Low-Energy Regeneration Technologies for Industrial CO2 Capture: Advances, Challenges, and Engineering Applications
Abstract
1. Introduction
2. Overview of CO2 Capture Technology
2.1. Absorption
2.2. Adsorption
2.3. Membrane Separation Technology
2.4. Emerging Carbon Capture Technologies
- (a)
- Cryogenic technology
- (b)
- Calcium looping
- (c)
- Chemical looping combustion
2.5. Summary
3. Low-Energy Consumption Recycling Technology Research
3.1. Absorbent Optimization
3.2. Adding Catalysts or Other Materials
3.3. Technology Enhancement
3.4. Chemical Desorption
3.5. Summary
4. Iron and Steel Industry Carbon Capture Development
5. Future Directions and Challenges
5.1. Direction of Technological Innovation
5.2. Challenges of Large-Scale Application
5.3. Policy-Driven
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Lan, X.; Tans, P.; Thoning, K. Trends in globally-averaged CO2 Determined from NOAA Global Monitoring Laboratory Measurements. [DS/OL]. NOAA GML. 2023. Available online: https://gml.noaa.gov/ccgg/trends/global.html?doi=10.15138/9n0h-zh07 (accessed on 21 July 2025).
- NOAA National Centers for Environmental Information. Annual 2024 Global Climate Report [EB/OL]. 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202413 (accessed on 21 July 2025).
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.H.A.; Hughes, R.W.; Webley, P.A.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Z. Carbon capture, utilization and storage (CCUS). Appl. Energy 2019, 235, 1289–1299. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Ahmed, S.; Hussain, M.S.; Khan, M.K.; Kim, J. Innovations in catalysis towards efficient electrochemical reduction of CO2 to C1 chemicals. J. Energy Chem. 2025, 107, 622–649. [Google Scholar] [CrossRef]
- Zhou, S.; Kosari, M.; Zeng, H.C. Boosting CO2 hydrogenation to methanol over monolayer MoS2 nanotubes by creating more strained basal planes. J. Am. Chem. Soc. 2024, 146, 10032–10043. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ma, W.; Anjum, U.; Kosari, M.; Xi, S.; Kozlov, S.M.; Zeng, H.C. Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nat. Commun. 2023, 14, 5872. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Shyam, A.; Ahmed, K.R.A.; Kumar, J.P.N.; Iniyan, S.; Goic, R. Path of carbon dioxide capture technologies: An overview. Next Sustain. 2025, 6, 100118. [Google Scholar] [CrossRef]
- Akinmoladun, A.; Tomomewo, O.S. Advances and future perspectives in post-combustion carbon capture technology using chemical absorption process: A review. Carbon Capture Sci. Technol. 2025, 16, 100461. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Qian, J.; Zhang, X.; Liu, Z. Review of research progress and stability studies of amine-based biphasic absorbents for CO2 capture. J. Ind. Eng. Chem. 2024, 134, 28–50. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Ren, J. Recent advances in CO2 capture and utilization: From the perspective of process integration and optimization. Renew. Sustain. Energy Rev. 2025, 216, 115688. [Google Scholar] [CrossRef]
- Lei, T.; Wang, D.; Yu, X.; Ma, S.; Zhao, W.; Cui, C.; Meng, J.; Tao, S.; Guan, D. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 2023, 622, 514–520. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Tang, X.; Wang, Y.; An, H.; Yi, H. Decarbonization pathways of China’s iron and steel industry toward carbon neutrality. Resour. Conserv. Recycl. 2023, 194, 106994. [Google Scholar] [CrossRef]
- Andrade, C.; Desport, L.; Selosse, S. Net-negative emission opportunities for the iron and steel industry on a global scale. Appl. Energy 2024, 358, 122566. [Google Scholar] [CrossRef]
- Perpiñán, J.; Peña, B.; Bailera, M.; Eveloy, V.; Kannan, P.; Raj, A.; Lisbona, P.; Romeo, L.M. Integration of carbon capture technologies in blast furnace based steel making: A comprehensive and systematic review. Fuel 2023, 336, 127074. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, S.; Peng, T.; Ou, X. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renew. Sustain. Energy Rev. 2021, 143, 110846. [Google Scholar] [CrossRef]
- Vaziri, P.; Reza Rasaei, M.; Seyfoori, S.; Zamani, S.; Mahmoodi, M.; Sedaee, B. Advancing carbon capture technologies in CCS: A comprehensive review of pre-combustion processes. Gas Sci. Eng. 2024, 131, 205481. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Large scale application of carbon capture to process industries—A review. J. Clean. Prod. 2022, 362, 132300. [Google Scholar] [CrossRef]
- Xie, Y.; Xia, Z.; Li, C.; Mou, M.; Hu, X.; Chen, W.; Xu, X.; Xia, Y.; Liu, Z.; Fang, M. Pilot test and process modification of CO2 chemical absorption for top gas recycling-oxygen blast furnace. Sep. Purif. Technol. 2025, 370, 133148. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.; Yu, H.; Liu, Y.; Hussain, A. Carbon dioxide capture using liquid absorption methods: A review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Song, D. Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on rectisol. Energy 2022, 244, 122566. [Google Scholar] [CrossRef]
- Emmanuel, O.; Rozina Ezeji, T.C. Advances in carbon dioxide capture and conversion technologies: Industrial integration for sustainable chemical production. Next Sustain. 2025, 6, 100108. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Zhang, D.; Tang, Z.; Li, W. Integrated vacuum pressure swing adsorption and rectisol process for CO2 capture from underground coal gasification syngas. Chin. J. Chem. Eng. 2023, 57, 265–279. [Google Scholar] [CrossRef]
- Wang, N.; Lu, S.; Liu, L.; Lang, J.; Liu, M.; Sun, M.; Kang, G. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system. Chem. Ind. Eng. Prog. 2025, 44, 445–464. [Google Scholar]
- Wang, Q.; Gong, D.; Zhang, Z.; Zhu, J.; Luo, Q. Experimental study on the cyclic mineralization of CO2 enriched phase after absorption by a novel biphasic absorbent composed of DEEA and AEP. Sci. Rep. 2024, 14, 26759. [Google Scholar] [CrossRef] [PubMed]
- Kim Smang Léonard, G. CO2 capture technologies and shortcut cost correlations for different inlet CO2 concentrations and flow rates. part 1: Chemical absorption. Int. J. Greenh. Gas Control 2025, 145, 104391. [Google Scholar]
- Du, J.; Yang, W.; Xu, L.; Bei, L.; Lei, S.; Li, W.; Liu, H.; Wang, B.; Sun, L. Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia. Chem. Eng. J. 2024, 488, 150954. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Lim, H.; Kang, J.H.; Park, H.S.; Park, J.; Song, H. Structural investigation of aqueous amine solutions for CO2 capture: CO2 loading, cyclic capacity, absorption–desorption rate, and pKa. J. Environ. Chem. Eng. 2024, 12, 112664. [Google Scholar] [CrossRef]
- Ahmadi, M.; Bahmanzadegan, F.; Qasemnazhand, M.; Ghaemi, A.; Ramezanipour Penchah, H. Experimental, RSM modelling, and DFT simulation of CO2 adsorption on modified activated carbon with LiOH. Sci. Rep. 2024, 14, 13595. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Kim, E.J.; Long, J.R. Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060–1072. [Google Scholar] [CrossRef]
- Chang, X.L.; Yan, T.; Pan, W.G.; Wang, L.W. Designing and screening metal-organic frameworks for enhancing CO2 capture and separation performance. Coord. Chem. Rev. 2025, 543, 216929. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Yang, X. A theoretical simulation of carbon dioxide adsorption capture on amine-functionalized graphene oxides. J. Environ. Chem. Eng. 2024, 12, 114165. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, Y.; Yang, L.; Liu, J. Adsorption performance of amine-functionalized red mud-based adsorbent for CO2 capture. J. Environ. Manag. 2025, 383, 125334. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, B.; Su, Y. Multiple-amine functionalized γ–Al2O3 for post-combustion CO2 capture: Performance, mechanism, and kinetics. Fuel 2025, 380, 133186. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Li, L.; Feng, J.; Qiu, W.; Ning, Y.; Huang, Z.; Lin, H. Degradation of amine-functionalized adsorbents in carbon capture and direct air capture applications: Mechanism and solutions. Sep. Purif. Technol. 2025, 354, 129586. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, G.; Liu, J.; Li, G.; Zhao, Y.; Wang, Y.; Wu, C.; Zhang, Y.; Xu, Y. Investigation of CO2 adsorption performance of amine impregnated adsorbents using amine-support matching strategies. Sep. Purif. Technol. 2023, 310, 123178. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Dogan, N.A.; Lim, H.; Yavuz, C.T. Amine chemistry of porous CO2 adsorbents. Acc. Chem. Res. 2023, 56, 2642–2652. [Google Scholar] [CrossRef] [PubMed]
- Siagian, U.W.R.; Raksajati, A.; Himma, N.F.; Khoiruddin, K.; Wenten, I.G. Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. J. Nat. Gas Sci. Eng. 2019, 67, 172–195. [Google Scholar] [CrossRef]
- Niu, Z.; He, N.; Yao, Y.; Ma, A.; Zhang, E.; Cheng, L.; Li, Y.; Lu, X. Mixed matrix membranes for gas separations: A review. Chem. Eng. J. 2024, 494, 152912. [Google Scholar] [CrossRef]
- Xie, K.; Fu, Q.; Qiao, G.G.; Webley, P.A. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J. Membr. Sci. 2019, 572, 38–60. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sun, L.; Ma, X. Progress in polymers of intrinsic microporosity for post-combustion carbon capture. Sep. Purif. Technol. 2025, 363, 132003. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Polymeric membranes for CO2 separation and capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Prasetya, N.; Himma, N.F.; Sutrisna, P.D.; Wenten, I.G.; Ladewig, B.P. A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem. Eng. J. 2020, 391, 123575. [Google Scholar] [CrossRef]
- Gkotsis, P.; Peleka, E.; Zouboulis, A. Membrane-based technologies for post-combustion CO2 capture from flue gases: Recent progress in commonly employed membrane materials. Membranes 2023, 13, 898. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Li, X.; Zhang, J. Constructing double-faced CO2-capture domains by sandwich-like fillers in membranes for efficient CO2 separation. Chem. Eng. Sci. 2024, 283, 119374. [Google Scholar] [CrossRef]
- Cao, H.; Cao, X.; Wang, Z.; Ding, G.; Li, H.; Bian, J. Advancing cryogenic carbon capture technology through understanding the CO2 frosting crystallization mechanism. Fuel 2025, 384, 134006. [Google Scholar] [CrossRef]
- Asgharian, H.; Iov, F.; Araya, S.S.; Pedersen, T.H.; Nielsen, M.P.; Baniasadi, E.; Liso, V. A review on process modeling and simulation of cryogenic carbon capture for post-combustion treatment. Energies 2023, 16, 1855. [Google Scholar] [CrossRef]
- Du, S.; Qiu, G.; Li, Q.; Jiang, L.; Cai, W. Cryogenic desublimation carbon capture technology: Mechanisms and applications. Sep. Purif. Technol. 2025, 375, 133677. [Google Scholar] [CrossRef]
- Shen, M.; Tong, L.; Yin, S.; Liu, C.; Wang, L.; Feng, W.; Ding, Y. Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review. Sep. Purif. Technol. 2022, 299, 121734. [Google Scholar] [CrossRef]
- De, D.K.; Oduniyi, I.A.; Sam, A.A.; Aneesh, A.M.; Akinmeji, S. Modelling carbon capture from power plants with low energy and water consumption using a novel cryogenic technology. Appl. Therm. Eng. 2024, 257, 124315. [Google Scholar] [CrossRef]
- Song, C.; Run, L.; Liu, Q.; Deng, S.; Li, H.; Sun, J. Membrane-cryogenic hybrid CO2 capture—A review. Carbon Capture Sci. Technol. 2024, 13, 100249. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Marques, L.M.; Mota, S.M.; Teixeira, P.; Mateus, M.; Pinheiro, C.I.C. Decarbonisation of cement industry: Calcium looping with white mud and limestone as CaO-based sorbents for industrial flue gas treatment. Chem. Eng. Process.—Process Intensif. 2025, 213, 110290. [Google Scholar] [CrossRef]
- Rincon Duarte, J.P.; Kriechbaumer, D.; Lachmann, B.; Tescari, S.; Fend, T.; Roeb, M.; Sattler, C. Solar calcium looping cycle for CO2 capturing in a cement plant. Definition of process parameters and reactors selection. Sol. Energy 2022, 238, 189–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Han, K.; Zhao, J.; Wu, J.J.; Li, Y. Calcium looping for CO2 capture and thermochemical heat storage, a potential technology for carbon neutrality: A review. Green Energy Resour. 2024, 2, 100078. [Google Scholar] [CrossRef]
- Behtash, H.R.; Tahmasebpoor, M. Experimental and modeling insights into the kinetics of calcium looping CO2 capture process: Assessment of limestone treatment. J. Environ. Chem. Eng. 2024, 12, 114645. [Google Scholar] [CrossRef]
- Rong, N.; Wang, S.; Chu, C.; Guo, Z.; Liu, K.; Han, L.; Ge, L.; Shi, X.; Wang, G.; Wang, Y. Deactivated ca-based sorbent derived from calcium looping CO2 capture as a partial substitute for cement to obtain low-carbon cementitious building materials. Constr. Build. Mater. 2024, 454, 139175. [Google Scholar] [CrossRef]
- Alalwan, H. A, Alminshid, A.H. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 2021, 788, 147850. [Google Scholar] [CrossRef]
- Yan, J.; Wang, S.; Hu, B.; Zhang, H.; Qiu, L.; Liu, W.; Guo, Y.; Shen, J.; Chen, B.; Ge, X.; et al. Review of chemical looping technology for energy conservation and utilization: CO2 capture and energy cascade utilization. J. Environ. Chem. Eng. 2024, 12, 112602. [Google Scholar] [CrossRef]
- Saeedan, M.; Houshfar, E. Solar-driven chemical looping combustion: A pathway to low-impact carbon emission and sustainable hydrogen generation for a decarbonized energy sector. Fuel Process. Technol. 2025, 273, 108230. [Google Scholar] [CrossRef]
- Baskaran, D.; Saravanan, P.; Nagarajan, L.; Byun, H.S. An overview of technologies for capturing, storing, and utilizing carbon dioxide: Technology readiness, large-scale demonstration, and cost. Chem. Eng. J. 2024, 491, 151998. [Google Scholar] [CrossRef]
- Zuo, H.; Mao, J.; Duan, Z.; Qian, A.; Shi, Y.; Gu, Z.; Li, D.; Wei, Y.; Wang, H.; Li, K. Separation and purification of CO2 from blast furnace gas combustion by a chemical looping concept. Sep. Purif. Technol. 2025, 370, 133084. [Google Scholar] [CrossRef]
- Jin, B.; Xu, M.; Wang, R.; Fan, Y.; Xiang, X.; Zhao, H.; Liang, Z. Steel slag derived oxygen carriers and solid sorbents for chemical looping CO2 capture: A mini review. Results Eng. 2025, 25, 104438. [Google Scholar] [CrossRef]
- Vaz, S.; De Souza, A.P.R.; Baeta, B.E.L. Technologies for carbon dioxide capture: A review applied to energy sectors. Clean. Eng. Technol. 2022, 8, 100456. [Google Scholar] [CrossRef]
- Komkhum, T.; Sema, T.; Rehman, Z.U.; In-na, P. Carbon dioxide removal from triethanolamine solution using living microalgae-loofah biocomposites. Sci. Rep. 2025, 15, 7247. [Google Scholar] [CrossRef]
- Meng, F.; Meng, Y.; Ju, T.; Han, S.; Lin, L.; Jiang, J. Research progress of aqueous amine solution for CO2 capture: A review. Renew. Sustain. Energy Rev. 2022, 168, 112902. [Google Scholar] [CrossRef]
- Pérez-Calvo, J.F.; Sutter, D.; Gazzani, M.; Mazzotti, M. Advanced configurations for post-combustion CO2 capture processes using an aqueous ammonia solution as absorbent. Sep. Purif. Technol. 2021, 274, 118959. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, B.; Deng, C.; Lei, Q.; Chen, H. Efficient desorption and energy-saving carbon capture using a nonaqueous primary alkanolamine-based biphasic absorbent. Sep. Purif. Technol. 2025, 356, 129855. [Google Scholar] [CrossRef]
- Singto, S.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Tantayanon, S.; Al-Marri, M.J.; Benamor, A. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 2016, 167, 97–107. [Google Scholar] [CrossRef]
- Narimani, M.; Amjad-Iranagh, S.; Modarress, H. Performance of tertiary amines as the absorbents for CO2 capture: Quantum mechanics and molecular dynamics studies. J. Nat. Gas Sci. Eng. 2017, 47, 154–166. [Google Scholar] [CrossRef]
- Xiao, L.; Qiu, Z.; Feng, S.; Duan, X.; Zhao, Z.; Liu, Y.; Ma, L. Carbon dioxide absorption and desorption experiments based on MDEA. Chem. Eng. Process.—Process Intensif. 2024, 204, 109931. [Google Scholar] [CrossRef]
- Aghel, B.; Janati, S.; Wongwises, S.; Shadloo, M.S. Review on CO2 capture by blended amine solutions. Int. J. Greenh. Gas Control 2022, 119, 103715. [Google Scholar] [CrossRef]
- Muchan, P.; Saiwan, C.; Narku-Tetteh, J.; Idem, R.; Supap, T.; Tontiwachwuthikul, P. Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chem. Eng. Sci. 2017, 170, 574–582. [Google Scholar] [CrossRef]
- Fonck, F.; Karlsson, H.K.; Antonopoulou, I.; Svensson, H. Evaluation of enhanced absorption of carbon dioxide using carbonic anhydrase in aqueous solutions of 2-amino-2-methyl-1-propanol. Clean. Eng. Technol. 2025, 25, 100918. [Google Scholar] [CrossRef]
- Sung, H.; Han, S.C.; Jeon, P.R.; Kim, K.M. The effects of blending diisopropanolamine and 2-amino-2-methyl-1-propanol for carbon dioxide capture process: Comparative study using thermodynamic modeling and artificial neural network predictions. J. Clean. Prod. 2025, 506, 145474. [Google Scholar] [CrossRef]
- Nwaoha, C.; Idem, R.; Supap, T.; Saiwan, C.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–amino–2–methyl–1–propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture. Chem. Eng. Sci. 2017, 170, 26–35. [Google Scholar] [CrossRef]
- Xiang, J.; Wei, D.; Mao, W.; Liu, T.; Luo, Q.; Huang, Y.; Liang, Z.; Luo, X. Comprehensive kinetic study of carbon dioxide absorption in blended tertiary/secondary amine solutions: Experiments and simulations. Sep. Purif. Technol. 2024, 330, 125310. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Wang, Q. Progress of research on regeneration of rich alkanolamine solution with low energy consumption. Chem. Ind. Eng. Prog. 2021, 40, 4497–4507. [Google Scholar]
- Lu, G.; Farrukh, S.; Fan, X. Research progress of non-aqueous absorbents for carbon dioxide capture with low energy consumption: A review. Fuel 2025, 391, 134740. [Google Scholar] [CrossRef]
- Bihong, L.; Kexuan, Y.; Xiaobin, Z.; Zuoming, Z.; Guohua, J. 2-amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture. Appl. Energy 2020, 264, 114703. [Google Scholar] [CrossRef]
- Chen, M.; Li, M.; Zhang, F.; Hu, X.; Wu, Y. Fast and efficient CO2 absorption in non-aqueous tertiary amines promoted by ethylene glycol. Energy Fuels 2022, 36, 4830–4836. [Google Scholar] [CrossRef]
- Guo, H.; Li, C.; Shi, X.; Li, H.; Shen, S. Nonaqueous amine-based absorbents for energy efficient CO2 capture. Appl. Energy 2019, 239, 725–734. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Ma, J.; Meng, F.; Li, K.; Li, M.; Wang, R.; Wang, H.; Gao, H.; Zhao, K.; et al. Performance and mechanisms of CO2 capture by water-lean 3-diethylaminopropylamine (DEAPA) based absorbents. Energy 2025, 320, 135232. [Google Scholar] [CrossRef]
- Krishnan, A.; Gopinath, K.P.; Vo, D.V.N.; Malolan, R.; Nagarajan, V.M.; Arun, J. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: A review. Environ. Chem. Lett. 2020, 18, 2031–2054. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 2012, 5, 6668. [Google Scholar] [CrossRef]
- Cao, L.; Gao, J.; Zeng, S.; Dong, H.; Gao, H.; Zhang, X.; Huang, J. Feasible ionic liquid-amine hybrid solvents for carbon dioxide capture. Int. J. Greenh. Gas Control 2017, 66, 120–128. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.W.; Fei, W.; Wang, Y. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chem. Eng. 2020, 1, 16–32. [Google Scholar] [CrossRef]
- Zafar, A.; Matuszek, K.; MacFarlane, D.R.; Zhang, X. Recent progress and future perspectives of ionic liquid-based carbon dioxide capture and conversion. Green Energy Environ. 2025, 10, 1097–1129. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, X.; Xie, Y.; Lu, X. Screening of conventional ionic liquids for carbon dioxide capture and separation. Appl. Energy 2016, 162, 1160–1170. [Google Scholar] [CrossRef]
- Lei, Y.; Du, L.; Hu, S.; Kuang, Y.; Liu, X.; Fang, H.; Chen, Y. Ionic liquid-ethanol mixed solvent design for the post-combustion carbon capture. Sep. Purif. Technol. 2025, 354, 129318. [Google Scholar] [CrossRef]
- Ding, X.; Li, X.; Pimentel, J.; Zhou, T. CO2 capture using blended amine—Ionic liquid solvents: Thermodynamic modeling and process optimization. Sep. Purif. Technol. 2025, 362, 131649. [Google Scholar] [CrossRef]
- Min, G.H.; Park, H.J.; Son, Y.S.; Shin, D.; Baek, I.H.; Lee, S.; Nam, S.C. Effective amine solvent regeneration over NiO-modified SBA-15 catalysts for energy-saving CO2 capture. J. CO2 Util. 2024, 85, 102873. [Google Scholar] [CrossRef]
- Guo, Y.; Su, Z.; Mao, W.; Xie, H.; Tan, Z.; Gong, Z.; Zhang, X. Catalytic behavior of aluminum-modified SAPO-34 catalysts for reducing the energy penalty of CO2-rich amine solutions regeneration. Sep. Purif. Technol. 2025, 353, 128327. [Google Scholar] [CrossRef]
- Zhang, R.; Li, T.; Zhang, Y.; Ha, J.; Xiao, Y.; Li, C.; Zhang, X.; Luo, H. CuO modified KIT-6 as a high-efficiency catalyst for energy-efficient amine solvent regeneration. Sep. Purif. Technol. 2022, 300, 121702. [Google Scholar] [CrossRef]
- Wei, K.; Xing, L.; Li, Y.; Xu, T.; Li, Q.; Wang, L. Heteropolyacid modified cerium-based MOFs catalyst for amine solution regeneration in CO2 capture. Sep. Purif. Technol. 2022, 293, 121144. [Google Scholar] [CrossRef]
- Ai, S.; Xiang, Y.; Chen, X.; Zhang, Y.; Zhang, Y.; Lv, K.; Chen, X.; Yu, D.; Ge, B.; Huang, F. ZIF-8 and ZIF-67 as catalysts for promoting carbon dioxide capture based on monoethanolamine solution. Sep. Purif. Technol. 2025, 358, 130389. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, S.; Zhao, F.; Zhang, R.; Tang, F.; You, K.; Luo, H.; Zhang, X. SnO2/ATP catalyst enabling energy-efficient and green amine-based CO2 capture. Chem. Eng. J. 2023, 453, 139801. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Yang, J.; Gao, H.; Huang, Y.; Luo, X.; Liang, Z.; Tontiwachwuthikul, P. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. Chem. Eng. J. 2020, 383, 123077. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y.; Zhang, X.; Bairq, Z.A.S.; Huang, Y.; Tontiwachwuthikul, P.; Liang, Z. Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. Appl. Energy 2020, 259, 114179. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, R.; Liu, G.; Hussain, S.; Li, Q. Reduce energy consumption for organic amine regeneration by MnOOH/HZSM-5 catalysts. Chem. Eng. J. 2024, 493, 152564. [Google Scholar] [CrossRef]
- Waseem, M.; Al-Marzouqi, M.; Ghasem, N. Enhancing regeneration energy efficiency of CO2-rich amine solution with a novel tri-composite catalyst. J. CO2 Util. 2024, 82, 102764. [Google Scholar] [CrossRef]
- Oh, S.Y.; Binns, M.; Cho, H.; Kim, J.K. Energy minimization of MEA-based CO2 capture process. Appl. Energy 2016, 169, 353–362. [Google Scholar] [CrossRef]
- Jung, J.; Jeong, Y.S.; Lee, U.; Lim, Y.; Han, C. New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants. Ind. Eng. Chem. Res. 2015, 54, 3865–3878. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, S.H.; Lee, C.H. Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries. Energy 2023, 271, 127020. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, G.; Kim, J.O. Performance of a novel CO2 absorption and reverse electrodialysis system with different amine solutions for simultaneous energy and bicarbonate recovery. Energy Convers. Manag. 2024, 314, 118715. [Google Scholar] [CrossRef]
- Tu, T.; Wu, T.; Zhang, X.; Liang, F.; Ji, L.; Yan, S. Coupling gas-assisted stripping and waste heat recovery for energy-efficient carbon capture process. Green Carbon, 2025, in press. [CrossRef]
- Lei, T.; Liang, Y.; Zhu, Y.; Ye, K.; Wang, J.; Liang, Y. A novel post-combustion CO2 capture process for natural gas combined cycle power plant based on waste energy utilization and absorption heat transformer. Energy 2025, 316, 134491. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Li, K.; Yu, B.; Grigore, M.; Yang, Q.; Wang, X.; Chen, Z.; Zeng, M.; Zhao, S. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration. Appl. Energy 2018, 225, 356–366. [Google Scholar] [CrossRef]
- Arti, M.; Youn, M.H.; Park, K.T.; Kim, H.J.; Kim, Y.E.; Jeong, S.K. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 2017, 31, 763–769. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Z.; Wang, Q.; Li, J.; Qiu, X. Experimental research on chemical desorption based on CO2-rich absorption solutions. Int. J. Greenh. Gas Control 2021, 109, 103356. [Google Scholar] [CrossRef]
- Shahid, K.; Nguyen, H.; Unluer, C.; Kinnunen, P. Development of alternative for gypsum-based plaster using magnesium carbonates from carbon capture and utilization process. Constr. Build. Mater. 2024, 447, 137999. [Google Scholar] [CrossRef]
- Park, S. CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy 2018, 153, 413–421. [Google Scholar] [CrossRef]
- Chen, T.L.; Jiang, W.; Shen, A.L.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C. CO2 mineralization and utilization using various calcium-containing wastewater and refining slag via a high-gravity carbonation process. Ind. Eng. Chem. Res. 2020, 59, 7140–7150. [Google Scholar] [CrossRef]
- Kang, J.M.; Murnandari, A.; Youn, M.H.; Lee, W.; Park, K.T.; Kim, Y.E.; Kim, H.J.; Kang, S.P.; Lee, J.H.; Jeong, S.K. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process. Chem. Eng. J. 2018, 335, 338–344. [Google Scholar] [CrossRef]
- Chen, K.; Han, S.; Meng, F.; Lin, L.; Li, J.; Gao, Y.; Qin, W.; Hu, E.; Jiang, J. Diisobutylamine mediated CO2 mineralization and CaCO3 production from municipal solid waste incineration fly ash as raw ingredient and regeneration reagent. Chem. Eng. J. 2024, 481, 148392. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives. J. Clean. Prod. 2024, 434, 140258. [Google Scholar] [CrossRef]
- Wang, Y.; Song, L.; Ma, K.; Liu, C.; Tang, S.; Yan, Z.; Yue, H.; Liang, B. An integrated absorption–mineralization process for CO2 capture and sequestration: Reaction mechanism, recycling stability, and energy evaluation. ACS Sustain. Chem. Eng. 2021, 9, 16577–16587. [Google Scholar] [CrossRef]
- Cheng, S.; Zheng, Y.; Li, G.; Gao, J.; Li, R.; Yue, T. Research progress on phase change absorbents for CO2 capture in industrial flue gas: Principles and application prospects. Sep. Purif. Technol. 2025, 354, 129296. [Google Scholar] [CrossRef]
- An, S.; Xu, T.; Xing, L.; Yu, G.; Zhang, R.; Liu, J.; Aierken, A.; Dai, Q.; Wang, L. Recent progress and prospects in solid acid-catalyzed CO2 desorption from amine-rich liquid. Gas Sci. Eng. 2023, 120, 205152. [Google Scholar] [CrossRef]
- Khallaghi, N.; Abbas, S.Z.; Manzolini, G.; De Coninck, E.; Spallina, V. Techno-economic assessment of blast furnace gas pre-combustion decarbonisation integrated with the power generation. Energy Convers. Manag. 2022, 255, 115252. [Google Scholar] [CrossRef]
- Yang, Y.; Du, T.; Li, Y.; Yue, Q.; Wang, H.; Liu, L.; Che, S.; Wang, Y. Techno-economic assessment and exergy analysis of iron and steel plant coupled MEA- CO2 capture process. J. Clean. Prod. 2023, 416, 137976. [Google Scholar] [CrossRef]
- Fang, M.; Xie, Y.; Shao, Y.; Xu, X.; Xia, Y.; Mou, M.; Hu, X.; Wang, T.; Liu, Z. Development of carbon capture absorbents for top gas recycling-oxygen blast furnace in the steel industry. Sep. Purif. Technol. 2025, 355, 129616. [Google Scholar] [CrossRef]
- Yun, S.; Jang, M.G.; Kim, J.K. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy 2021, 229, 120778. [Google Scholar] [CrossRef]
- Cormos, C.C. Evaluation of reactive absorption and adsorption systems for post-combustion CO2 capture applied to iron and steel industry. Appl. Therm. Eng. 2016, 105, 56–64. [Google Scholar] [CrossRef]
- Saeed, I.M.; Alaba, P.; Mazari, S.A.; Basirun, W.J.; Lee, V.S.; Sabzoi, N. Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture. Int. J. Greenh. Gas Control 2018, 79, 212–233. [Google Scholar] [CrossRef]
- Feng, C.; Zhu, R.; Wei, G.; Dong, K.; Dong, J. Typical case of carbon capture and utilization in Chinese iron and steel enterprises: CO2 emission analysis. J. Clean. Prod. 2022, 363, 132528. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chen, Y.H.; Fan, L.S.; Kim, H.; Gao, X.; Ling, T.C.; Chiang, P.C.; Pei, S.L.; Gu, G. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain. 2020, 3, 399–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, Y.; Xing, L.; Zhan, G.; Deng, Y.; Chen, Z.; Li, J. Carbon dioxide reduction through mineral carbonation by steel slag. J. Environ. Sci. 2025, 152, 664–684. [Google Scholar] [CrossRef]
- Global CCS Institute. The Global Status of CCS: 2024; Global CCS Institute: Melbourne, Australia, 2024. [Google Scholar]
- Dong, Z.; Que, L.; Li, W.; Ren, Q.; Wang, C.; Li, S.; Lv, B.; Jing, G.; Shen, H. Evaluation of 3-dibutylamino-propylamine aqueous solution for CO2 capture: Promoting the energy-saving regeneration through self-extraction regulation. Chem. Eng. J. 2024, 484, 149567. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Z.; Liu, D.; Yang, X.; Zhou, Z.; Wu, X.; Lu, S. Investigation on CO2 capture performance of low-viscosity diamine non-aqueous absorbents with N-methyldiethanolamine regulation. Sep. Purif. Technol. 2025, 357, 130150. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, J.; Ning, P.; Wang, L.; Wang, J.; Ma, Y.; Wang, X. Investigation of CO2 capture performance of polyamine/organic alcohol ether non-aqueous absorbent regulated by ethylene glycol. J. Environ. Chem. Eng. 2024, 12, 113694. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, C.; Zhang, S.; Chen, J.; Wang, L.; Chen, J. Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship. Appl. Energy 2018, 230, 726–733. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Hu, D.; Zhang, Y.; Furqan, M.; Lu, S. Experimental study on CO2 capture by MEA/n-butanol/H2O phase change absorbent. RSC Adv. 2024, 14, 3146–3157. [Google Scholar] [CrossRef]
- Jia, R.Q.; Xu, Y.H.; Zhang, J.J.; Zhang, L.L.; Chu, G.W.; Chen, J.F. A novel phase change absorbent with ionic liquid as promoter for low energy-consuming CO2 capture. Sep. Purif. Technol. 2023, 315, 123740. [Google Scholar] [CrossRef]
- Zhong, X.; Kong, W.; Dong, Z.; Yang, K.; Song, T.; Wang, T.; Fang, M.; Li, W.; Li, S. A novel ILs biphasic absorbent with low regeneration energy consumption for CO2 capture: Screening of phase separation regulators and mechanism study. Chem. Eng. J. 2024, 493, 152454. [Google Scholar] [CrossRef]
- Aromada, S.A.; Eldrup, N.H.; Øi, L.E. Technoeconomic evaluation of combined rich and lean vapour compression configuration for CO2 capture from a cement plant. Int. J. Greenh. Gas Control 2023, 127, 103932. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Chen, J.; Fang, M. Pilot-scale experimental study of a new high-loading absorbent for capturing CO2 from flue gas. Processes 2022, 10, 599. [Google Scholar] [CrossRef]
- Artanto, Y.; Jansen, J.; Pearson, P.; Puxty, G.; Cottrell, A.; Meuleman, E.; Feron, P. Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an australian brown coal–fired power station. Int. J. Greenh. Gas Control 2014, 20, 189–195. [Google Scholar] [CrossRef]
- Rabensteiner, M.; Kinger, G.; Koller, M.; Gronald, G.; Unterberger, S.; Hochenauer, C. Investigation of the suitability of aqueous sodium glycinate as a solvent for post combustion carbon dioxide capture on the basis of pilot plant studies and screening methods. Int. J. Greenh. Gas Control 2014, 29, 1–15. [Google Scholar] [CrossRef]
- Vega, F.; Baena-Moreno, F.M.; Gallego Fernández, L.M.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energy 2020, 260, 114313. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, M.; Jin, L.; Xu, M.; Li, J. Advancing carbon capture in hard-to-abate industries: Technology, cost, and policy insights. Clean Technol. Environ. Policy 2024, 26, 2077–2094. [Google Scholar] [CrossRef]
- Colombe, C.; Leibowicz, B.D.; Mendoza, B.R. The effects of policy uncertainty and risk aversion on carbon capture, utilization, and storage investments. Energy Policy 2024, 192, 114212. [Google Scholar] [CrossRef]
- Song, D.; Jiang, T.; Rao, C. Review of policy framework for the development of carbon capture, utilization and storage in China. Int. J. Environ. Res. Public Health 2022, 19, 16853. [Google Scholar] [CrossRef]






| Method | Advantages | Disadvantages/Challenges |
|---|---|---|
| Absorption | Most mature technology Fast absorption rate Simple, suitable for low CO2 partial pressure environments | High regeneration energy consumption Equipment corrosion Absorbent volatilization Environmental impact caused by solvent degradation |
| Adsorption | Easy to use and maintain Adsorbents are reusable Low regeneration energy consumption No corrosion issues | Low CO2 selectivity and low separation efficiency High cost of high-efficiency adsorbents Adsorbent wear, resulting in poor durability |
| Membrane separation technology | Low energy consumption during operation Compact equipment, modular operation Not necessary to add other chemicals Simple process, easy maintenance | Low processing capacity, poor stability, and difficulty in maintaining long-term operating performance Blockages caused by impurities in the airflow Low technical maturity |
| Cryogenic technology | No chemical reagents required Excellent CO2 purity Suitable for high CO2 concentrations | High operating costs Not suitable for low CO2 levels Moisture must be removed in advance |
| Calcium looping | Low raw material prices Environmentally friendly | Adsorption agent multiple cycles lead to sintering problems, affecting CO2 absorption Equipment wear issues |
| Chemical looping combustion | Low gas separation costs No additional energy input required System energy efficiency | Insufficient stability of oxidation carriers Not yet industrialized Equipment wear issues |
| Method | Advantages | Disadvantages | Regeneration Energy Consumption (GJ/t CO2) | Reduction in Regeneration Energy Consumption Compared to MEA (%) | References |
|---|---|---|---|---|---|
| Absorbent Optimization | 1. Reduces regeneration energy consumption by lowering desorption heat or vaporization heat 2. Fast reaction rate 3. Mature technology 4. Low corrosion | 1. Absorption of CO2 increases viscosity, affecting reaction rate. 2. Poor thermal stability. | 1.01~2.85 | 25~75% | [35,87,126] |
| Adding catalysts or other materials | 1. Reduces regeneration energy consumption by lowering desorption heat 2. Fast desorption rate 3. Desorption can occur at lower temperatures | Catalysts face issues such as deactivation and agglomeration. | 2.28~2.85 | 25~40% | [105,127] |
| Technology enhancement | 1. Make full use of system waste heat 2. Reduce total energy consumption | 1. Need to make certain modifications to existing processes 2. Gas separation issues | 3.05~3.60 | 5~20% | [110,114] |
| Chemical desorption | 1. Significantly reduce renewable energy consumption 2. Achieve CO2 sequestration 3. Save equipment costs and operating costs | 1. Low mineralization efficiency 2. Insufficient mass and heat transfer 3. Need for constant supply of calcium source | - | No regeneration required | [118,120,124] |
| Facility Name | Country | Operational Year | Carbon Capture Methods | Capture Capacity (Mtpa CO2) |
|---|---|---|---|---|
| ADNOC Al-Reyadah | United Arab Emirates | 2016 | MEA | 0.8 |
| Baotou Steel | China | 2025 | Steel slag carbonization | 0.5 |
| Nucor Steel DRI | United States | 2026 | _ | 0.8 |
| Indiana Burns Habor Capture | United States | Under Evaluation | Solvents | 2.8 |
| ArcelorMittal Texas (formerly voestalpine Texas) | United States | Under Evaluation | Air Liquide’s pressure swing adsorption-assisted Cryocap™ technology | Under Evaluation |
| ArcelorMittal Sestao CCS | Spain | 2025 | _ | Under Evaluation |
| Japan Malaysia steel CCS | Japan, Malaysia | Under Evaluation | _ | Under Evaluation |
| Carbon Capture Technology | Materials | CO2 Concentration | Carbon Capture Efficiency | Carbon Capture Cost (USD/t CO2) |
|---|---|---|---|---|
| Absorption | 30 wt% MEA | 24 vol% | 90% | 41.92 |
| 30 wt% MEA | 6 vol% | 90% | 65.08 | |
| 50 wt% MDEA | - | 90.24% | - | |
| 30 wt% MEA | 4.8 mol% | 90% | 73.5 | |
| 30 wt% MEA | 27.3 mol% | 90% | 55.3 | |
| Membrane | Polyimide membrane | 4.8 mol% | 90% | 271.7 |
| Polyimide membrane | 27.3 mol% | 90% | 41.7 | |
| Calcium looping | Calcium-based sorbent | - | 95.44% | - |
| Steel slag | - | - | 8~104 (No costs for CO2 transportation or storage) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Cheng, S.; Xie, T.; Zhang, Q.; Li, R.; Yue, T.; Cai, C. Low-Energy Regeneration Technologies for Industrial CO2 Capture: Advances, Challenges, and Engineering Applications. Sustainability 2025, 17, 9796. https://doi.org/10.3390/su17219796
Ren L, Cheng S, Xie T, Zhang Q, Li R, Yue T, Cai C. Low-Energy Regeneration Technologies for Industrial CO2 Capture: Advances, Challenges, and Engineering Applications. Sustainability. 2025; 17(21):9796. https://doi.org/10.3390/su17219796
Chicago/Turabian StyleRen, Le, Sihong Cheng, Tao Xie, Qianxuan Zhang, Rui Li, Tao Yue, and Changqing Cai. 2025. "Low-Energy Regeneration Technologies for Industrial CO2 Capture: Advances, Challenges, and Engineering Applications" Sustainability 17, no. 21: 9796. https://doi.org/10.3390/su17219796
APA StyleRen, L., Cheng, S., Xie, T., Zhang, Q., Li, R., Yue, T., & Cai, C. (2025). Low-Energy Regeneration Technologies for Industrial CO2 Capture: Advances, Challenges, and Engineering Applications. Sustainability, 17(21), 9796. https://doi.org/10.3390/su17219796
