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Abstract

In response to the sustainability challenges of mining, restrictive policies aimed at improv-
ing ecological quality have been enacted in various countries and regions. The purpose of
this study is to examine the environmental changes in the Ningdong mining area, located
on the Loess Plateau, over the past 25 years, due to many factors, such as coal mining,
using the area as a case study. In this study, Landsat satellite images from 2000 to 2024
were used to derive the remote sensing ecological index (RSEI), while the RSEI results
were comprehensively analyzed using the Sen+Mann-Kendall method with Geodetector,
respectively. Simultaneously, this study utilized land use datasets to calculate the ecological
grade (EG) index. The EG index was then analyzed in conjunction with the RSEI The
results show that in the time dimension, the ecological quality of the Ningdong mining area
shows a non-monotonic trend of decreasing and then increasing during the 25-year period;
The RSEI average reached its lowest value of 0.279 in 2011 and its highest value of 0.511 in
2022. In 2024, the RSEI was 0.428; The coupling matrix between the EG and RSEI indicates
that the ecological environment within the mining area has improved. Through ecologi-
cal factor-driven analysis, we found that the ecological environment quality in the study
area is stably controlled by natural topography (slope) and climate (precipitation) factors,
while also being disturbed by human activities. This experimental section demonstrates
that ecological and environmental evolution is a complex process driven by the nonlinear
synergistic interaction of natural and anthropogenic factors. The results of the study are of
practical significance and provide scientific guidance for the development of coal mining
and ecological environmental protection policies in other mining regions around the world.

Keywords: Loess Plateau; remote sensing; driving factors; ecological quality assessment

1. Introduction

The Ningdong mining area is located in the northwestern part of the Loess Plateau [1],
which is known for its unique geography and fragile ecological environment [2]. Mining
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activities on this plateau have further accelerated the evolution of its ecological environ-
ment, with coal energy accounting for 53.2% of China’s energy consumption in 2024, and
4.78 billion tons of coal mined in 2024 [3]. There is no doubt that coal resources play a
vital role in human development [4], but long-term mining activities have led to a variety
of problems, including gangue accumulation and declining vegetation cover [5]. These
environmental issues increasingly conflict with China’s ecological protection goals [6].

Traditionally, mine ecological environment monitoring relies on manual inspection,
which is inefficient and expensive to meet modern monitoring requirements [7]. The devel-
opment of remote sensing has compensated for the shortcomings of manual inspection to a
certain extent. Remote sensing has become a powerful tool for ecological environment mon-
itoring with its large-scale and long-term sequence monitoring [8]. Ecological environment
monitoring of mining areas is of vital importance [9].

In 2006, in order to standardize the ecological environment evaluation criteria nation-
wide, the Chinese state department formulated a technical criterion for eco-environmental
status evaluation (hereinafter referred to as the criterion) [10]. The criterion introduced the
traditional ecological index (EI), but the El itself is difficult to obtain, and the rationality of
the index is insufficient [11].

In 2013, Xu proposed the remote sensing ecological index (RSEI) [12], which has
received widespread attention since its introduction. The index can exclude the influence
of human factors on the weight of indicators [13], and other advantages have been widely
used in the monitoring and evaluation of ecological conditions. In 2015, Luo et al. used RSEI
to assess the ecological changes in Changning City [14]. Wu et al. carried out ecological
evaluations based on RSEI on the Yongding mining area [15], which was the first time that
RSEI was utilized for monitoring the mining area. Wang et al. used RSEI to analyze the
ecological changes in the wetland of Manas Lake in Xinjiang [16], RSEI is widely used in
ecological monitoring processes in different environments, such as cities, mining areas,
wetlands, deserts, etc., in order to reveal the influencing factors affecting the changes in RSEI
in a closer way. In 2023, Wang et al. used the Geodetector in order to reveal the influencing
factors affecting the changes in RSEI in more detail [17]. Meanwhile, improved RSEI indices,
such as MRSEI, are employed to study changes in the ecological environment [18]. The
RSEI combined with other factors has emerged as a new research direction. Indices similar
to RSEI, such as the EG index, have also been utilized to analyze ecological changes in the
Yellow River Delta Nature Reserve [19]. Combining RSEI with other indicators, such as EG
index analysis, represents a viable and innovative new approach.

This study aims to analyze ecological and environmental changes in the Ningdong
mining area by integrating the RSEI framework with EG index analysis. Currently, there
are relatively few studies on long-term time-series monitoring of the ecological quality
of the Ningdong mining area on the Loess Plateau, especially since the beginning of
the 21st century, when sustainable development has gradually become a consensus in
various countries and regions. In order to meet the needs of mine monitoring, RSEI and
its continuous improvement are powerful tools for tracking and evaluating the surface
ecological environment in mining areas. This study leverages the Google Earth Engine
(GEE) to process Landsat imagery and calculate RSEI values, enabling the analysis of
ecological environment quality trends and driving factors within the Ningdong mining
area over the 25-year period from 2000 to 2024. Simultaneously, coupling the RSEI and
EG indicators enables precise identification of the internal ecological environment within
mining areas. Finally, this study fills a gap in the research related to the long-term time-
series ecological monitoring of the Ningdong mining area and provides actionable insights
for sustainable land management.
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2. Study Area Overview and Data Acquisition
2.1. Study Area Overview

The Ningdong mining area is situated on the northern Loess Plateau of Ningxia
within the arid and desert regions of Northwest China. It is located in the northeastern
part of the Ningxia Hui Autonomous Region, bordering the western Ordos Region to
the east, Pingluo County to the north, and the Helan Mountains to the west, with the
Yellow River traversing its periphery [20].The Ningdong region encompasses an area of
approximately 3486 km?, spanning 75-95 km from north to south and 20-35 km from
east to west. The climate of Ningdong has a temperate continental regime with cold, dry
winters, and short, hot summers. The mean annual temperature ranges from 5.9 °C to
8.5 °C, with extreme highs of 38.3 °C and lows of —29.4 °C. Annual precipitation averages
approximately 260 mm and is predominantly concentrated in the summer months from July
to September. The topography of Ningdong varies considerably, although it is generally flat
with minor undulations and some areas featuring low hills. The vegetation cover is sparse,
primarily consisting of grassland and xerophytic plant taxa, with an uneven distribution.
The surviving vegetation is predominantly composed of cold and drought-resistant shrubs
and herbaceous taxa. The dominant soil type is light-gray calcareous soil, which is mainly
distributed in the northern part of the region. In contrast, the southern areas have sandy
soils with low organic matter content [21]. The Figure 1 shows a location map of the
Ningdong mining area and a schematic diagram of the distribution of coal mines, which
have an annual output of over one million tons.

ZAKHSTAN

45 90

O Nk

180

N N

A A

MONGOLIA

Gobi Deser

Legend
DEM/m

1781

[ D)

D Mine boundary
I:I Mining area boundry

Lanzhou
o

)

Esri, USGS, Esri, © OpenStreetMap cglnmbutors, TomTom, 4 8 15,23 80 Esri, CGIAR, USGS
el River Ga¥ivAMO, NOAA, USGS | gy sy kn

Figure 1. Location Map of the Ningdong mining area and distribution of coal mines. (1) Lingxin,
(2) Shicao Village, (3) Yin Xing No. 2, (4) Maiduo Mountain, (5) Song Xinzhuang, (6) Shuangma No. 1,
(7) Hongliu, (8) Yangchangwan, (9) Zaoquan, (10) Sirenjiazhuang, (11) Jinjiaqu, (12) Maliantai,
(13) Xingiao, (14) Huian, (15) Yong’an, (16) Qingshuiying, (17) Meihuajing, (18) Jinfeng, (19) Wei’er,
(20) Yin Xing No. 1, (21) Yue’erwan, and (22) Shuangma No. 2.
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Figure 2 depicts the topographic features of field sampling sites surrounding a typical
coal mine in the Ningdong mining area. The composite image comprises photographs from
six sampling locations, namely (a) Lingxin, (b) Hongliu, (c) Maliantai, (d) Maiduoshan,
(e) Shicaocun, and (f) Yangchangwan. These sampling sites exhibit typical arid and semi-
arid topography, characterized by sparse surface vegetation dominated by drought-tolerant
shrubs and grasslands. Soil exposure is high, with surfaces predominantly grayish-yellow
or light brown. The terrain consists mainly of gentle hills and eroded landscapes, featur-
ing relatively smooth undulations. The Ningdong mining area exhibits a unique fragile
landscape, where ecological changes are particularly pronounced. The use of RSEI and EG
analysis to assess ecological environment changes is particularly effective in such areas.
Selecting this area as the research zone aligns with the mining district development plan

and serves as a standard model for the sustainable development of the mining industry.

(d) Maiduo Mountain (e) Shicao Village (f) Yangchangwan

¥ ; &

Figure 2. Field photographs of the landscape at the six studied coal mining areas.

2.2. Data Sources

We used the GEE to access Landsat datasets. We selected and processed Landsat
images, spanning 2000-2024, covering the study area, and performed cloud removal.
Detailed information on the remote sensing imagery is provided in Table 1.

Table 1. Remote sensing imagery data.

Sensor Resolution Time Period GEE Datasets

Landsat 5 TM 30 m 2000-2011 June to September LANDSAT/LT05/C02/T1_12
Landsat 7 ETM+ 30m 2012 June to September LANDSAT /LE07/C02/T1_L2
Landsat 8 OLI 30m 2013-2020 June to September LANDSAT /LC08/C02/T1_L2

The image data were obtained from the public data archive of the GEE platform
(https:/ /developers.google.com/earth-engine/datasets (accessed on 2 April 2025)). Cloud
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GEE platform to
acquire Landsat
images

composite image

masks were generated using CFMASK (C Function of Mask) for Landsat images acquired
during the peak vegetation season (June to September). Subsequently, images of the
study area exhibiting minimal cloud cover were mosaicked and synthesized. Land surface
temperature (LST) was derived from the thermal infrared bands, which were resampled to
a 30 m resolution. Climate data, including precipitation and temperature, were obtained
from the Science data bank platform (https://www.scibd.cn/en (accessed on 3 April 2025)).
Topographic data were obtained from the GEE (https://developers.google.com/earth-
engine/ (accessed on 4 April 2025)). Slope and aspect were calculated from this topography
data in ArcGIS Pro software. Land use data were sourced from the China Land Cover
Dataset (CLCD) released by Wuhan University, with a basic resolution of 30 m.

3. Methods

This study employed the GEE platform to calculate the RSEI and EG indices. The RSEI
provided a general reflection of ecological and environmental change trends within the
mining area. RSEI trends were analyzed using the Theil-Sen slope estimator and Mann—
Kendall significance test. In the results analysis, spatial overlay analysis was conducted
between the RSEI and EG indices to precisely identify the ecological environment within
the mining area. A geographical detector model was applied to analyze the driving factors
influencing the RSEI The specific process is illustrated in Figure 3.
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Figure 3. Study methods overview.

3.1. Remote Sensing Ecological Index

Xu [12] introduced RSEI, a remote sensing-based method for evaluating ecological
conditions. The RSEI enables rapid urban ecological monitoring by integrating four com-
ponents, i.e., greenness, wetness, heat, and dryness, using principal component analysis
(PCA). The computational framework is defined as in the following Equation (1):

RSEI = f(Greenness, Wetness, Heat, Dryness) (1)
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where greenness (vegetation abundance) was measured using the normalized difference
vegetation index (NDVI). Wetness (soil moisture) was quantified using the tasseled cap
wetness index (WET). Dryness (aridity) was expressed as the normalized difference band
soil index (NDBSI). Heat (surface temperature) derived from the LST.

(1) Greenness Component

The NDVI, which is widely used for vegetation monitoring due to its capacity to
quantify regional vegetation cover [22], was selected as the greenness indicator. The
calculations are as follows:

NDVI — (PNIR ~ PRED) @)
(oNIR + PRED)
where pnir and prpp represent the surface reflectance in the near-infrared and red-light
bands, respectively.

(2) Wetness Component

The wetness component (WET), derived from the tasseled cap transformation, effec-
tively reflects the water content and moisture status of water bodies and vegetation in the
region, respectively [23]. For different generations of Landsat sensor data, the WET was
calculated using the following equations:

OLI Data [23]:

Wet = 0.151 1pblue + 0.1973Pgreen + 0'3283pred + 034O7PNIR

—0.7117pmir1 — 0.45590rmir2 (3)
ETM+ data [23]:
Wet = 0.26260p1yc + 0.21410green + 0.09260¢4 + 0.06560N1R @
—0.76290rmir1 — 0.5388pmir
TM data [23]:
Wet = 0.0315pp1ye + 0.2021pgreen + 0.31020,04 + 0.1594pN1R -

—0.67060mir1 — 0.61090mir>

where, Pplye, Ogreen, Preds PNIR, Pmirl, ad Pmir2 Tepresent the band reflectance of blue, green,
red, NIR, shortwave infrared 1, and shortwave infrared 2, respectively, from Landsat
satellites. During computation, band-specific convolution functions are employed to
standardize formulas across different sensors. For calculating long-term WET, Formula (5)
is uniformly applied in the GEE.

(3) Heat Component

The heat component (LST), derived from the surface temperature inversion using
the radiative transfer equation [24], reflects localized thermal variations. These tempera-
ture dynamics represent indicators of ecological quality, as represented by the following
calculation formula:

In = BreT + R 4 (1 — e)R™ T (6)

where I, is the intensity of the thermal radiation at a wavelength of A; Br is the intensity
of the thermal radiation at temperature T; ¢ is the surface-specific reflectance; 7 is the
atmospheric transmittance; R*! is the upward radiant brightness; R™ is the downward
radiant luminance, where Bt can be calculated by the following equation:

[y — R — (1 —¢)R¥1]

Br = o 7)
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In a complete surface temperature inversion process, I, is typically a known value
while Bt is an unknown quantity. Therefore, Equation (7) represents an alternative formu-
lation of Equation (6), enabling the inversion of By from the known sensor value I,.

The surface temperature data can be calculated using Planck’s law for the relationship
between the intensity of thermal radiation, temperature, and wavelength, as follows:

K>
n(1+41)

where Lgr is the heat component, while K; and K, are band-related constants; their specific

Lgr = —273.15 8)

band constants are listed in Table 2.

Table 2. Values of K; and Kj in the heat indicator.

Waveband Ki/(W-m~2.Sr L.um™1) K»y/K

Landsat 5 B6 607.76 1260.56
Landsat 7 B6 666.09 1282.71
Landsat 8 B10 774.89 1321.08

(4) Dryness Component

The study area includes urban construction zones and wastelands, which lack veg-
etation and contribute to surface desiccation. Increased urban construction exacerbates
ecological degradation. The dryness indicator [25] is calculated as follows:

Igs + Ipr
INDBS = s ©)
Igs = (pSWIRl + Pred) - (PNIR + pblue) (10)
(PsWIR1 + Pred) + (ONIR + Pblue)
[ 20sWIRl _ _ __ PNIR__ __ Pgreen }
~ |PSWIRITPNIR ~ PNIRTPred  PgreenTOSWIRL
Bl = (11)
[ 20SWIR1 PNIR Ogreen }
PSWIRITPONIR = PNIRTPred = PgreentOSWIRI

where I, Ips, and Iypps are the building index, wasteland bare soil index, and dryness
component, respectively.

Before conducting the PCA, the four indices, namely greenness (NDVI), wetness
(WET), dryness (NDBSI), and heat (LST), were normalized. This standardized dataset
underwent band combination, followed by PCA processing. The first principal component
(PC1) was selected as the RSEI when its variance contribution met a predefined threshold.
During RSEI calculations, the contribution rate threshold for PC1 is typically set at 60%.
The normalization formula is as follows:

II _ (I — Imin) (12)

(Imax - Imin)

(PCy — PCimin)
(Pclmax - PClmin)

where I} represents the band index after normalization, I is the original band index, and

RSEI =

(13)

Inax and I;, represent the maximum and minimum values of the index in a certain
year, respectively. PC; is the preliminarily computed remote sensing eco-index RSEI, and
PCimax and PCipin represent the maximum and minimum values of PC, respectively.
After processing, the remote sensing ecological index RSEI value ranges from [0, 1]. The
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smaller value indicates the most degraded ecological environment, while the larger value
indicates the most intact ecological environment.

3.2. Ecological Grade Index

Compared to RSEI, the EG index is primarily derived from land use types. Due to
significant differences in ecological functions among various land use types, the EG index
effectively evaluates the ecological status of a specific area by calculating the average
ecological grade of that region. By coupling the RSEI with the EG index, the ecological
status of the study area can be accurately revealed. The EG index is calculated using the
following formula:

2;1:1 EGZ‘]‘ X Aij

EG; =

(14)
where EG; represents the ecological grade index for region i; EG;; denotes the ecological
grade index for land use type j in region i; A;; denotes the area of land use type j within
region i. EG; serves as a negative indicator; the lower the value of EG;, the higher the
ecological comprehensive function of the study area, indicating a favorable ecological
condition in that region.

Different land use types provide distinct ecosystem services and contribute differently
to the value of ecosystem services, resulting in varying levels of importance. This study
builds upon research by Shao et al. [26] concerning the ecological functions of various land
types and their transformations. Based on the ecological grades of land use types proposed
by LI et al. [27], and in combination with the current land use status of the study area
(Figure 4), an ecological grade table for the seven land use types in the study area was
adjusted, as shown in Table 3.

Legend

| | Mine area boundary
Cultivated land

- Forest land

Grassland

I Water body
I Construction land

I Unused land

Figure 4. Temporal land use maps of the study area (2000, 2006, 2012, 2018, and 2024).
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Table 3. Land use types and their ecological grade index in the study area.
Land Use and Land Cover Type Ecological Grade Ecological Land
Water body 1 YES
Wetland 1 YES
Forest 2 YES
Shrubland 3 YES
Grassland 4 YES
Cultivated land 5 NO
Construction land 6 NO
Barren land 7 NO

3.3. Trend Analysis Using the Theil-Sen Median Slope and the Mann—Kendall Significance Test

Theil-Sen median slope estimation (Sen) is a non-parametric method for estimating
the trend of a time series, which is computationally efficient and insensitive to measure-
ment errors and outliers. Therefore, it is suitable for the trend analysis of long-term time
series [28]. The Mann—Kendall (MK) significance test is used to assess the significance of
the trend in a time series. It does not require the samples to follow a normal distribution
and can handle missing values and outliers well [29]. The Sen slope combined with the
MK significance test is a common method for estimating the trend in a time series and
determining significance, which is calculated as follows:

(15)

RSEI; — RSEI
SRSEI = Median <I1>

j—i
where Sggpy is the Sen slope estimator of the trend of the RSEI time series; Sgsgr > 0
indicates that the RSEI time series has an increasing trend; and Sgspr < 0 indicates that the
RSEI time series has a decreasing trend. Median is the median function; i and j are time
series ordinal numbers, 0< i < j < n,n is the length of the time series, and RSEI} and
RSEIj are the RSEI values of the i-th and j-th moments, respectively. Equations (16)-(19)
are as follows:
S = sign(RSEI} — RSEI) (16)
i=1 j=i+1
1 (RSEI; — RSEI; > 0)

sign(RSEI} — RSEI;) =4 0 (RSEIj — RSEI; = 0) 17)

—1 (RSEI; — RSEI; < 0)

[n(n—=1)(2n+5) = TR 15 (8, — 1) (2 +5)

Var(S) = 13 (18)
S—1 S 0
var(S) ( = )
Z={ 0(S=0) (19)
S5+1
var(S) <S < 0)

where S is the test statistic; var(S) is the variance of S: the same values of the time series
are divided into groups. g is the number of groups; ¢, p is the number of the same values
in each group. For a given confidence level, if | |Z1>Z_(1 — «/2), i.e., at the confidence
level « (significance test level), a significant upward or downward trend is observed in the
time series data. | Z1 is greater than or equal to 1.645, 1.960, and 2.576, respectively. This
implies that it passes the significance test at the confidence levels of 90%, 95%, and 99%,
respectively. Here, we selected the 95% confidence level for the significance test.
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3.4. Geodetector

Geodetector is a statistical method designed to analyze geographical spatial patterns.
Geodetector can be used to discover the strength of the influence of driving factors on
research indicators. This quantifies the driving forces of environmental factors on the
spatial heterogeneity of geographic phenomena [30]. The factor detector module evaluates
the intensity of the influence of individual factors on RSEI using the following equation:

1 L
Pou=1=—5} )y M, (20)

where the factor explanatory power Pp p is between 0 and 1, with higher values indicating
that the factor D has a greater effect on the H, RSEI. The total number of samples is 7,
the indicator factor is L, and the sample size and variance are 1 and a}%, respectively.
The interaction detector evaluates whether the interaction between independent variables
enhances, diminishes, or remains independent to explain the spatial heterogeneity of the
dependent variable. This interaction effect is quantified by comparing the explanatory
power p(x1) of individual factors with the combined power p(x1 N x2). The pairwise
interaction results are summarized in Table 4.

Table 4. Two-by-two factorial interaction results.

Comparison of p(x1), p(x2) with p(x1 N x2) Factor Interaction Results
p(x1 N x2) > max(p(x1), p(x2)) Bilinear enhancement
p(xl N x2) > p(x1) + p(x2) Nonlinear enhancement
p(x1 N x2) = p(x1) + p(x2) Mutually independent
min(p(x1), p(x2)) < p(x1 N x2) < max(p(x1), p(x2)) Linear deceleration
p(x1 N x2) < min(p(x1), p(x2)) Nonlinear attenuation

4. Results and Analyses
4.1. Analysis of Spatial Variation in RSEI

Remote sensing imagery was processed using the GEE platform. This enabled the
derivation of RSEI values and their constituent indices (NDVI, WET, NDBSI, and LST)
for the Ningdong mining area from 2000-2024. The contribution of the first principal
component post-PCA consistently exceeded 60% across most observations, confirming its
validity as a primary ecological characteristic. Figure 5 illustrates the temporal variations
in NDVI, WET, NDBSI, and LST over the study period. The y-axis values are spatial
averages of the indices in the region of a given year. The normalized metric values are
shown in Table 5.

Landsat imagery spanning 2000-2024 was used to derive the ecological indices of
greenness (NDVI), wetness (WET), dryness (NDBSI), and heat (LST). These indices were
normalized, band-synthesized, and subjected to PCA to calculate the RSEI. This reflects
the ecological quality of the Ningdong mining area over 25 years. The RSEI ranges from 0,
i.e., the poorest ecological conditions to 1, representing optimal ecological conditions, with
higher values indicating superior environmental quality.

As shown in Figure 6, the distribution of each indicator in the three-dimensional
feature space is used to examine their relationship with the RSEI index. The red orbs
represent the RSEI data points in 3D space. The blue, green and orange data points represent
the projected points of RSEI in the three orthogonal 2D coordinate planes, respectively.
Figure 6a shows a three-dimensional projection of NDVI, WET, and RSEI, which have
a positive impact on the ecosystem; Figure 6b shows a three-dimensional projection of
NDBSI, LST, and RSEI, which have a negative impact on the ecosystem. The top of the
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scatter plot represents areas with good ecological conditions, mainly regions with high
humidity and high vegetation coverage [31]; the RESI change curve is shown in Figure 7.

1.0
iy F——NDVI —— WET
08 0.8
0.7 4
0.6 0.6
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s o] /\«\/\_\/\/\/\ =
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Figure 5. Variation curves for NDVI, WET, NDBSI, and LST from 2000 to 2024.

Table 5. Indicator values.

RSEI NDVI WET NDBSI LST Percentage (%)
2000 0.372 0.352 0.345 0.826 0.377 62.56
2001 0.412 0.406 0.355 0.809 0.372 60.96
2002 0.328 0.436 0.323 0.768 0.408 62.70
2003 0.319 0.452 0.393 0.826 0.450 64.27
2004 0.328 0.370 0.638 0.614 0.485 62.37
2005 0.372 0.415 0.722 0.589 0.473 63.58
2006 0.358 0.379 0.614 0.694 0.490 62.59
2007 0.383 0.343 0.426 0.829 0.471 58.59
2008 0.382 0.402 0.445 0.798 0.502 66.82
2009 0.316 0.380 0.510 0.728 0.481 66.25
2010 0.286 0.373 0.479 0.734 0.527 68.97
2011 0.279 0.387 0.677 0.608 0.502 70.45
2012 0.308 0.347 0.770 0.616 0.493 72.06
2013 0.345 0.470 0.638 0.626 0.595 70.22
2014 0.413 0.465 0.665 0.590 0.580 84.79
2015 0.231 0.418 0.585 0.585 0.672 79.65
2016 0.288 0.449 0.653 0.286 0.705 80.67
2017 0.417 0.522 0.704 0.170 0.582 85.54
2018 0.391 0.522 0.742 0.148 0.583 71.82
2019 0.385 0.650 0.688 0.782 0.621 84.37
2020 0.456 0.521 0.637 0.118 0.574 77.19
2021 0.372 0.459 0.622 0.129 0.565 79.92

2022 0.511 0.531 0.657 0.774 0.495 82.16
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Table 5. Cont.

RSEI NDVI WET NDBSI LST Percentage (%)
2023 0.429 0.595 0.705 0.132 0.584 80.77
2024 0.428 0.433 0.666 0.249 0.556 77.83

@ RSEI : - @ RSEI
95% Confid Ellipsoid for RSEI
o Lonfidence Eipsoid for 95% Confidence Ellipsoid for RSEI

(a) RSEI vs .positive ecological factors (NDVI and WET) (b) RSEI vs. negative ecological factors (NDBSI and LST)

Figure 6. Three-dimensional spatial patterns of remote sensing indices and RSEI confidence region

analysis.
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Figure 7. RSEI variation curve.

Figure 8 illustrates the temporal variation in RSEI values from 2000-2024, with more
pronounced fluctuations observed during the study period.
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Figure 8. Non-monotonic evolution of RSEI: U-shaped transition and segmented dynamics driven by
policy intervention.

We used two fitting methods to analyze changes in RSEI. First, second-order global
fitting was used to reveal the overall U-shaped pattern of RSEI Secondly, segmented fitting
was used to investigate the transitive mechanism of RSEI.

As shown in Figure 8a, where 95% confidence intervals are shown in red, for the
second-order fit, it is demonstrated by R? = 0.41 that the RSEI variation rejects the simple
linear assumption, and that the U-shaped trajectory of its existence implies a turn. The
location of the critical turning point was analyzed using mathematical methods. Solving
the equation yielded an X value of 2012.3, corresponding to a slope of zero. Therefore, we
selected 2012 as the turning point for segmented research.

As shown in Figure 8b, the two segments are fitted in segments with 2012 as the turning
point. The results of the fit show correlation strengths with reasonable p absolute values
between 0.577 and 0.599, which is a medium-strength correlation (usually Ipl > 0.5is
practically significant). The R? at the plausible ends of the model’s explanatory power are
close to 30%. It is shown that the linear model explains significantly more variation than
the random noise level (especially for macroecological data).

The RSEI showed a declining trend between 2000 and 2012, followed by an upward
trajectory from 2013 to 2024, peaking at 0.511 in 2022. A detailed analysis of RSEI trends
(Figure 5) identified the lowest values during the 25-year period clustered around 2012,
as evidenced by coordinate points including (2010, 0.286), (2011, 0.279), (2012, 0.308),
(2015, 0.231), and (2016, 0.288). Here, the x- and y-axes denote the study years and the an-
nual mean RSEI, respectively. Regression analysis partitioning the timeline in 2012 showed
distinct ecological phases. A significant decline phase was observed from 2000 to 2012
(slope = —0.00605) followed by accelerated recovery from 2013 to 2024 (slope = 0.01239). The
post-2012 recovery rate, quantified by the slope magnitude ratio (| —0.00605 | < 0.01239),
exceeded the prior degradation rate by 105%, demonstrating enhanced restoration efficacy.
Despite the interannual fluctuations exemplified by the 2015 minimum (0.23165), the over-
arching trajectory shows measurable improvement, with the RSEI increasing from 0.372 to
0.428 in 2000 and 2024, respectively, representing a 15.2% net gain over the study period.

To assess ecological quality in the Ningdong mining area, RSEI values were classified
into the following five grades: worst (0-0.2), poor (>0.2-0.4), moderate (>0.4-0.6), good
(>0.6-0.8), and excellent (>0.8-1). The spatial distribution of the RSEI grades across the
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coal base is presented in Figure 9. Historical data indicate consistently low proportions
(<5% annually) of worst-grade areas, with the moderate grade dominating (>60% coverage)
in most study years.

4.2. Analysis of RSEI Time Variation

The RSEI transition matrix was constructed using the Theil-Sen median slope and MK
significance tests with three temporal nodes (2000, 2012, and 2024). Figure 10 demonstrates
that from 2000 to 2012, the RSEI showed a declining trend in most regions, while from
2012 to 2024, the RSEI exhibited an upward trend in most regions. Overall, from 2000 to
2024, the RSEI values in most regions increased or remained unchanged. As a national coal
production base in the Loess Plateau of China, the ecosystem of the Ningdong mining area
is affected by surface coal extraction activities. Gangue and slag accumulation increases
the bare soil area, reduces soil moisture, and decreases vegetation cover, driving RSEI
decline [32].

Combining Figure 11 and Tables 6 and 7, we analyzed changes in the areas of different
ecological categories.

N

2002

(a) Spatial distribution of RSEI (2000-2014)

Figure 9. Cont.
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Figure 9. RSEI classification by year.
Table 6. Temporal distribution matrix of RSEI ecological class areas (2000-2012).

Ecological Class 2000 (km?) 2002 (km?) 2004 (km?) 2006 (km?) 2008 (km?) 2010 (km?) 2012 (km?)

Worst 1.392 250.263 62.661 767.935 42.700 153.000 20.039
Poor 2463.928 2445.636 2867.746 2527.589 2023.048 3004.961 3105.284
Moderate 871.446 631.106 406.195 52.190 1197.719 125.575 159.591
Good 33.094 38.982 28.203 12.563 84.939 54.557 57.757
Excellent 0.940 4.844 5.744 10.456 22.019 22.276 18.308
Table 7. Temporal distribution matrix of RSEI ecological class areas (2014-2024).
Ecological Class 2014 (km?) 2016 (km?) 2018 (km?) 2020 (km?) 2022 (km?) 2024 (km?)
Worst 109.384 631.987 41.088 21.374 28.439 13.642
Poor 1574.917 2231.431 1700.492 1315.977 827.962 1470.820
Moderate 1309.992 416.613 1582.091 1479.357 1590.826 1626.880
Good 319.590 79.882 36.545 489.984 844.275 229.284

Excellent 46.776 1.078 0.003 54.162 68.587 19.995
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Figure 10. Changes in RSEI by year.
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Overall, the quality of the ecological environment in 2024 has improved signifi-
cantly compared to 2000. In 2000, the ecological environment structure was extremely
unhealthy, with the “Poor” grade dominating, accounting for 73.10% of the total area, while
high-quality ecosystems (combined “Excellent” and “Good” grades) accounted for only
1.01% of the total area. By 2024, the proportion of “Poor” ratings fell significantly to 43.77%.
At the same time, the proportion of high-quality ecosystems has significantly increased
to 8.86% (“Excellent” 2.04% + “Good” 6.82%). The proportion of “Moderate” areas has
increased from 25.85% to 48.41%, while “Worst” areas remain at extremely low levels,
indicating that the overall quality of ecosystems is moving towards a healthier direction.

Between 2000 and 2012, the ecological environment underwent significant changes.
Although the proportion of the “Worst” rating increased slightly from 0.04% to 0.60%, the
core issue lies in the continued expansion of the “Poor” rating, which rose sharply from
73.10% in 2000 to 92.39% in 2012. At the same time, “Moderate” shrank from 25.85% to
only 4.75%, and the proportion of high-quality ecosystems also remained low (only 2.26%
in 2012). This reflects that the ecosystem in 2000 was mainly in a moderate state, with a
small amount of high-quality ecology, but it has since deteriorated on a large scale to a state
dominated by poor ecology, with a significant decline in ecological quality.

Since 2012, the quality of the ecological environment has continued to improve. From
2012 (92.39%) to 2024 (43.77%), the proportion of “Poor” ratings has plummeted by nearly
50 percentage points. Large-scale repairs were carried out simultaneously in the “Moderate”
area, with the proportion rising from 4.75% to 48.41%. The expansion of high-quality
ecosystems is even more groundbreaking; “Excellent” areas rose from 0.54% to 2.04%, an
increase of nearly three times, while “Good” areas rose from 1.72% to 6.82%, an increase
of nearly five times. During this period, the proportion of “Worst” areas was further
reduced, which fully demonstrates that ecological governance achieved tangible results
in 2012. This reversal correlates with the post-2012 environmental governance policies of
China prioritizing ecological-economic synergy [33]. The system structure has successfully
transitioned from a fragile model dominated by “Poor” areas to a healthy development
pattern based on “Moderate” areas with steady growth in high-quality ecology.

4.3. Precise Ecological Identification of Mining Areas by Coupling the RSEI and EG Indices

The EG index calculation is performed in the GEE. When calculating the EG index,
we ensure that the EG index and RSEI maintain spatiotemporal consistency between one
another. The EG index is normalized and its values are inverted. Higher EG values after
processing indicate a better ecological environment. The calculated EG index results for
each year are shown in Tables 8 and 9 below.

Table 8. EG index values (2000-2012).

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
EGindex 0560 0.550 0.554 0.560 0.552 0551 0543 0540 0.540 0.542 0.541 0.541 0.541

Table 9. EG index values (2013-2024).

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
EGindex 0.541 0550 0547 0548 0548 0548 0548 0547 0547 0545 0549 0.550

To better illustrate the changes in the EG index, a curve is used to more effectively
reflect the historical trends of the EG index, as shown in Figure 12. The EG index and RSEI
exhibit a broadly consistent trend in their time series. In the initial years of the time series,
the EG index remained at a relatively high level. By the 2010s, the EG index had declined
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to a lower level. Subsequently, the EG index rose and gradually stabilized at a higher level.
Observing the EG index values, the annual variations within the study area are relatively
small, indicating that no large-scale disruptive changes in land use types have occurred.
These values also suggest that the sensitivity and carrying capacity of ecosystems within
the mining area are relatively limited.

—EG
0.560
0.555
Q0 _
sl 0.550
0.545
0.540
T T I T T T T T I T
2000 2005 2010 2015 2020 2025

YEAR

Figure 12. EG index variation curve.

To accurately identify subtle environmental changes within the mining area, a spatial
overlay analysis was conducted between the EG index and the RSEI The spatial overlay
results are shown in Figure 13 below. The results indicate that the ecological environment
of this mining area has undergone a structural improvement over the past 24 years, transi-
tioning from localized degradation to overall enhancement. This change has specifically
manifested as the HH zones, representing green areas with the most optimal ecological
conditions; these zones have evolved from scattered distributions in 2000 to forming large
contiguous areas by 2018 and 2024. Some of the superior ecological environments within
the mining area, such as forested and water-body zones, have been well preserved. In
areas with poorer ecological conditions (LL zones), the red zones indicating the most severe
ecological problems have significantly decreased in size. The general trend of ecological
and environmental changes in the mining area revealed by the coupled matrix analysis is
similar to the results obtained from the standalone RSEI analysis.

4.4. Analysis of Ecological Quality Drivers

The RSEI is intrinsically linked to four components, i.e., the greenness (NDVI), wetness
(WET), dryness (NDBSI), and heat (LST). NDVI and WET exhibit positive correlations with
RSEI, whereas NDBSI and LST are negatively correlated with RSEI [34]. Consequently,
ecological quality drivers should be investigated beyond these indicators by focusing on
natural, environmental, and anthropogenic factors. Six driving factors were selected for
this analysis, including conventional environmental variables, i.e., elevation, slope, aspect,
temperature, and precipitation, as well as the annual coal production of individual mines
within the mining area.
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Figure 13. Temporal evolution of HH/LL clusters of environmental quality based on EG and RSEI

(2000-2024).

An analysis of impact factor data from 2019 to 2024 was conducted. During this

period, coal mining enterprises maintained relatively stable annual coal production targets.
Therefore, RSEI is classified as the target y-value to be detected. Certain factors, such as
elevation, slope gradient, aspect, and annual coal production, are categorized as static

factors, while precipitation and temperature—which exhibit more pronounced annual

variations—are classified as dynamic factors. The RSE], static factors, and dynamic factors

within the coal mine area are shown in Tables 10-13 below.

Table 10. RSEI values for each coal mine (2019-2024).

Coal Mine Name 2019 2020 2021 2022 2023 2024
Lingxin 0.277 0.249 0.410 0.259 0.411 0.275
Shicao Village 0.444 0.308 0.410 0.293 0.486 0.314
Yin Xing No. 2 0.439 0.353 0.509 0.379 0.544 0.571
Maiduo Mountain 0.395 0.337 0.319 0.270 0.461 0.381
Song Xinzhuang 0.414 0.418 0.530 0.352 0.580 0.413
Shuangma No. 1 0.417 0.339 0.393 0.292 0.544 0.465
Hongliu 0.409 0.333 0.359 0.274 0.552 0.384
Yangchangwan 0.346 0.294 0.413 0.302 0.403 0.288
Zaoquan 0.273 0.28 0.310 0.299 0.377 0.259
Sirenjiazhuang 0.321 0.21 0.332 0.294 0.375 0.245
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Table 10. Cont.

Coal Mine Name 2019 2020 2021 2022 2023 2024
Jinjiaqu 0.453 0.483 0.455 0.393 0.558 0.470
Maliantai 0.207 0.299 0.378 0.331 0.468 0.326
Xingiao 0.431 0.436 0.556 0.485 0.622 0.503
Huian 0.511 0.383 0.491 0.359 0.530 0.468
Yong’an 0.350 0.351 0.452 0.399 0.389 0.359
Qingshuiying 0.276 0.288 0.318 0.290 0.456 0.378
Meihuajing 0.352 0.308 0.366 0.291 0.514 0.324
Jinfeng 0.438 0.413 0.506 0.362 0.517 0.507
Wei'er 0.415 0.562 0.639 0.563 0.571 0.549
Yin Xing No. 1 0.413 0.333 0.382 0.318 0.414 0.412
Yue’erwan 0.414 0.357 0.509 0.382 0.480 0.545
Shuangma No. 2 0.431 0.403 0.419 0.334 0.485 0.520

Table 11. Static factors for each coal mine.

. Annual Coal Production Elevation Slope Aspect
Coal Mine Name (10 kt) (m) ©) ©)
Lingxin 390 1324.379 3.624 182.211
Shicao Village 600 1401.325 3.213 157.147
Yin Xing No. 2 220 1335.301 2.308 167.537
Maiduo Mountain 800 1437.247 3.210 155.797
Song Xinzhuang 120 1418.064 2.500 186.257
Shuangma No. 1 400 1374.000 3.131 184.354
Hongliu 800 1426.646 3.469 171.474
Yangchangwan 1200 1400.696 2.868 173.383
Zaoquan 500 1357.708 3.285 191.215
Sirenjiazhuang 240 1307.117 4.538 164.704
Jinjiaqu 400 1450.258 3.044 195.070
Maliantai 360 1250.939 2.923 181.623
Xingiao 240 1385.474 2.285 155.618
Huian 150 1410.438 2.384 175.236
Yong’an 120 1369.074 2.827 190.394
Qingshuiying 1000 1366.480 3.127 167.162
Meihuajing 1200 1363.546 3.066 184.798
Jinfeng 400 1422.189 3.014 184.437
Wei’er 150 1423.622 1.946 170.967
Yin Xing No. 1 400 1354.250 2.425 167.794
Yue’erwan 180 1357.772 2.260 162.098
Shuangma No. 2 400 1342.211 2.816 179.299

Table 12. Dynamic factors of each coal mine (temperature).

Coal Mine Name 2019 (°C) 2020 (°C) 2021 (°Q) 2022 (°Q) 2023 (°O) 2024 (°O)
Lingxin 21.227 21.095 20.864 21.422 21.768 21.927
Shicao Village 21.227 21.095 20.864 21.422 21.768 21.927
Yin Xing No. 2 21.474 21.360 21.135 21.635 22.009 22.166
Maiduo Mountain 20.954 20.831 20.605 21.135 21.479 21.624
Song Xinzhuang 20.899 20.754 20.519 21.069 21.407 21.539
Shuangma No. 1 20.899 20.754 20.519 21.069 21.407 21.539
Hongliu 20.954 20.831 20.605 21.135 21.479 21.624
Yangchangwan 21.227 21.095 20.864 21.422 21.768 21.927

Zaoquan 20.954 20.831 20.605 21.135 21.479 21.624
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Table 12. Cont.

Coal Mine Name 2019 (°O) 2020 (°C) 2021 (°C) 2022 (°C) 2023 (°C) 2024 (°C)
Sirenjiazhuang 21.784 21.659 21.438 21.986 22.287 22.476
Jinjiaqu 20.899 20.754 20.519 21.069 21.407 21.539
Maliantai 21.784 21.659 21.438 21.986 22.287 22.476
Xingiao 20.606 20.437 20.201 20.767 21.056 21.187
Huian 20.606 20.437 20.201 20.767 21.056 21.187
Yong’an 21.146 20.988 20.776 21.298 21.617 21.767
Qingshuiying 21.227 21.095 20.864 21.422 21.768 21.927
Meihuajing 21.227 21.095 20.864 21.422 21.768 21.927
]infeng 20.899 20.754 20.519 21.069 21.407 21.539
Wei'er 20.309 20.129 19.915 20.467 20.736 20.880
Yin Xing No. 1 21.474 21.360 21.135 21.635 22.009 22.166
Yue’erwan 20.899 20.754 20.519 21.069 21.407 21.539
Shuangma No. 2 20.954 20.831 20.605 21.135 21.479 21.624

Table 13. Dynamic factors of each coal mine (precipitation).

Coal Mine Name 2019 (mL) 2020 (mL) 2021 (mL) 2022 (mL) 2023 (mL) 2024 (mL)
Lingxin 305.987 252.430 267.449 245.972 310.783 213.756
Shicao Village 305.987 252.430 267.449 245.972 310.783 213.756
Yin Xing No. 2 309.805 308.617 289.496 285.235 316.772 259.292
Maiduo Mountain 319.656 305.967 296.076 286.712 325.953 257.475
Song Xinzhuang 369.703 321.723 339.543 327.273 367.106 290.660
Shuangma No. 1 369.703 321.723 339.543 327.273 367.106 290.660
Hongliu 319.656 305.967 296.076 286.712 325.953 257.475
Yangchangwan 305.987 252.430 267.449 245972 310.783 213.756
Zaoquan 319.656 305.967 296.076 286.712 325.953 257.475
Sirenjiazhuang 290.997 215.706 237.198 213.656 294.292 180.770
Jinjiaqu 369.703 321.723 339.543 327.273 367.106 290.660
Maliantai 290.997 215.706 237.198 213.656 294.292 180.770
Xingiao 406.405 302.819 356.137 341.721 394.160 294.430
Huian 406.405 302.819 356.137 341.721 394.160 294.430
Yong’an 362.083 291.004 316.802 305.687 354.719 267.739
Qingshuiying 305.987 252.430 267.449 245.972 310.783 213.756
Meihuajing 305.987 252.430 267.449 245.972 310.783 213.756
Jinfeng 369.703 321.723 339.543 327.273 367.106 290.660
Wei'er 396.360 277.219 331.424 316.447 381.289 268.668
Yin Xing No. 1 309.805 308.617 289.496 285.235 316.772 259.292
Yue’erwan 369.703 321.723 339.543 327.273 367.106 290.660
Shuangma No. 2 319.656 305.967 296.076 286.712 325.953 257.475

A driving factor analysis was conducted on the driving factors from 2019 to 2024,
calculating the mean g-value for each factor. This mean value provides an intuitive and
accurate reflection of the explanatory power of each individual factor on the RSEI value of
Y. The g-value details and their explanatory power rankings are shown in Tables 14 and 15
below.

Through factor analysis, the extent of influence of each driving factor on the ecological
quality of the Ningdong mining area was examined. Here, a larger g-value indicates a
stronger impact of the factor on the RSEIL In terms of single-factor explanatory power
ranking, the factors were ranked as follows: X2 Precipitation > X5 Slope > X1 Temperature
> X3 Annual coal production > X4 Elevation > X6 Aspect. Precipitation and slope are
the primary independent factors influencing RSEI, while the isolated effect of aspect is
relatively weak.
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Table 14. Various influence factor g-values.
Year X1 X2 X3 X4 X5 X6
2019 0.372 0.324 0.225 0.396 0.223 0.146
2020 0.593 0.644 0.253 0.389 0.469 0.120
2021 0.322 0.456 0.397 0.215 0.546 0.116
2022 0.356 0.553 0.545 0.143 0.665 0.147
2023 0.362 0.346 0.156 0.322 0.371 0.269
2024 0.373 0.532 0.213 0.194 0.475 0.130
mean 0.396 0.476 0.298 0.277 0.458 0.155
Table 15. Explanatory power.
T X3 Annual Coal . X5 X6
Factors X1 Temperature X2 Precipitation Production X4 Elevation Slope Aspect
g-value 0.476 0.298 0.277 0.458 0.155
Power rank 1 4 5 2 6

Precipitation is considered the primary driver, exacerbating moisture loss in the arid,
temperate continental climate of the Loess Plateau in northwest China. In the southern part
of the Ningdong mining area, where precipitation is relatively high, some coal mines—such
as the Yinxing No. 2 Coal Mine—exhibit high RSEI performance. In the northern part of
the mining area, where conditions are typically drier, the Lingxin Coal Mine exhibits lower
RSEI performance. This phenomenon underscores the role of precipitation in maintaining
soil moisture and vegetation cover [35] Elevation and aspect exhibited weaker individ-
ual influences. Steeper slopes (>5°) amplify erosion risks through accelerated surface
runoff, which strips topsoil and organic matter, ultimately degrading soil fertility and
hydrological stability. This is particularly pronounced in mountainous regions, such as
the Loess Plateau [36]. These areas experience reduced soil depth (<30 cm on slopes >15°),
diminished water retention capacity (—40% compared to gentle slopes), and constrained
vegetation diversity, with slope-dependent microclimates further altering solar exposure
and precipitation patterns [37].

Geodetector analysis showed that all significant factor interactions showed synergistic
enhancement effects, surpassing the individual contributions. The detection results are
shown in Figure 14. The results indicate that the spatial distribution of RSEI is driven by
multiple factors acting in concert, with synergistic effects observed between these factors.
Their combined effect on RSEI is stronger than the simple sum of their individual effects.
The combination of precipitation and slope, as well as precipitation and elevation, exhibits
exceptionally strong explanatory power in most years. This indicates that the coupling of
hydrotemperate conditions with topographic features is a key factor controlling macro-
ecological patterns [38]. The interaction between annual coal production and precipitation
was particularly pronounced prior to 2021. Human activities (mining) operate on a specific
natural baseline and amplify impacts on the ecological environment. For example, mining
in areas with steep slopes and concentrated precipitation will result in more significant
ecological damage effects [39]. In summary, the ecological environment quality in the
study area during 2019-2024 is stably controlled by natural topography (slope) and climate
(precipitation) factors, while also being disturbed by human activities (coal mining). Exper-
imental results indicate that ecological and environmental evolution is a complex process
driven by the nonlinear synergistic interaction of natural and anthropogenic factors.
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Figure 14. Results of the factor interaction detection: heatmaps of interaction g-values for variable
pairs (2019-2024).

5. Discussion
5.1. Feasibility and Advantages of Coupling RSEI with EG for Precise Analysis

This study employs a coupled RSEI and EG index to conduct a sensitive analysis of
changes in the mining area’s ecosystem over the past two decades.

A single indeXx, such as the RSEI, can broadly illustrate the evolutionary trends of the
internal ecological environment within a mining area. However, it falls short in capturing
the complex and dynamic changes occurring within the mining area’s ecosystem. The EG
index clearly distinguishes structural components within mining areas—such as forested
land, water bodies, and developed land—based on land use types. However, the EG
index cannot detect changes in ecological quality within the same land use type. For
example, it cannot distinguish between a healthy forest area and a degraded, sparse forest
area. RSEI, based on remote sensing spectral information, can acutely reflect changes
in apparent ecological conditions, such as vegetation growth and surface temperature.
However, RSEI inadequately characterizes the inherent, structural functions of ecosystems.
Therefore, in mining areas characterized by fragile ecosystems and complex ecological
evolution, integrating the EG index with the RSEI enables a comprehensive and precise
ecological assessment.

The principle of spatial overlay analysis is illustrated in Figure 15. During analysis, we
employed a weighted overlay methodology. The EG index and RSEI were each categorized
into three distinct groups and reclassified as “1”, “2”, and “3”. The “10” in “EG x10” and the
“1” in “RSEIx1” represent the weighting factor in the weighted summation, respectively.
Weighted superposition yields nine distinct new matrices. The code “33” represents areas
where both the RSEI and EG indices show the highest values simultaneously, indicating
relatively good ecological conditions within these regions. The code “11” represents areas
where both the RSEI and EG indices show the lowest values simultaneously, indicating
poor ecological conditions within these regions. The matrix with the other codes indicates
that the ecological environment of the mining area is in a moderate state.
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Figure 15. Schematic diagram of the weighted overlay integration model for RSEI and EG.

5.2. Analysis of Ecological Changes in the Ningdong Mining Area and Recommendations

The purpose of this paper is to study the ecological environment changes in the
Ningdong mining area and the analysis of driving factors. The results show that the
ecological environment quality in Ningdong mining area shows a trend of decreasing and
then increasing, and that this trend is non-monotonic. Overall, the results of the study are
in line with expectations, as Guo et al. in 2005 had already proposed ecological restoration
of the Ningdong mining area [40], while Fan et al. in 2011 analyzed the ecological security
of the Ningdong mining area, pointing out that the situation facing the ecological security
of Ningdong is very serious [41], which is similar to the inflection point of the RSEI change
in 2012 over a period of 25 years, as mentioned in this thesis. RSEI reflects the quality of
the ecological environment, and it has become a consensus that anthropogenic factors will
lead to a decline in the quality of the ecological environment [42]. The RSEIl's improvement
is reflected in the study of Gu et al. [43], as it is the same as in this paper. The reason for the
ecological environment change in the mining area is mainly due to anthropogenic policy
intervention; in 2005, the unique thesis of “Lucid Waters and Lush Mountains are Invaluable
Assets” was put forward [44], and it gradually became the official attitude of Chinese
society to consider the relationship between the economy and the environment [45]. Thus,
a number of ecological restoration techniques have been applied to coal-generated gangue
mountains [46]. Furthermore, this study demonstrates that ecological and environmental
changes in mining areas are influenced by a complex nonlinear process involving both
natural factors and anthropogenic factors (mining activities).The ecological quality of the
Ningdong mining area in the 21st century has changed from poor to good, which is a
stronger argument for the feasibility of sustainable development under the guidance of
human beings [47].

In order to ensure the sustainable development of mining activities in the Ningdong
mining area, the following opinions can be given through this study. In steep slopes and
rainy areas, priority is given to the implementation of soil and water conservation projects
to reduce the negative impacts of soil erosion on NDVI and WET [48]. In high-temperature
mining areas, the interaction between coal mining and temperature indicates that the
heat island effect in mining areas exacerbates ecological degradation, and that greening
of mining areas and covering of bare ground surfaces need to be strengthened to reduce
the surface temperature (LST) [49]. Using the spatial distribution characteristics of RSEI,
priority restoration is implemented in ecologically fragile areas, while sustainable mining
models are promoted in areas with better ecological restoration. Slope and precipitation
are core natural drivers, and it is recommended that the coupling effect of topography and
climate be prioritized in ecological planning, such as by laying out ecological corridors in
low-slope, high-precipitation areas [50].
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5.3. Study Limitations and Directions for Further Research

The following limitations exist in this study and need to be addressed in the future.

Currently, a singular indicator for coal production exists, with annual production used
to indicate the coal mining intensity. This approach overlooks critical factors, such as mining
depth, area, and lifespan. It is recommended to incorporate multi-dimensional mining data,
such as mining intensity per unit area, to enhance the accuracy of the driver analysis.

Data temporal resolution and completeness limitations in remote sensing are signifi-
cant because the data are synthesized annually. This annual synthesis makes it challenging
to capture seasonal ecological fluctuations, such as short-term drought events. This issue
could potentially be addressed in the future by integrating data with higher temporal
resolution, such as those from MODIS.

6. Conclusions

This study examines the evolution of ecological and environmental quality in the
Ningdong mining area over the past 25 years, primarily using the RSEI in conjunction with
the EG index. We employed the GEE platform and the Landsat dataset available within the
GEE for our analysis, and assessed the RSEI using trend analysis, significance testing, and
geographic detector analysis. Spatial overlay analysis was employed to combine RSEI and
EG for enhancing ecological recognition accuracy. We also used geographic detectors to
reveal the extent to which static and dynamic factors influence the ecological environment.
Our main findings are as follows.

(1) At present, the ecological environment of the Ningdong mining area is at a relatively
high level. The RSEI in 2024 is 0.428 and the EG index value is 0.55. Over the
past 25 years, the ecological environment quality in the Ningdong mining area has
undergone significant changes. Analysis using the RSEI and EG index reveals that the
ecological environment quality in the mining area showed a declining trend before
the 2010s and an upward trend after the 2010s. Overall, the ecological environment of
the Ningdong mining area is showing signs of improvement.

(2) Ecological and environmental changes in mining areas constitute complex nonlinear
processes influenced by multiple factors. Natural factors within mining areas, such
as precipitation and slope, have a significant impact on the ecological environment.
The interaction between human activities (mining) and natural factors also has a
significant impact on the ecological environment. The findings above suggest that
during coal mining operations in mining areas, efforts should be made to limit mining
intensity in steep slope regions and prioritize the implementation of soil and water
conservation projects to reduce soil erosion.

This study provides scientific guidance for the development of policies on coal mining
and ecological and environmental protection in the Ningdong mining area. At the same
time, the findings emphasize the importance of continuous remote sensing monitoring
over a long period of time in assessing and mitigating the ecological and environmental
impacts of mining activities and promote the practice of sustainable development in the
mining sector.
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