0.243 [—0.007, 0.029]
PU — TMB — TAE — PIML —0.010 0.011 —0.951 0.342 [—0.031, 0.011]
PEOU — TMB — TAE — PIML 0.027 0.015 1.752 0.080 [—0.003, 0.057]
PR — TMB — TAE — PIML 0.005 0.007 0.706 0.480 [—0.009, 0.019]
Total Indirect Effects

PU — PIML (total indirect) 0.120 0.082 1.465 0.143 [—0.041, 0.281]
PEOU — PIML (total indirect) 0.197 0.067 2.935 0.003 [0.066, 0.328]
PR — PIML (total indirect) —0.020 0.046 —0.439 0.660 [—0.110, 0.070]

Teachers” Al engagement emerged as a critical mediating mechanism in several the-
oretically significant pathways. The indirect effect from perceived usefulness to the per-
ceived impact on mathematics literacy through TAE (indirect effect = 0.161, p = 0.018,
95% CI = [0.028, 0.294]) accounted for 37.4% of the total PU—PIML effect, indicating sub-
stantial partial mediation. This finding underscores the dual operation of utility perceptions,
i.e., through direct cognitive influence and through behavioral engagement mechanisms, a
theoretical refinement that extends standard TAM formulations.

Similarly, TAE significantly mediated the relationship between perceived Al risks
and PIML (indirect effect = —0.057, p = 0.047, 95% CI = [-0.114, —0.001]), demonstrating
how risk perceptions inhibit perceived educational outcomes partially through reduced
engagement. The confidence interval’s proximity to zero suggests that this mediational
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pathway, while statistically significant, exhibits marginal practical significance compared
with the direct effect of risk perceptions.

The mediational role of TAE extends to the effects of both teachers” Al literacy (indirect
effect = 0.101, p = 0.030, 95% CI = [0.010, 0.192]) and teachers’ mathematics beliefs (indirect
effect = 0.082, p = 0.020, 95% CI = [0.013, 0.152]) on PIML. These findings illuminate how
domain-specific knowledge and beliefs influence perceived educational outcomes primar-
ily through their effects on engagement behaviors rather than through direct cognitive
mechanisms, a theoretically significant insight for understanding technology integration in
specialized educational domains.

The analysis further revealed a theoretically complex serial mediation effect for the
pathway from perceived ease of use through teachers’ Al literacy and teachers” Al engage-
ment to PIML (indirect effect = 0.060, p = 0.047, 95% CI = [0.001, 0.119]). This multi-step
mediational pathway illuminates how ease of use perceptions, which showed insignificant
direct effects on engagement or outcomes, exert influence through a sequential causal
chain by facilitating literacy development, which subsequently enables engagement and
ultimately influences outcome perceptions. This finding represents a significant theoretical
elaboration of the TAM in specialized educational contexts, demonstrating how general
technological perceptions translate into domain-specific outcomes through sequentially
mediated pathways.

The total indirect effect from PEOU to PIML was statistically significant (total indirect
effect = 0.197, p = 0.003, 95% CI = [0.066, 0.328]) despite the insignificant direct effect
(B =0.066, p = 0.493). This pattern indicates complete mediation, revealing that PEOU
influences perceived educational outcomes entirely through indirect pathways—primarily
through sequential mechanisms involving literacy and engagement rather than through
the direct effects hypothesized in conventional TAM formulations.

The contrasting patterns of mediation for different predictors—complete mediation for
PEOU versus partial mediation for PU and PR—illuminate theoretical distinctions in how
different TAM components influence educational outcomes in specialized domains. These
nuanced mediational patterns challenge the universality of standard causal TAM structures
and suggest the need for domain-specific theoretical elaborations that account for the
complex interplay between technological perceptions, specialized knowledge, pedagogical
beliefs, and engagement behaviors in educational technology application.

5. Discussion and Conclusions
5.1. Main Research Findings and Theoretical Significance

This study illuminates the cognitive-behavioral mechanisms through which math-
ematics educators’ technological perceptions transform into engagement patterns and
teacher-perceived educational outcomes in Al-mediated instructional contexts. Our empiri-
cal analysis extends conventional technology acceptance frameworks by delineating the
following three primary theoretical contributions: (1) differential processing mechanisms
across technology acceptance constructs, (2) domain-specific mediational pathways that
transform perceptual inputs into behavioral manifestations, and (3) distinctive attitudinal
routes through which technological perceptions influence educational outcomes.

The results reveal that perceived ease of use (PEOU) cannot significantly impact teach-
ers’ Al engagement (H2c). Further comparing it with other direct paths, we have identified
a nuanced attitudinal pattern, wherein perceived ease of use (PEOU) presumably functions
exclusively through sequential mediational pathways. For example, it can contribute to
teachers” mathematics beliefs (H2b) and teachers” Al literacy (H2a) when those two are both
significantly positive predictors of teachers” Al engagement (H4a and H5a). Such chain
effects have also demonstrated the significance of exploring domain-specific factors in
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exploring technology acceptance. Specially, this finding substantially refines conventional
technology acceptance postulations, indicating that in knowledge-intensive professional
domains, accessibility perceptions function as distal cognitive antecedents influencing
behavior exclusively through intermediary psychological mechanisms.

Specifically, PEOU'’s significantly positive effect on mathematics teachers’ Al literacy
(H2a) reveals a cognitive processing sequence where accessibility perceptions facilitate
domain-specific knowledge acquisition, which may subsequently enable behavioral imple-
mentation. This sequential architecture underscores the limitations of direct perception—
behavior formulations in complex professional contexts and emphasizes knowledge struc-
tures’ critical mediating role in translating perceptual inputs into behavioral manifestations.
In our research context, mathematics teaching involves professional knowledge that is more
abstract and transferable compared with disciplines such as social sciences and humanities.
Demographic features may foster further variations across teachers due to their educational
backgrounds, experiences with educational technologies, ages, and genders, while H2a
identifies a perceptual pathway at the group characteristics level. As Chiu et al. [28] suggest,
this cognitive processing distinction reflects the heightened complexity of professional
technological implementation, which necessitates substantial knowledge development
before perceptual assessments manifest behaviorally.

In contrast to the insignificant effect of PEOU, perceived usefulness (PU) establishes a
direct cognitive pathway to teachers” Al engagement (H1c), suggesting a fundamentally
different psychological processing mechanism. This divergent pattern indicates a dual-
route cognitive architecture where different perceptual dimensions operate through distinct
mechanisms: usefulness perceptions function as proximal perceptual activators directly
catalyzing engagement, while ease perceptions operate as distal precursors facilitating
knowledge development and belief accommodation, which subsequently enable behavioral
responses. This cognitive processing differentiation extends Grani¢ and Marangunic¢’s [16]
theoretical proposition regarding variable-specific influence mechanisms, suggesting that
professional domains amplify these processing distinctions through heightened knowledge
requirements and established belief structures.

Teachers” Al literacy is identified as a significant determinant of Al engagement (H4a),
which transcends conventional acceptance frameworks by illuminating the essential role of
domain-specific knowledge structures in facilitating implementation behaviors. This find-
ing reveals how professional technological competence functions as a psychological enabler,
transforming general implementation intentions into specific behavioral manifestations—a
process inadequately captured in perception-centric acceptance models. Through our study,
we have elucidated that mathematics teachers’ engagement with Al tools is based on their
Al literacy, which supports the pronounced significance of digital literacy in our contexts.
Despite some teacher training programs and projects, their experience with such technolo-
gies and their pertinent knowledge are likely to cause differences in subsequent technology
adoption and student learning outcomes. This is similar to the traditional contexts of math-
ematics teaching, where prior involvement in certain effective pedagogical arrangements
offers positive feedback and inspires teachers to practice them again in the future. It appears
that there is no exception when it comes to Al teaching tools. It is also noteworthy that
alongside the positive feedback, the discouragement and challenge of experiencing the dis-
advantages and limitations of Al may become barriers to future implementation. Thus, the
significance of digital literacy in teacher education and development should be highlighted.
This suggestion aligns with the significance of Technological Pedagogical and Content
Knowledge (TPACK) among STEM (Science, Technology, Engineering, and Mathematics)
teachers [96]. This cognitive-behavioral primacy of knowledge structures aligns with Allen
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and Kendeou'’s [35] proposition that educational technology implementation necessitates
sophisticated knowledge architectures extending beyond general technological familiarity.

The discovery of differential mediational patterns across technological perceptions,
i.e., between (1) the completely mediated effect of PEOU and (2) the partially mediated
effects of PU and PR on PIML, is theoretically consequential. This pattern illuminates
fundamental distinctions in cognitive-behavioral processing mechanisms: accessibility
perceptions operate entirely through sequential mediational pathways, while utility and
risk perceptions function through parallel processing routes, including both direct linkages
and indirect pathways. This processing differentiation suggests a theoretical refinement
of unitary technology acceptance models, supporting Tram’s [15] proposition that differ-
ent perceptual dimensions engage distinct processing mechanisms, warranting separate
theoretical conceptualization. These variable-specific processing architectures significantly
advance understanding of the psychological complexity underlying technology acceptance
in specialized domains.

Teachers” mathematics beliefs substantially influence Al engagement (H5a) and the
perceived impact on mathematical literacy (H5b), which illuminates how domain-specific
epistemological schemas function as critical cognitive mediators to condition evaluations
of both implementation and effectiveness. This finding extends conventional frameworks
by demonstrating how professional belief structures shape engagement through cognitive
consistency mechanisms that align implementation behaviors with underlying epistemolo-
gies. The dual influence of belief structures reveals their powerful mediational function in
professional contexts, supporting Drijvers and Sinclair’s [48] contention that educational
technology implementation is filtered through established pedagogical belief systems that
determine both behavioral responses and effectiveness assessments.

The complex inter-relationships among perceived risks, usefulness perceptions, and
engagement suggest a sophisticated cognitive balancing mechanism wherein positive
utility appraisals partially counterbalance risk-related inhibitory effects. Perceived Al
risks significantly and negatively influence teachers” Al engagement (H3c), which forms
a psychological barrier to technology implementation, yet its comparative magnitude
(approximately one-third of the positive usefulness effect) suggests a counterbalancing
dynamic that explains the ambivalent implementation patterns frequently observed in
educational technology contexts. This mechanism extends Hazzan-Bishara et al.’s [12]
conceptualization of technology adoption as resulting from dynamic tensions between
facilitating and inhibiting factors. In our study, potential reasons include teacher-perceived
threats posed by Al tools in replacing human teachers and fostering academic misconduct.
Risks in academic, developmental, affective, and other aspects can collectively prevent the
alluring effects of perceived usefulness and ease of use of such tools. Such explanations
can enrich research on Al and educational ethics. Previous studies have elucidated the
potential sources of higher-education students’ technostress and ethical concerns about Al
technologies (e.g., [39]). In the reshaped practice of teaching, instructors may show unique
attitudes that are worth exploring further.

Teachers’ Al engagement is a critical mediating variable across multiple pathways,
which substantiates its conceptualization as a central psychological process transform-
ing perceptual inputs into educational outcomes. This mediational primacy supports
Bond et al.’s [32,33] theoretical proposition regarding engagement as a multidimensional
construct functioning as an essential translational mechanism. Our findings extend this
conceptualization by empirically delineating the specific determinants shaping engage-
ment behaviors, thereby illuminating the complex psychological architecture underlying
observable implementation patterns.
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The significant chain mediation pathways from PEOU to PIML via TAL and TAE
represent a theoretically significant elaboration of cognitive-behavioral processing se-
quences. This multi-step mediational chain illuminates how general technological per-
ceptions translate into domain-specific outcomes through sequential psychological pro-
cesses, transcending conventional models’ parsimonious formulations while enhancing
explanatory sophistication. This elaborates cognitive-behavioral sequence supports Wen
and Cai’s [52] proposition regarding multiple mediational frameworks’ necessity for un-
derstanding complex psychological processes while empirically delineating the specific
sequential mechanisms through which perceptual inputs influence outcome assessments.

The insignificant direct effect of teachers” Al literacy on the perceived impact on
mathematics literacy (H4b), coupled with its significant indirect effect through engagement,
suggests a psychological processing distinction, wherein knowledge structures influence
outcome assessments primarily by enabling implementation rather than through a direct
cognitive association. This finding reveals a theoretically significant dissociation between
knowledge possession and outcome evaluation, suggesting knowledge structures function
predominantly as behavioral enablers rather than direct determinants of effectiveness
assessments. This processing differentiation extends Li et al.’s [38] theoretical distinction
between technological knowledge and implementation effectiveness.

In summary, the above findings have collectively clarified our understanding of
the complex cognitive-behavioral architecture underlying technology acceptance in spe-
cialized educational domains. While certain core propositions regarding the primacy of
utility perceptions retain validity across contexts, the psychological mechanisms through
which perceptions translate into behaviors and learning outcomes exhibit domain-specific
complexities necessitating substantial theoretical elaboration. The differential process-
ing patterns, sequential mediational chains, and variable-specific influence mechanisms
identified collectively illuminate the sophisticated psychological architecture underlying
technology adoption decisions in professional educational contexts, substantially advanc-
ing understanding of the cognitive-behavioral mechanisms determining implementation
effectiveness in technology-mediated educational environments.

5.2. Practical Implications

The empirical findings from this investigation yield substantial practical implications
for mathematics education stakeholders seeking to optimize Al technology integration
within pedagogical frameworks. These implications extend across multiple levels of educa-
tional practice, from individual teacher development to systemic implementation strategies.

5.2.1. Optimizing Al Technology Training for Mathematics Teachers

Our findings regarding the primacy of perceived usefulness in determining teachers’
Al engagement (H1c) suggest that professional development initiatives should emphasize
concrete pedagogical benefits rather than technological features in isolation. This represents
a significant reorientation from conventional technology training approaches that often pri-
oritize operational functionality over pedagogical application. Mathematics teachers should
systematically demonstrate how specific Al functionalities address persistent instructional
challenges, such as differentiation, formative assessment, and conceptual visualization,
thereby establishing clear utility connections that catalyze adoption intentions.

The significant influence of teachers” Al literacy on engagement (H4a), coupled with
PEOU’s substantial effect on literacy development (H2a), indicates that professional de-
velopment should adopt a sequenced approach, beginning with accessibility-focused
instruction that minimizes perceived complexity, challenges, and technostress, progressing
to domain-specific literacy development, and culminating in pedagogical integration. This
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multi-phase approach aligns with Nti-Asante’s [97] iterative design framework for imple-
menting mathematics education technology, which emphasizes progressive competence
development rather than comprehensive simultaneous skill acquisition.

The negative influence of perceived Al risks on engagement (H3c) suggests that pro-
fessional development should explicitly address potential concerns, particularly regarding
algorithmic reliability, equity implications, and student dependency risks, rather than em-
phasizing only positive affordances. Training modules should incorporate guided critical
analyses of Al-generated mathematical content to develop teachers’ evaluative capacities,
thereby transforming risk perceptions from adoption barriers into professional judgment
opportunities. This recommendation extends Busuttil and Calleja’s [10] finding that mathe-
matics teachers’ risk concerns can be productively reframed as opportunities for developing
critical technological discernment rather than as impediments to adoption.

5.2.2. Leveraging Teachers’ Mathematics Beliefs into Technology Integration

The significant influence of teachers” mathematics beliefs on both engagement (H5a)
and perceived impact on students” mathematics literacy (H5b) indicates that technology in-
tegration initiatives should actively engage with teachers’ existing pedagogical philosophies
rather than imposing technological imperatives that may conflict with core instructional
values. Professional development facilitators should explicitly connect Al functionalities to
diverse mathematical teaching approaches—from constructivist exploration to procedural
fluency development—demonstrating how various technological affordances can enhance
rather than displace preferred instructional methodologies.

This approach necessitates differentiated professional development that acknowledges
the heterogeneity of mathematics teaching philosophies rather than presuming a uniform
pedagogical stance. Implementation protocols should incorporate explicit reflection on
how specific Al capabilities align with individual teachers’ mathematical learning theo-
ries, creating coherence between technological affordances and pedagogical values. This
recommendation extends Chou et al.’s [9] finding that congruence between technological ca-
pabilities and existing pedagogical beliefs constitutes a critical precondition for meaningful
technology integration in mathematics education.

5.2.3. Enhancing Al's Impact Through Engagement-Centered Implementation

The significant mediating role of teachers” Al engagement across multiple pathways
suggests that implementation strategies should prioritize creating sustained interaction
opportunities rather than merely providing access or initial training. School leaders should
establish collaborative exploration communities that normalize regular experimentation
with Al tools, systematic reflection on implementation outcomes, and iterative refinement
of integration approaches. These communities should incorporate structured sharing
of successful integration strategies, creating a professional knowledge ecosystem that
accelerates collective engagement.

The identification of a significant sequential mediation pathway (PEOU—TAL—
TAE—PIML) indicates that implementation timelines should accommodate the progressive
development of engagement behaviors rather than expecting immediate pedagogical im-
pact. Administrative evaluation frameworks should recognize the developmental nature of
technology integration, with metrics that evolve from adoption and exploration indicators
to sophisticated pedagogical application measures over extended implementation periods.
This recommendation aligns with Henkel et al.’s [8] finding that educational technology
efficacy in mathematics contexts emerges through progressive implementation phases
rather than through immediate transformation.
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5.2.4. Balancing Efficiency and Pedagogical Integrity

The complex influencing patterns on the perceived impact on mathematics literacy, in-
cluding direct effects from PU, PR, and TMB alongside indirect effects through engagement,
suggest that implementation guidance should balance efficiency-oriented and pedagogi-
cally oriented integration approaches. Mathematics instructional leaders should develop
Al integration rubrics that evaluate both operational effectiveness (time efficiency and
task completion) and mathematical learning integrity (conceptual understanding, problem-
solving autonomy, and cognitive engagement). This dual-focus evaluation framework
would prevent technological implementation that achieves procedural efficiency at the
expense of deeper mathematical learning processes.

This balanced approach addresses the theoretical tension identified in our findings:
while utility perceptions strongly drive adoption decisions, mathematics teaching beliefs
independently shape impact perceptions. Implementation protocols should therefore
incorporate explicit consideration of how efficiency gains through Al tools can complement
rather than compromise core mathematical learning principles. This recommendation
extends Shin et al.’s [50] finding that effective STEAM programs integrating data science and
Al technologies in mathematics education require explicit alignment between technological
efficiencies and substantive disciplinary learning processes.

5.2.5. Systemic Implementation Considerations

Beyond individual and classroom-level implications, our findings suggest several
systemic considerations for educational policymakers and institutional leaders. The differ-
ential influence magnitudes of various factors on Al engagement and perceived impact
indicate that comprehensive implementation strategies should address multiple dimen-
sions simultaneously rather than focusing exclusively on technological infrastructure or
training provision.

Specifically, the substantive influence of mathematics teaching beliefs on both en-
gagement and perceived impact suggests that technology integration policies should ac-
knowledge and accommodate pedagogical diversity rather than presuming a singular “best
practice” approach to Al implementation. Policy frameworks should establish broad pa-
rameters for appropriate Al utilization while preserving instructional autonomy regarding
specific integration methodologies. This recommendation aligns with Lazarides et al.’s [98]
finding that teachers’ motivational beliefs influence student outcomes through differenti-
ated teaching practices rather than through standardized implementation approaches.

The identification of teachers” Al literacy as a critical mediating mechanism between
ease of use perceptions and engagement suggests that credentialing and professional devel-
opment systems should incorporate domain-specific technological competence standards
rather than generic digital literacy frameworks. These standards should explicitly address
the unique characteristics of Al applications in mathematics instruction, including algo-
rithm evaluation, output verification, and pedagogical adaptations of Al-generated content.
This recommendation extends Pan and Wang’s [31] proposition regarding the necessity of
context-specific Al literacy frameworks for educators in different disciplinary domains.

5.3. Limitations and Future Research Directions
5.3.1. Limitations and Justifications

The current study results in theoretically and practically significant insights. However,
we have to acknowledge that it may contain some methodological and conceptual limita-
tions. In line with previous studies, those limitations are not fatal, but researchers should
notice their existence and interpret the results with some caution.
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The cross-sectional design of this study is appropriate for initial model testing; how-
ever, this method precludes definitive causal inferences regarding the temporal relation-
ships among theoretical constructs. While our structural equation modeling approach
enables theoretical path analysis, the contemporaneous measurement of all variables intro-
duces potential bidirectionality concerns, particularly regarding the relationships between
literacy, beliefs, and engagement. As Zwart et al. [99] noted, technology integration in
educational contexts often involved reciprocal rather than unidirectional relationships
among key constructs—a complexity that cross-sectional designs cannot fully disentan-
gle. However, aligned with numerous studies on predictors and impacts of technology
acceptance, such cross-sectional studies demonstrate crucial research and practical values
in guiding educational technology applications and developments.

The reliance on self-reported measures for both predictor and outcome variables intro-
duces potential common method bias concerns, notwithstanding our rigorous psychometric
validation procedures. As Yi et al. [58] have noted, teacher perceptions of technological
educational impact may diverge from objectively measured student learning outcomes,
a distinction our measurement approach cannot address. This limitation is particularly
salient regarding the terminal outcome variable (perceived impact on mathematics liter-
acy), which captures teacher perceptions rather than direct student assessments. However,
as self-reported data are the most direct opportunities for researchers in various edu-
cational domains to explore psychological mechanisms such as technology acceptance
research (e.g., [14,100]), the current study can still bring substantial significance to the
existing literature.

The sampling approach, while yielding an educationally diverse participant pool,
may not fully represent the broader population of mathematics educators, particularly
those in rural or under-resourced settings where technological infrastructure constraints
may introduce additional acceptance barriers. As Chen and Liu [59] have noted, technol-
ogy acceptance mechanisms may operate differently in resource-constrained educational
environments, a contextual variation that our sample may not adequately capture.

While our theoretical framework integrates TAM constructs with domain-specific
factors (mathematics teachers’ Al literacy and teaching beliefs), it does not fully capture
the multidimensional nature of each construct domain. Our operationalization of teachers’
mathematics beliefs, although psychometrically robust, necessarily simplifies the complex
belief structures that mathematics educators hold regarding teaching and learning processes.
As Forgasz and Leder [42] have noted, mathematics teaching beliefs encompass multiple
dimensions—epistemological, pedagogical, and evaluative—that may interact differently
with technological perceptions.

Similarly, our measurement of teachers’ Al literacy may not fully capture the mul-
tifaceted nature of this emerging competence domain, although it demonstrated strong
psychometric properties. As Allen and Kendeou [35] have noted, Al literacy encompasses
technical, critical, and creative dimensions that may exert differential influences on engage-
ment behaviors and educational applications.

Our theoretical framework, while incorporating risk perceptions as a critical extension
to standard TAM formulations, does not comprehensively address the diverse ethical
considerations that may influence Al acceptance in educational contexts. As Hazzan-
Bishara et al. [12] have noted, ethical concerns regarding algorithmic bias, intellectual
autonomy, and assessment validity constitute distinct dimensions that may influence
technology acceptance through different mechanisms.

Finally, while our model addresses the perceived impact on mathematics literacy as the
terminal outcome variable, it does not comprehensively capture the full range of potential
educational outcomes that Al technology integration might influence. As Sanders et al. [83]
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have noted, mathematics education encompasses multiple outcome domains—procedural
fluency, conceptual understanding, problem-solving capacity, and mathematical identity
development—that may be differentially affected by technological integration.

5.3.2. Implications for Future Research and Teaching

In response to the research limitations and findings, the current study reveals some
suggestions for future research and teaching in technology-assisted education.

Methodologically, future research should employ longitudinal designs that capture
the evolving relationships among technological perceptions, specialized knowledge, peda-
gogical beliefs, and engagement behaviors across extended implementation periods. Such
designs would enable a more robust examination of potential reciprocal and developmental
relationships, particularly regarding how initial engagement experiences might recursively
influence subsequent perceptions and beliefs. Complementary experimental approaches in-
corporating randomized professional development interventions would further strengthen
causal inferences regarding the malleability of key mediating mechanisms. Qualitative
approaches to technology acceptance can also aid this topic, elucidating the complex com-
ponent conditions for technology adoption, sustainable reform, and integration using
educational technologies (e.g., [101]).

Additionally, future research should incorporate multi-method measurement ap-
proaches that triangulate self-reported perceptions with behavioral observations, artifact
analysis, and direct student outcome assessments through standardized tests. Mixed-
method designs integrating qualitative classroom observations with quantitative engage-
ment and outcome measures would provide a richer contextual understanding of how
technological perceptions translate into instructional behaviors and student learning ex-
periences. Objective measures of student mathematics competence development would
further strengthen validity by directly assessing the educational outcomes that our model
addresses through teacher perceptions.

Contextual and demographic factors are needed to further enrich the research on
such topics. In our study, the demographic features were not treated as moderators of the
hypotheses. One reason was that due to the limited volume of this study, it was unlikely and
unreliable for the researchers to explore so many contextual and demographic moderators.
More importantly, a reliable moderating analysis should be based on a more balanced
sample across subgroups, with ours containing dominant proportions of certain categories.
This is usual since, in previous studies, such a description of demographic characteristics
should represent domain-specific realities. Future studies interested in these moderators
should aim to collect more comprehensive and balanced samples before statistical analysis.

For data collection, future research should employ stratified sampling designs that
ensure representation across diverse educational contexts, with particular attention to
resource disparities that may moderate technology acceptance relationships. Comparative
analyses across different educational environments would illuminate how contextual
factors condition the mechanisms through which various perceptions influence engagement
behaviors and educational outcomes. Multi-level modeling approaches would further
enhance contextual understanding by examining how institutional and systemic factors
moderate individual-level technology acceptance processes [102].

Regarding the conceptual framework, future research should adopt more nuanced
operationalizations of mathematics teaching beliefs, distinguishing between different belief
dimensions and examining their differential interactions with technological perceptions
and engagement behaviors. Latent profile analyses identifying distinct belief constellations
would further enhance understanding of how different pedagogical orientations condition
technology acceptance processes in mathematics education contexts.
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Future research should develop and validate more comprehensive Al literacy measures
that distinguish between technical operational knowledge, critical evaluative capacities,
and creative adaptive competencies [103,104]. Such measures would enable a more nu-
anced examination of how different literacy dimensions influence engagement behaviors
and perceived educational impacts. Longitudinal investigations of literacy development
trajectories would further enhance understanding of how different dimensions evolve
through professional experience and formal development initiatives.

Future research should incorporate more comprehensive ethical consideration frame-
works, distinguishing between different dimensions of ethical concern and examining
their differential influences on acceptance processes (e.g., [22]). Mixed-method approaches
integrating ethical reasoning analyses with quantitative acceptance measures would pro-
vide a richer understanding of how various ethical considerations condition technology
integration decisions in mathematics education contexts.

Future research should adopt more differentiated outcome frameworks that distin-
guish between different mathematics learning dimensions and examine how various ac-
ceptance factors influence each dimension through potentially distinct mechanisms. A
longitudinal mixed-method design that tracks multiple outcome domains across extended
implementation periods would provide a more comprehensive understanding of how
technology acceptance processes influence diverse educational outcomes in mathematics
education contexts.

5.3.3. Emerging Research Frontiers

Beyond addressing methodological and conceptual limitations, our findings suggest
several innovative research frontiers that could substantively advance the understanding
of Al technology acceptance in mathematics education contexts.

First, the identification of teachers” Al engagement as a critical mediating mecha-
nism suggests the need for more sophisticated conceptualization and measurement of
engagement behaviors in educational technology contexts. Future research should develop
multidimensional engagement frameworks that distinguish between different engagement
types—exploratory, adaptive, evaluative, and collaborative—and examine their differen-
tial relationships with various perceptions and outcomes. Such research would extend
Bond et al.’s [32,33] conceptual work on engagement dimensionality into the specific
domain of Al-enhanced mathematics education.

Second, the complex serial mediation pathway identified in our analysis (PEOU—
TAL—TAE—PIML) suggests the need for more sophisticated process-oriented research
examining the developmental trajectories through which general technological perceptions
translate into specialized educational outcomes. Future research employing experience
sampling methodologies, microgenetic designs, and qualitative process tracing would
provide a richer understanding of how these sequential mechanisms unfold in authentic
educational contexts. Such process-oriented research would extend Otto et al.’s [55] work
on feedback systems in educational technology contexts by illuminating the micro-processes
through which perceptions transform into behaviors and outcomes.

Third, the differential mediation patterns identified across different TAM compo-
nents (complete versus partial mediation) suggest the need for more nuanced theoretical
elaborations that accommodate construct-specific influence mechanisms rather than pre-
suming universal causal structures. Future theoretical and empirical work should develop
and test moderated mediation frameworks that specify how different contextual factors
condition the mechanisms through which various perceptions influence behaviors and
outcomes. Such research would extend Scherer et al.’s [62] meta-analytic work by develop-
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ing more contextually sensitive theoretical models of technology acceptance in specialized
educational domains.

Finally, the rapidly evolving nature of Al technologies in educational contexts sug-
gests the need for anticipatory research examining how acceptance mechanisms might shift
as these technologies become more sophisticated and ubiquitous (e.g., [105]). Future re-
search employing longitudinal panel designs, technological forecasting methodologies, and
scenario-based experimental approaches would enhance understanding of how acceptance
processes evolve alongside technological capabilities. Such research would extend Li’s [2]
work on internal and external adoption influences by examining their dynamic evolution
across technological development cycles.

In conclusion, while acknowledging these limitations, our investigation has established
a robust foundation for understanding the complex mechanisms through which extended
TAM constructs influence Al technology acceptance and perceived educational impacts
in mathematics education contexts. The identified limitations do not undermine the
theoretical and practical significance of our findings but rather suggest productive avenues
for future research that would further advance understanding of this critical domain at the
intersection of technological innovation and mathematics education.

6. Conclusions

This investigation delineates the cognitive-behavioral mechanisms through which
technology perceptions influence mathematics teachers’” Al engagement and perceived ed-
ucational outcomes. Our findings reveal distinct psychological pathways that significantly
refine conventional technology acceptance frameworks in specialized educational contexts.

Three key mechanisms emerge from our structural analysis. First, perceived usefulness
directly impacts engagement, while perceived ease of use functions exclusively through
sequential mediational pathways, challenging standard TAM formulations that presume
uniform causal relationships. Second, the domain-specific factors of teachers” Al literacy
and mathematics teaching beliefs significantly mediate technology acceptance processes,
demonstrating how professional cognitive structures transform general perceptions into
specific implementation behaviors. Third, the complete mediation pattern for perceived
ease of use versus partial mediation for perceived usefulness illustrates how different
perceptual dimensions operate through distinct influence mechanisms rather than through
uniform psychological processes.

These findings necessitate multidimensional professional development approaches
that address both technological perceptions and domain-specific cognitive structures. Ef-
fective interventions should emphasize concrete pedagogical benefits while developing
specialized literacy and aligning technological affordances with existing belief structures, a
sequence that reflects the complex mediational architecture identified in our model.

While acknowledging cross-sectional design limitations, this research establishes a
foundation for understanding how technological perceptions transform into engagement
behaviors and perceived outcomes in mathematics education. Future longitudinal studies
employing multi-method measurement approaches would further illuminate the devel-
opmental trajectories and reciprocal relationships among these constructs in increasingly
Al-mediated educational environments.
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Appendix A

Table Al. Measurement scales and questionnaire items.

Construct

Items

Source

Scale Type

Perceived Usefulness
(PU)

PU1: Al teaching tools contribute to
enhanced instructional effectiveness

PU2: Al teaching tools improve
instructional efficiency
PU3: Al teaching tools enhance
differentiation capacity

Davis [17];
Scherer et al. [58]

5-point Likert scale
(1 = strongly disagree,
5 = strongly agree)

Perceived Ease of Use
(PEOU)

PEOUL1: Al teaching tools are
comprehensible

PEOU2: Al teaching tools are learnable
with reasonable effort

PEOUS3: Al teaching tools integrate
simply into existing instructional
practices

Davis [17]; Teo [60]

5-point Likert scale
(1 = strongly disagree,
5 = strongly agree)

PR1: Al teaching tools may create

Featherman &

5-point Likert scale

Perceived Al Risks (PR) technological dependency Pavlou [62]; Wang et al. (1 = strongly disagree,
[63] 5 = strongly agree) *
PR2: Al teaching tools may have
mathematical accuracy concerns
PR3: Al teaching tools may perpetuate
algorithmic bias
T p . . . . . 5-point Likert scale
eacher’s Al Literacy TAL1: Capacity to critically evaluate Ng [67]; (1 = strongly disagree
(TAL) Al-generated mathematics content Peterson et al. [68] &Y Bree,

TAL2: Comprehension of Al
capabilities and limitations

TAL3: Ability to adapt Al materials to
specific learning objectives

5 = strongly agree)
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Table Al. Cont.

Construct Items Source Scale Type
Teacher’s Al TAE1: Experimentation frequency with ~ Schaufeli et al. [70]; 5;1;1(; 1r(1ic f_rt;qel‘l]eerl}cy
Engagement (TAE) diverse Al applications Ifinedo [71] - !

5 = very often)
TAE2: Enthusiasm regarding

classroom Al integration

TAE3: Systematic evaluation of Al

effectiveness across

mathematical domains

Teacher’s Mathematics
Teaching Beliefs (TMB)

5-point Likert scale
(1 = strongly disagree,
5 = strongly agree) **

Peterson et al. [74];
Stipek et al. [75]

TMB1: Beliefs regarding guided
exploration versus direct instruction

TMB2: Beliefs regarding conceptual
understanding versus procedural
fluency

TMB3: Beliefs regarding error
tolerance in mathematical learning
TMB4: Beliefs regarding technology’s
complementary role in instruction
TMB5: Beliefs regarding multiple
solution pathway encouragement

Perceived Impact on
Mathematics
Literacy (PIML)

5-point impact scale
(1 = strong negative
impact, 5 = strong
positive impact)

PISA Mathematics
Framework [72];
Wilkins [78]

PIML1: Impact on students’
mathematical problem
formulation abilities

PIML2: Impact on students’ concept
and procedure application proficiency
PIML3: Impact on students’
mathematical result

interpretation capacity

PIML4: Impact on students’
problem-solving persistence

PIML5: Impact on students’
mathematics learning engagement

Note: * indicates that the p-value is less than 0.05, showing significance; ** indicates that the p-value is less than
0.01, showing high significance.
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