Assessing Sustainable Management of a Plateau Lake: Adsorption and Integrated Risk of Sediment Pollutants
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview and Sampling
2.2. Sample Processing and Testing
2.3. Quality Control/Quality Assurance
2.4. Ecological Risk Assessment
2.5. Human Risk Assessment
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Pollution Degree Assessment for OCPs and HMs
3.2. Source Identification for OCPs and HMs
3.3. Modeling of the HM Effects on OCP Co-Adsorption Mechanism
3.4. Ecological Risks for HMs and OCPs
3.5. Human Health Risks of OCPs and HMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| OCPs | Organochlorine pesticides |
| HMs | Heavy metals |
| PTS | Persistent toxic substances |
| PERI | Potential ecological risk index |
| RQ | Risk quotient |
| MC | Measured concentration |
| PNEC | Predicted no-effect concentration |
| Ing | Ingestion |
| Der | Dermal contact |
| Inh | Inhalation |
| ADD | Average daily doses |
| CR | Carcinogenic risk |
| HI | Hazard index |
| CV | Coefficient of variation |
| EF | Enrichment factor |
| PCA | Principal component analysis |
References
- Liu, H.; Bai, J.; Zhang, K.; Wang, C.; Liang, J.; Zhang, L.; Wang, Y.; Xiao, R. Heavy metal pollution and ecological risk assessment of surface sediments covered by emerged and submerged plants in a shallow lake. Ecohydrol. Hydrobiol. 2024, 24, 849–856. [Google Scholar] [CrossRef]
- Ma, X.; Kong, X.; Xue, B.; Mu, S.; Huang, C.; Huang, T.; Li, S.; Jiang, Q. Sediment Records and Multi-Media Transfer and Fate of Polycyclic Aromatic Hydrocarbons in Dianchi Lake over the Past 100 Years. Ecol. Indic. 2024, 160, 111774. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, J.; Lei, G.; Xue, B.; Zhang, F.; Yao, S. Indirect influence of eutrophication on air–water exchange fluxes, sinking fluxes, and occurrence of polycyclic aromatic hydrocarbons. Water Res. 2017, 122, 512–525. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Gong, P. Combined risk assessment method based on spatial interaction: A case for polycyclic aromatic hydrocarbons and heavy metals in Taihu Lake sediments. J. Clean. Prod. 2021, 328, 129590. [Google Scholar] [CrossRef]
- Miranda, L.S.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 2021, 202, 117386. [Google Scholar] [CrossRef]
- Varol, M.; Ustaoğlu, F.; Tokath, C. Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environ. Res. 2022, 205, 112478. [Google Scholar] [CrossRef]
- Gao, J.; Song, R.; Wang, X.; Wan, K.; Zhang, J.; Shan, G.; Wan, D.; Wang, S. Reliability assessment of using different heavy metals in remote sedimentary records to reconstruct historical pollution. Environ. Pollut. 2025, 368, 125673. [Google Scholar] [CrossRef]
- Yuan, L.; Wu, Y.; Shi, L.; Song, J.; Jiang, Y. Organochlorine pesticides and polychlorinated biphenyls in sediments of the Lanzhou reach of Yellow River (China): Spatial distribution, sources and risk assessment. Mar. Pollut. Bull. 2024, 208, 116962. [Google Scholar] [CrossRef]
- Wan, N.; Zhuo, C.; Qiao, L.; Gong, J.; Yang, Y.; Ran, Y. Relationship between historical changes of PBDEs, PAHs, and algal organic matter in sediments of Poyang Lake under climate warming. Hum. Ecol. Risk Assess. 2020, 26, 2390–2406. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.J.S. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 47, 1259855. [Google Scholar] [CrossRef]
- Portet-Koltalo, F.; Gardes, T.; Debret, M.; Copard, Y.; Marcotte, S.; Morin, C.; Laperdrix, Q. Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core. J. Hazard Mater. 2020, 384, 121499. [Google Scholar] [CrossRef]
- Zhang, C.; Shan, B.; Zhao, Y.; Song, Z.; Tang, W. Spatial distribution, fractionation, toxicity and risk assessment of surface sediments from the Baiyangdian Lake in northern China. Ecol. Indic. 2018, 90, 633–642. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Wang, W.; Qiu, Y.; Tang, Y.; Wang, C.; Li, H.; Li, G.; An, T. Combined pollution of heavy metals and polycyclic aromatic hydrocarbons in non- ferrous metal smelting wastewater treatment plant: Distribution profiles, removal efficiency, and ecological risks to receiving river. J. Hazard. Mater. 2025, 486, 137118. [Google Scholar] [CrossRef]
- Lei, B.; Wang, X.; Wang, L.; Kang, Y.; Wan, T.; Li, W.; Yang, Q.; Zhang, J. Combining chemical analysis and toxicological methods to access the ecological risk of complex contamination in Daye Lake. Sci. Total Environ. 2024, 944, 173690. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Paul, D. Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci. 2017, 15, 278–286. [Google Scholar] [CrossRef]
- Ding, Y.; Qi, S.; Huang, H.; Zhang, Y.; Zheng, H.; Qin, Y.; Bao, Q.; Chen, W.; Qu, C. Sedimentary records of persistent organic pollutants (OCPs and PCBs) in Ngoring Lake, the central Tibetan Plateau, China: Impacts of westerly atmospheric transport and cryospheric melting. Sci. Total Environ. 2023, 891, 164655. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Sun, P.; Ni, T. Ecological risk characteristics of sediment- bound heavy metals in large shallow lakes for aquatic organisms: The case of Taihu Lake, China. J. Environ. Manag. 2023, 342, 118253. [Google Scholar] [CrossRef]
- Alani, R.A.; Nwude, D.O.; Bello, I.I.; Okolie, C.J.; Akinrinade, O.E. Levels and health risks of heavy metals and organochlorine pesti cide residues in soil and drinking water of flood-prone residential area of Lagos, Nigeria. Water Air Soil Pollut. 2023, 234, 783. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerg. Contam. 2019, 5, 157–167. [Google Scholar] [CrossRef]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Gurunathan, B.; Pugazhendhi, A. Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef]
- Chen, C.; Luo, J.; Shu, X.; Dai, W.; Guan, M.; Ma, L. Spatio-temporal variations and ecological risks of organochlorine pesticides in surface waters of a plateau lake in China. Chemosphere 2022, 303, 135029. [Google Scholar] [CrossRef]
- Hu, C.; Tao, Y. Spatial-temporal occurrence and sources of organochlorine pesticides in the sediments of the largest deep lake (Lake Fuxian) in China. Environ. Sci. Pollut. Res. 2022, 30, 31157–31170. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Luo, X.; Liu, X.; Yang, S. Cause analysis for the different change profiles of sedimentary heavy metals in Qilu Lake (Yunnan–Guizhou Plateau, China) over the past century. Water Air Soil Pollut. 2020, 231, 487. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, E.; Zhang, E.; Luo, W.; Chen, L.; Wang, C.; Lin, Q. Historical records and sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediment from a representative plateau lake, China. Chemosphere 2017, 173, 78–88. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Lu, C.; Wang, Z. Characteristics of water environment and comprehensive improvement research of pollution prevention in Plateau Lake Basin. Environ. Sci. Manag. 2015, 40, 49–52. (In Chinese) [Google Scholar]
- Zhang, J.; Zhao, L.; Zhao, L.; Tan, Z.; Wang, J.; Li, Z. A study of in-lake pollution load of agricultural drained water in farmland drainage area around Lake Qilu. Environ. Sci. Sur. 2013, 32, 33–34. (In Chinese) [Google Scholar]
- Klamt, A.M.; Qian, F.; Hu, K.; Wang, J.; Huang, L.; Li, R.; Chen, G. The rise and fall of primary producers and consumers in a multiply-stressed shallow lake (Lake Qilu, China) over the last 200 years. Ecol. Indic. 2021, 129, 107891. [Google Scholar] [CrossRef]
- HJ803-2016; Soil and Sediment-Determination of Aqua Regia Extracts of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry. Ministry of Environment Protection of China (MEPC): Beijing, China, 2016. (In Chinese)
- HJ835-2017; Soil and Sediment-Determination of Organochlorine Pesticides–Gas chromatography/Mass Spectrometry. Ministry of Environment Protection of China (MEPC): Beijing, China, 2017. (In Chinese)
- Shetaia, S.A.; Nasr, R.A.; Lasheen, E.S.R.; Dar, M.A.; Al-Mur, B.A.; Zakaly, H.M.H. Assessment of heavy metals contamination of sediments and surface waters of Bitter lake, Suez Canal, Egypt: Ecological risks and human health. Mar. Pollut. Bull. 2023, 192, 115096. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Q.; Liao, Y.; Yu, P.; Tang, Y.; Liu, Q.; Shi, X.; Shou, L.; Zeng, J.; Chen, Q.; et al. Ecological risk assessment of trace metals in sediments and their effect on benthic organisms from the south coast of Zhejiang province, China. Mar. Pollut. Bull. 2023, 187, 114529. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Center (CNEMC). The Background Values of Soil Elements in China; China Environment Sciences Press: Beijing, China, 1990; pp. 364–389. (In Chinese)
- United States Environmental Protection Agency (USEPA). Reference Dose (RfD): Description and Use in Health Risk Assessments; Background Document 1A; Integrated Risk Information System (IRIS); United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1993.
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund; Human Health Evaluation Manual (Part A); United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1989; Volume 1.
- United States Environmental Protection Agency (USEPA). Superfund Public Health Evaluation Manual; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1986.
- United States Environmental Protection Agency (USEPA). Characterizing Risk and Hazard. In Human Health Risk Assessment Protocol; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2005. [Google Scholar]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. (In Chinese)
- Dai, G.; Liu, X.; Liang, G.; Han, X.; Shi, L.; Cheng, D.; Gong, W. Distribution of organochlorine pesticides (OCPs) and poly chlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J. Environ. Sci. 2011, 23, 1640–1649. [Google Scholar] [CrossRef]
- Sreedevi, M.A.; Harikumar, P.S. Occurrence, distribution, and ecological risk of heavy metals and persistent organic pollutants (OCPs, PCBs, and PAHs) in surface sediments of the Ashtamudi wetland, south-west coast of India. Region. Stud. Marine Sci. 2023, 64, 103044. [Google Scholar] [CrossRef]
- Varnosfaderany, M.N.; Soffianian, A.; Mirghaffari, N.; Gu, Z.; Chu, G. Occurrence and depositional history of organochlorine pesticides in the sediments of the Zayandehrud River in the arid region of Central Iran. Chemosphere 2020, 255, 126847. [Google Scholar] [CrossRef]
- Hu, Q.; Liang, Y.; Zeng, H.; Huang, H.; Chen, W.; Qin, L.; Song, X.; Yan, X. Organochlorine pesticides in water and sediment at a typical karst wetland in Southwest China. J. Geochem. Explor. 2024, 264, 107519. [Google Scholar] [CrossRef]
- Yun, X.; Yang, Y.; Liu, M.; Wang, J. Distribution and ecological risk assessment of organochlorine pesticides in surface sediments from the East Lake, China. Environ. Sci. Pollut. Res. 2014, 21, 10368–10376. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-1995; Environmental Quality Standard for Soils. National Environmental Protection Agency of China (CNEPA): Beijing, China, 1995. (In Chinese)
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef]
- Özbay, Ö.; Akçay, Ì.; Tahir Alp, M.; Börekçi, N.S. Distribution of heavy metals in surface sediments of a Coastal Lagoon (Akyatan Lagoon, Northeastern Mediterranean Sea): Ecological and potential health risk assessment. Reg. Stud. Mar. Sci. 2025, 82, 104058. [Google Scholar] [CrossRef]
- Keshta, A.E.; Gagnon, J.E.; Barrette, J.; Shaheen, M.E. Pollution Load Index and Ecological Risk Assessment of Sediment Heavy Metals in Lake Edku, Egypt. Bull. Environ. Contam. Toxicol. 2025, 114, 84. [Google Scholar] [CrossRef]
- Kolandhasamy, P.; Elumalai, S.; Nandagopal, S.; Senthil Kumaran, S.; Rajendran, R.; Vinayagam, R.; Ramasamy, P. A Preliminary health risk assessment of heavy metal contamination in Chembarambakkam lake, Tamil Nadu, south India. Water 2024, 16, 3517. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Ye, C.; Xie, Z.; Li, C. Spatial Distribution, Risk Assessment and Source Analysis of Heavy Metals in the Sediments of Jinmucuo Lake, Southern Tibetan Plateau. Sustainability 2024, 16, 10592. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, J.; Bi, J.; Liu, T.; Huang, M.; Li, G.; Ma, Y.; Zhang, B. Heavy Metals in Sediments of the Yangtze River, Poyang Lake and Its Tributaries: Spatial Distribution, Relationship Analysis and Source Apportionment. Water 2025, 17, 1295. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Zhang, Y.; Di, Y.; Wu, X. Spatial distribution characteristic, source apportionment, and risk assessment of heavy metals in the soil of an urban riparian zone. Ecotoxicol. Environ. Saf. 2025, 298, 118271. [Google Scholar] [CrossRef]
- Yang, E.; Wang, Q.; Zhang, Z.; Shao, W.; Luo, H.; Xiao, X.; Ni, F.; Mi, J.; Sun, X.; Guan, Q. Source-oriented health risk assessment of heavy metals in a soil-river continuum in northwest China. Int. J. Sediment Res. 2024, 39, 916–928. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Z.; Lu, S.; Jiang, S.; Mu, D.; Shu, Y. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ. Pollut. 2012, 163, 248–255. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Luo, J.; Chen, L.G.; Zhu, R.L.; Wang, S.; Tang, C.H. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci. Total Environ. 2019, 650, 725–733. [Google Scholar] [CrossRef]
- Peng, J.; Chen, Y.; Xia, Q.; Rong, G.; Zhang, J. Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun, China. Environ. Pollut. 2021, 272, 116038. [Google Scholar] [CrossRef]
- HJ 974-2018; Soil and Sediment-Determination of 11 Elements–Alkaline Fusion and Inductively Coupled Plasma Optical Emission Spectrometry. Ministry of Ecology and Environment of China (MEEC): Beijing, China, 2018. (In Chinese)
- Tariq, T.; Mahmood, A.; Majid, M.; Nazir, R.; Elgorban, A.M.; Abid, I.; Ullah, R.; Sivasamugham, L.A. Screening levels spatial interpolation of lifetime carcinogenic risk by organochlorine pesticides across catchments of river chenab. J. King Saud Univ. Sci. 2024, 36, 103422. [Google Scholar] [CrossRef]
- Tang, D.; Liu, X.; He, H.; Cui, Z.; Gan, H.; Xia, Z. Distribution, sources and ecological risks of organochlorine compounds (DDTs, HCHs and PCBs) in surface sediments from the Pearl River Estuary, China. Mar. Pollut. Bull. 2020, 152, 110942. [Google Scholar] [CrossRef]
- Su, Y.; Xu, X.; Guo, Z.; Liang, D.; Hua, X.; Dong, D. Temporospatial distribution and source identification of polycyclic aromatic hydrocarbons and organochlorine pesticides in Tiaozi River. J. Jilin Univ. (Sci. Ed.) 2014, 52, 611–622. [Google Scholar] [CrossRef]
- Müller, M.H.B.; Polder, A.; Brynildsrud, O.B.; Karimi, M.; Lie, E.; Manyilizu, W.B.; Mdegela, R.H.; Mokiti, F.; Murtadha, M.; Nonga, H.E.; et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania. Environ. Res. 2017, 154, 425–434. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, T.; Liu, W.; Mao, Y.; Shi, M.; Xu, A.; Su, Y.; Li, X.; Xing, X.; Qi, S. Modern Lake sedimentary record of PAHs and OCPs in a typical Karst wetland, South China: Response to human activities and environmental changes. Environ. Pollut. 2021, 291, 118173. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Xue, C.; Mao, J.; Bi, T.; Xuan, C. Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of Huaihe river (Anhui section). J. Bengbu Univ. 2021, 10, 12–18. (In Chinese) [Google Scholar]
- Lin, Y.; Gabrielsen, G.W.; Lu, Z.; Huang, Q.; Huang, P.; Ke, H.; Cai, M. Local contributions and climate change effects on organochlorine pesticide levels in soil and sediments in Svalbard. Environ. Pollut. 2025, 365, 125386. [Google Scholar] [CrossRef] [PubMed]
- Hoai, P.M.; Ngoc, N.T.; Minh, N.H.; Viet, P.H.; Berg, M.; Alder, A.C.; Giger, W. Recent levels of organochlorine pesticides and polychlorinated biphenyls in sediments of the sewer system in Hanoi, Vietnam. Environ. Pollut. 2010, 158, 913–920. [Google Scholar] [CrossRef]
- Li, C.; Huo, S.; Yu, Z.; Xi, B.; Yeager, K.M.; He, Z.; Ma, C.; Zhang, J.; Wu, F. National investigation of semi-volatile organic compounds (PAHs, OCPs, and PCBs) in lake sediments of China: Occurrence, spatial variation and risk assessment. Sci. Total Environ. 2017, 579, 325–336. [Google Scholar] [CrossRef]
- Long, Z.; Zhu, H.; Bing, H.; Tian, X.; Wang, Z.; Wang, X.; Wu, Y. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua city, southwest China. J. Hazard. Mater. 2021, 420, 126638. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy Metal Pollution by Road–Deposited Sediments and Its Contribution to Total Suspended Solids in Rainfall Runoff from Intensive Industrial Areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef]
- Li, Y.; Zhen, L.; Cozzi, G.; Turetta, C.; Barbante, C.; Huang, J.; Xiong, L. Signals of pollution revealed by trace elements in recent snow frommountain glaciers at the Qinghai–Tibetan plateau. Chemosphere 2018, 200, 523–531. [Google Scholar] [CrossRef]
- Beaudon, E.; Gabrielli, P.; Sierra-Hernandez, M.R.; Wegner, A.; Thompson, L.G. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core. Sci. Total Environ. 2017, 601–602, 1349–1363. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Liu, C.; Lu, J.; Qin, Y.; Mo, Y.; Xiao, P.; Liu, Y. Quantitative source identification and apportionment of heavy metals under two different land use types: Comparison of two receptor models APCS-MLR and PMF. Environ. Sci. Pollut. Res. 2020, 27, 42996–43010. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Chen, Y.; Wang, C.; Zhao, G.; Pan, H.; Wang, C.; Bao, H.; Ibrahim, M.; Norgbey, E. Heavy metals contamination in water-sediment systems of a large drinking water reservoir in southern China: Large-scale assessment and risk-based management. J. Clean. Prod. 2025, 525, 146557. [Google Scholar] [CrossRef]
- Zhang, M.; He, P.; Qiao, G.; Huang, J.; Yuan, X.; Li, Q. Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and ecological risk. Chemosphere 2019, 223, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, M.; Li, G.; Lin, S.; Wang, D.; Li, Z.; Wang, Y.; Wang, Z. A spatial source- oriented and probability-based risk-assessment framework for heavy metal and PAH contamination of urban soils in Guangzhou, China. J. Hazard. Mater. 2025, 482, 136500. [Google Scholar] [CrossRef]
- Kadi, M.W. “Soil pollution hazardous to environment”: A case study on the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah city, Saudi Arabia. J. Hazard. Mater. 2009, 168, 1280–1283. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Ma, Y.; Egodawatta, P.; McGree, J.; Liu, A.; Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016, 557-558, 764–772. [Google Scholar] [CrossRef]
- Andrée, D.C.; Marie Anne Eurie, F.; Niels, D.T.; Isabel, G.A.; Arne, D.; Wout, V.E.; Lenin, R.F.; Jasmine, D.R.; Liesbeth, J.; Pieter, S.; et al. From field to plate: Agricultural pesticide presence in the guayas estuary (Ecuador) and commercial mangrove crabs. Environ. Pollut. 2021, 289, 117955. [Google Scholar] [CrossRef]
- Chen, C.; Zou, W.; Cui, G.; Tian, J.; Wang, Y.; Ma, L. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai. China. Chemosphere 2020, 257, 127222. [Google Scholar] [CrossRef]
- Chen, B.; Huang, W.; Ma, S.; Feng, M.; Liu, C.; Gu, X.; Chen, K. Characterization of chromophoric dissolved organic matter in the littoral zones of Eutrophic Lakes Taihu and Hongze during the Algal Bloom Season. Water 2018, 10, 861. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Z.; Xiao, M.; Meng, B.; Kolodeznikov, V.E.; Petrova, N.N.; Mukhin, V.V.; Liu, B.; Zhang, Z. Screening and Quantification of Pesticides in Wetland Water, Ice, Sediment and Soil: Occurrence, Transport and Risk Assessment. Environ. Res. 2024, 263, 120143. [Google Scholar] [CrossRef]
- Meng, B.; Min, X.; Xiao, M.; Xie, W.; Li, W.; Cai, M.; Xiao, H.; Zhang, Z. Multimedia distribution, dynamics, and seasonal variation of PAHs in Songhua wetland: Implications for ice-influenced conditions. Chemosphere 2024, 354, 141641. [Google Scholar] [CrossRef] [PubMed]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, L.; Hou, Z.; Wu, J.; Wang, Q. Pollution characteristics and risk assessment of surface sediments in nine plateau lakes of Yunnan Province. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012166. [Google Scholar] [CrossRef]
- Ansari, I.; El-Kady, M.M.; Mahmoud, A.E.D.; Arora, C.; Verma, A.; Rajarathinam, R.; Singh, P.; Verma, D.K.; Mittal, J. Persistent pesticides: Accumulation, health risk assessment, management and remediation: An overview. Desalination Water Treat. 2024, 317, 100274. [Google Scholar] [CrossRef]
- Chandrajith, R.; Diyabalanage, S.; Dissanayake, C. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundw. Sustain. Dev. 2020, 10, 100359. [Google Scholar] [CrossRef]
- Yang, Z.; Li, C.; Chen, H.; Shan, X.; Chen, J.; Zhang, J.; Liu, S.; Liu, Q.; Wang, X. Source-oriented ecological and resistome risks associated with geochemical enrichment of heavy metals in river sediments. Chemosphere 2023, 336, 139119. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Mallongi, A.; Astuti, R.D.P.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Identification source and human health risk assessment of potentially toxic metal in soil samples around karst watershed of Pangkajene, Indonesia. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100634. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Li, Y.; Shi, Y.; Li, D.; Holm, P.E.; Ou, Q.; Hu, W. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ. 2021, 767, 144879. [Google Scholar] [CrossRef] [PubMed]







| Element | PC1 | PC2 | PC3 |
|---|---|---|---|
| As | 0.243 | 0.595 | 0.134 |
| Hg | 0.086 | −0.198 | 0.704 |
| Ni | 0.448 | 0.048 | 0.351 |
| Cd | 0.440 | 0.236 | −0.327 |
| Cu | 0.423 | −0.272 | −0.067 |
| Pb | 0.532 | 0.028 | −0.217 |
| Cr | −0.147 | 0.644 | 0.296 |
| Zn | 0.237 | −0.243 | 0.343 |
| Eigenvalue | 2.733 | 1.686 | 1.125 |
| Percentage of variance (%) | 34.16 | 21.08 | 14.06 |
| Cumulative percentage of variance (%) | 34.16 | 55.24 | 69.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Pan, Y.; Shang, Z.; Shi, H.; Jin, Y.; Zhou, H.; Zhang, H.; Dong, Z.; Chang, F. Assessing Sustainable Management of a Plateau Lake: Adsorption and Integrated Risk of Sediment Pollutants. Sustainability 2025, 17, 11235. https://doi.org/10.3390/su172411235
Wen X, Pan Y, Shang Z, Shi H, Jin Y, Zhou H, Zhang H, Dong Z, Chang F. Assessing Sustainable Management of a Plateau Lake: Adsorption and Integrated Risk of Sediment Pollutants. Sustainability. 2025; 17(24):11235. https://doi.org/10.3390/su172411235
Chicago/Turabian StyleWen, Xinyu, Yun Pan, Zhengyuan Shang, Henghao Shi, Yandun Jin, Huipeng Zhou, Huawei Zhang, Zhiwen Dong, and Fengqin Chang. 2025. "Assessing Sustainable Management of a Plateau Lake: Adsorption and Integrated Risk of Sediment Pollutants" Sustainability 17, no. 24: 11235. https://doi.org/10.3390/su172411235
APA StyleWen, X., Pan, Y., Shang, Z., Shi, H., Jin, Y., Zhou, H., Zhang, H., Dong, Z., & Chang, F. (2025). Assessing Sustainable Management of a Plateau Lake: Adsorption and Integrated Risk of Sediment Pollutants. Sustainability, 17(24), 11235. https://doi.org/10.3390/su172411235

