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Abstract

Urban models support sustainable, resilient, and equitable planning, but their validity
hinges on underlying spatial data. This study examines the epistemological and techni-
cal consequences of relying on two dominant yet divergent platforms—OpenStreetMap
(OSM) and Google Maps—for extracting proximity-based amenities within the 15-min city
framework. Across four European contexts—Versilia, Gothenburg, Nice, and Vienna—we
compare (i) data completeness and spatial coverage; (ii) semantic categories; and (iii) the
effects of data heterogeneity on accessibility modelling. Findings show that OSM, while
semantically consistent and openly accessible, systematically underrepresents peripheral
amenities, introducing bias towards urban cores in accessibility metrics. Conversely, Google
Maps provides broader coverage but is constrained by dependencies on extraction methods,
opaque data structures, and ambiguous classification schemes, which hinder reproducibil-
ity, reduce interpretability, and limit its analytical robustness. These divergences yield
distinct accessibility landscapes and competing readings of functionality and spatial equity.
We argue that data source choice and protocol design are epistemological decisions and
advocate transparent, hybrid strategies with cross-platform semantic harmonisation to
strengthen robustness, equity, and policy relevance.

Keywords: OpenStreetMap; google maps; volunteered geographic information; spatial
data quality; big-data; 15-min city; proximity-based planning; data-driven urban modelling;
decision support systems (DSS)

1. Introduction

In recent years, the concept of the 15-Minute City has gained widespread traction as
a framework for sustainable urban transformation. Popularised by Moreno et al. [1], it
envisions urban environments where essential services and amenities are accessible within
a 15-min walk or bike ride, thereby promoting proximity, local vibrancy, and environmental
efficiency. Despite its appeal, operationalising this concept in spatial analyses and decision-
support systems (DSS) remains methodologically challenging. As Pezzica et al. [2] highlight,
persistent uncertainties affect both the selection of urban functions to include and the spatial
granularity of the analytical units—such as whether isochrones should be generated from
grid-based centroids or user-specific origins.

An equally critical, yet comparatively underexplored, issue concerns the quality, com-
pleteness, and internal consistency of the spatial datasets on which proximity models
depend. The robustness of urban accessibility assessments is directly contingent upon
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the reliability of these underlying datasets. Pezzica et al. [2], for example, adopted Open-
StreetMap (OSM) as their primary data source, applying both strict and broad amenity
classifications, but noted persistent sensitivities to tagging inconsistencies. Similarly, Mara
et al. [3] documented the misrepresentation of commercial activities in Versilia, prompting
a manual survey to validate correlations with centrality measures. While such ground-
truthing offers valuable accuracy, it is impractical for multiscale planning frameworks.
Complementary platform audits also indicate that online maps provide uneven and se-
lective coverage of on-the-ground businesses. In a field-validated study of smaller US
cities, Quinn and Condon [4] show that Latino-oriented local businesses are less frequently
included across popular platforms than national chains and that coverage is lower in
high-Latino areas; they also note residual “defunct” venues and visibility effects linked to
platform ranking. These findings suggest that platform logics and contributor ecologies can
condition which amenities are even eligible to be counted—introducing distributional bias
upstream of any proximity model. Taken together with tagging sensitivities in OSM [2]
and local misclassification issues [3], this makes the integrity of digital spatial data—and,
at minimum, a nuanced understanding of their structures, provenance, and limitations—a
foundational concern not only for proximity-based models, but for evidence-based ur-
ban analytics more broadly. Yet, the systematic implications of dataset choice, extraction
protocols, and inherent variability remain insufficiently examined.

Among the most widely used spatial data infrastructures in urban research are Open-
StreetMap and Google Maps [5]. Both provide extensive geographic coverage, frequent
updates, and machine-readable formats, making them central to accessibility modelling,
mobility analysis, land-use characterisation, and urban form assessment. However, few
studies have directly compared these datasets [6-9], and even fewer have examined how
divergences in data structure, categorisation logic, or retrieval protocols shape modelling
outcomes—particularly in proximity-based frameworks such as the 15-min city. Key
questions remain unresolved: Are these sources functionally interchangeable? Do their
discrepancies manifest uniformly across different urban morphologies and socio-spatial
contexts? Is one demonstrably more complete, reliable, or fit-for-purpose than the other?

This paper addresses these questions through a comparative evaluation of OSM and
Google Maps, focusing on their capacity to represent urban amenities central to the 15-min
city framework. The aim is to assess the extent to which spatial data source selection
influences both the analysis and operationalisation of urban proximity in planning practice.
Three analytical dimensions guide the study:

1.  Data volume and spatial consistency across multiple geographical scales;

2. Semantic divergence in the categorisation and retrieval of core urban functions;

3. Impacts on applied urban modelling, with specific reference to 15-min accessibil-
ity potential.

The empirical analysis spans four diverse urban contexts: northern Versilia (Italy),
Gothenburg (Sweden), Nice (France), and Vienna (Austria). Through buffer-based sam-
pling, semantic harmonisation, and functional classification, the study demonstrates how
alternative datasets generate systematically different representations of local accessibility—in
both the volume of amenities identified and the granularity of typological detail.

The remainder of the paper is organised as follows. Section 2 reviews the two plat-
forms, outlining their core characteristics and comparability issues. Section 3 introduces the
case study contexts. Section 4 presents the methodological framework. Section 5 reports
empirical results across the three analytical dimensions, while Section 6 discusses implica-
tions for data-driven spatial modelling, evidence-based planning, and proximity-oriented
urban policy.
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This contribution advances research on sustainable, resilient, and equitable urban
development by interrogating the data infrastructures that underpin proximity-based
planning and decision-support systems. Sustainable outcomes depend not only on per-
suasive concepts such as the 15-min city, but on reliable, transparent, and reproducible
measurements of accessibility and functional mix. By showing that the choice between
OpenStreetMap and Google Maps is not a neutral technical step—but an epistemological
decision that reshapes counts, spatial distributions, and amenity typologies across distinct
European contexts—this study foregrounds the governance of digital data as a first-order
issue for urban analytics. In particular, we demonstrate how scale sensitivity and retrieval
logics (Section 5.2), semantic misalignment (Section 5.3), and downstream modelling ef-
fects within 15-min isochrones (Section 5.4) can bias assessments toward dense cores and
commercially salient venues, risking misallocation of resources and under-servicing of
peripheral areas. Situating accessibility indicators within this critical lens strengthens their
validity for SDG-oriented monitoring and for evidence-based planning that pursues both
environmental benefits (e.g., reduced travel demand) and social justice (e.g., fair provision
of daily services).

2. Datasets Properties and Extraction Criteria

This study focuses on two of the most widely used geospatial platforms in urban research:
OpenStreetMap (UK) and Google Maps (USA). Both are primary sources of spatial big data in
contemporary urban analysis due to their extensive global coverage, frequent updates, and
programmatic accessibility [10,11]. Despite their shared prominence, they differ fundamentally
in governance models, data structures, and semantic frameworks—differences that have direct
implications for the operationalisation of proximity-based urban models.

2.1. OpenStreetMap

OSM is the most prominent example of Volunteered Geographic Information (VGI),
a data paradigm grounded in crowdsourced contributions. Its data model is built on
three core primitives—nodes, ways, and relations—each annotated with tags expressed as
key—value pairs. This tag-based schema offers high semantic flexibility but lacks uniform
standardisation, leading to variability across regions and applications [12]. As an open-
source platform, OSM allows free upload, editing, and download of geospatial data,
enabling rapid updates and detailed local mapping. However, this participatory structure
also introduces heterogeneity and inconsistency due to variations in contributors’ expertise,
priorities, and mapping coverage [13].

OSM data can be obtained through multiple channels: the official OpenStreetMap.org
export tool, the PlanetOSM database, and third-party extracts such as GeoFabrik.de and
BBBike.org. For targeted feature retrieval, the Overpass API (via Overpass Turbo) or the
QuickOSM plugin in QGIS enables spatially and semantically filtered queries. In this study,
data were retrieved using QuickOSM within QGIS, selected for its ability to execute fine-
grained, area-specific queries tailored to both the semantic and spatial requirements of
the analysis.

2.2. Google Maps

Google Maps is the most widely used commercial geospatial platform globally [14].
While it incorporates user-generated content, it is not strictly VGI; rather, it combines propri-
etary datasets with crowdsourced inputs, subject to centralised validation and governance.
User engagement—particularly from verified business owners—plays a significant role in
determining place visibility and ranking [15]. A key functional distinction is its dynamic
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marker rendering, which adjusts the visibility of places based on zoom level, contextual
relevance, and proximity.

Access to structured Google Maps data requires the Google Maps Platform API,
which supports controlled queries within defined usage limits [16]. In this study, data
were accessed through the API via the Python Console (v3.9.5) in QGIS. The NearbySearch
function was employed, which returns places of interest located within a specified radius
from given coordinates. This method was deliberately chosen to ensure objectivity and
reproducibility by relying exclusively on Google’s internal Place Type classification, avoiding
the subjective variability inherent in keyword-based TextSearch queries. From the API
response, only three fields were retained—Name, Address, and PrimaryType—ensuring focus
on attributes directly relevant to semantic alignment.

2.3. Semantic Alignment Across Platforms

Direct comparison between OSM and Google Maps requires a harmonised classi-
fication framework. No universally accepted taxonomy of urban amenities exists, and
the two platforms use fundamentally different categorisation logics: OSM’s community-
driven tag schema versus Google’s centrally managed Place Types. Within the 15-min city
framework, Moreno et al. [1] proposed six broad functional dimensions (residential, work,
commerce, healthcare, education, and entertainment), but these categories are too generic
to support precise cross-platform matching [17].

To address this, we adopted the macro-categories proposed by Papadopoulos et al. [16],
derived from a systematic review of 15-min city literature. These categories serve as an
intermediate classification layer, enabling semantic alignment between heterogeneous
taxonomies. For OSM, tag matching was guided by the official OSM Map Features docu-
mentation [18]. For Google Maps, matching was based on the Place Types listed in Table A
in the Google Maps Places API documentation [19] (as updated 7 November 2024). The
resulting classification comprises seven macro-categories (Table 1), encompassing the core
amenities relevant to proximity-based accessibility assessments: health services, entertain-
ment facilities, retail services/trade, sports facilities, restaurants, economic facilities, and
food/grocery stores.

Table 1. Categorization of selected urban amenities adapted conceptually from Papadopoulos et al. [17].

Macro Categories Urban Amenities
Health services Pharmacies, hospitals, medical offices and medical stores
Entertainment facilities  Bars, cinemas, casino and bookmakers
Retail services/trade Goods stores, private agencies and offices, crafts and malls
Sports facilities Sport and fitness centres
Restaurants Restaurants and fast food
Economic facilities Banks and ATM
Food/grocery stores Supermarkets and food stores

3. Case Studies

This study examines four European urban contexts drawn from the Evolutive Meshed
Compact City (EMC?) Project [20], developed under the Driving Urban Transitions (DUT)
Partnership: the Versilia conurbation (Italy), Nice (France), Gothenburg (Sweden), and
Vienna (Austria). The selection balances geographical diversity with variation in urban
morphology, while retaining a degree of comparability in development trajectories and
spatial configurations. Together, these cases span a spectrum of urban forms—from coastal
linear conurbations to radial-concentric capitals—providing a robust basis for testing
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both the EMC? framework and, more specifically, the consistency, completeness, and
interpretability of spatial datasets across distinct territorial and cultural contexts.

3.1. Versilia (Italy)

Versilia is a linear coastal conurbation comprising several municipalities along the
northern Tuscan coast. Until the mid-20th century, these municipalities maintained ad-
ministrative and spatial autonomy; post-war expansion gradually merged once-separate
urban fabrics into a continuous built environment [3]. Morphologically, Versilia extends
transversally from the Tyrrhenian coastline to the Apuan Alps, while longitudinally linked
by a continuous infrastructural corridor [3]. Its average residential density is relatively low
(~800 inhabitants/km? [21]), reflecting a dispersed settlement pattern in which compact
historic centres are embedded within a broader suburban continuum. This heterogeneous
spatial structure makes Versilia a critical test case for evaluating the granularity and spa-
tial coherence of OpenStreetMap and Google Maps amenities data in low-density Italian
suburban contexts.

3.2. Nice (France)

Nice anchors the Métropole Nice Céte d’Azur, a conurbation of multiple Mediterranean
municipalities. Like Versilia, its urban fabric extends transversally from the coast to
the foothills of the Maritime Alps. However, Nice functions as a major metropolitan
centre with a markedly higher population density (4622.3 inhabitants/km? [22]) and a
more hierarchical urban structure. Its growth trajectory spans Roman origins to modern
expansion, progressively incorporating neighbouring municipalities [23]. The combination
of a dense core, polycentric development, and strong tourism orientation makes Nice
particularly relevant for assessing how geospatial platforms represent commercial and
service-oriented land uses in high-density French coastal environments.

3.3. Gothenburg (Sweden)

Gothenburg, Sweden’s second-largest city and Scandinavia’s largest port, shares with
the Italian and French cases a coastal setting and, with Nice, metropolitan status. The city
developed along the Gota River following a radio centric pattern from its medieval core.
Eighteenth-century expansion introduced a semi-circular fortification ring and an orthogo-
nal street-and-canal grid [24,25]. Twentieth-century decentralisation and housing policies
produced suburban neighbourhoods interspersed with hilly, vegetated terrain [26]. De-
spite its economic significance, Gothenburg maintains a relatively low average population
density of 1291.6 inhabitants per km? [27]. Despite its economic importance, Gothenburg
maintains a relatively low average density (1291.6 inhabitants/km? [27]). Its mixed land-
use pattern and topographical complexity make it a useful context for testing platform
performance in mapping amenities across dispersed, low-density urban landscapes.

3.4. Vienna (Austria)

Vienna, Austria’s capital and one of its nine federal states, exhibits a highly structured
radial-concentric urban form shaped by successive historical layers. The medieval core was
first enclosed by defensive walls, later replaced in the 18th century by the Ringstrafie boule-
vard, which today delineates central districts from subsequent expansions [28]. Nineteenth-
century industrialisation drove outward growth and densification, yielding a metropolitan
form characterised by both functional centrality and morphological coherence. With a den-
sity of 4655.0 inhabitants/km? [29], Vienna ranks among Europe’s most densely populated
cities. As a high-density, historically layered capital, it serves as a valuable benchmark
for assessing dataset completeness and classification consistency in complex, mature ur-
ban systems.
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4. Methodology

The methodological framework adopts a sequential, multi-scalar design to evaluate
OpenStreetMap (OSM) and Google Maps from both quantitative and qualitative perspec-
tives. Analyses are conducted at both the urban and micro-urban scales, addressing data
variability, spatial consistency, semantic divergence, and modelling implications. The work-
flow comprises four sequential analytical steps, each targeting a distinct dimension of
comparison. This section delineates the methodological framework and provides a detailed
description of each step, while the subsequent section presents the corresponding results
following the same structure.

4.1. Step 1: Baseline Data Extraction and Cross-Platform Volume Comparison

The first step assesses data completeness and spatial consistency across the two plat-
forms at the full urban scale. For each case study, amenities corresponding to the macro-
categories in Table 1 were extracted within an 8000 m radius encompassing the main
urban context. For Vienna and Gothenburg data were downloaded from the city centre
barycentre, in the case of Nice, the entire municipal area was included, while for the Versilia
case, the municipalities of Carrara, Massa, and Montignoso were considered. This stage
establishes baseline counts and distributions, allowing the identification of systematic
cross-platform differences potentially linked to contextual (e.g., morphology, density) or
platform-specific factors.

4.2. Step 2: Sensitivity to Spatial Extent and Radial Displacement

The second step evaluates scale sensitivity by repeating the data retrieval at progres-
sively smaller radii—5000 m, 2500 m, and 1200 m—using the same extraction points as
in Step 1. For OSM, queries were executed via the QuickOSM QGIS plugin; for Google
Maps, separate API requests were issued for each radius. The comparison was then con-
ducted within the smallest buffer (1200 m, by clipping the areas of larger radii) allowing
for standardized cross-case and cross-platform evaluation (Figure 1a).

clipped/test area

Figure 1. Schematic representation of the methodology used to assess sensitivity to spatial extent (a)
and to radial displacement (b).

Additionally, to assess the potential impact of distance from the extraction point
on data quality or completeness, an exploratory radial displacement test was performed:
data within a fixed 1200-m radius were extracted along a transect extending outward
from the original extraction point and compared with the 8000-metre radius download,
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allowing for detection of spatial biases in data density or classification across concentric
zones (Figure 1b).

4.3. Step 3: Semantic Divergence Analysis

The third step examines classification inconsistencies by focusing on three amenity
types—pharmacies, bookstores, and bars—selected for their relevance to daily life in the
15-min city, their potential semantic ambiguity, and their representation in both platforms.
For each amenity type, counts, spatial distributions, and co-location patterns were compared
across datasets. This targeted approach highlights the operational implications of divergent
tagging conventions (OSM) and place-type classifications (Google Maps) without requiring a
full crosswalk between the two systems.

4.4. Step 4: Modelling Implications for the 15-Minute City

The fourth step integrates findings from Steps 1-3 into an accessibility modelling
exercise aligned with the 15-min city framework. For each case study, pedestrian-based
15-min isochrones were generated from representative suburban locations, using a standard
1200 m walking radius [1,30]. All amenities from Table 1 falling within these isochrones
were included. This final step evaluates how differences in dataset completeness, semantic
alignment, and spatial consistency translate into divergent accessibility outcomes—directly
informing the reliability of proximity-based urban models.

5. Results and Discussion
5.1. Dataset Comparison at the Urban Scale: Quantity and Spatial Distribution

The first analytical step evaluates aggregate differences between OpenStreetMap and
Google Maps at the urban scale, examining the outcomes when all selected macro-categories
are extracted in bulk across extended urban areas.

Across all four case studies, OSM systematically returns a greater number of features
than GM (Table 2, Figure 2). The largest discrepancies occur in Nice and Vienna, where
OSM produces more than twice the number of entries returned by GM. Gothenburg exhibits
a smaller yet substantial gap, while in Versilia the two datasets yield comparable totals.

Table 2. Quantitative assessment of the downloaded urban places at the macro scale.

Case Studies Google Maps OpenStreetMap SMAPE (%)
Versilia 1922 2639 31
Nice 2662 13,599 135
Gothenburg 2402 7127 99
Vienna 2921 35,660 170

Importantly, differences are not confined to counts. Even in point-of-interest-dense
areas, the spatial distribution of amenities differs markedly between platforms, suggesting
divergent underlying logics for place inclusion, placement, and representation.

To quantify these differences, the Symmetric Mean Absolute Percentage Error (SMAPE)
was applied (Equation (1)) to the total values of the two datasets, in order to measure their
relative deviation. Lower SMAPE values indicate closer numerical agreement, while higher
values signify substantial divergence in extracted quantities.

_ |OSM value — GM value| 100

SMAPE (%) OSM value2+GM value X (1)
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Google Maps [2402]
OpenStreetMap [7127]

Google Maps [2921]
OpenStreetMap [35,660]

Figure 2. Spatial distribution of the downloaded urban places at the macro scale.
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The SMAPE values (Table 2) confirm strong divergence in Nice (135%) and Vienna
(170%), moderate differences in Gothenburg (99%), and relatively close alignment in Ver-
silia (31%). While these patterns are not generalisable given the limited case set, some
interpretative insights emerge. Both Nice and Vienna are among the most populous and
densely inhabited cities in their respective countries, and both attract substantial tourist in-
flows [31]. These conditions may foster more active OSM mapping communities—although
the underlying drivers remain to be fully investigated—thereby increasing data richness
through crowdsourced contributions.

However, closer inspection reveals that a substantial share of OSM features in these cities
are private swimming pools—7075 of 13,599 in Nice and 4970 of 35,660 in Vienna—often
located within residential properties. This highlights a fundamental operational difference:
in such cases, the OSM dataset includes physically verifiable locations—such as swimming
pools but also pitches and other facilities —, regardless of public accessibility or commercial
relevance, whereas GM primarily contains recognised points of interest—places with public-
facing functions or visibility within its service ecosystem.

This distinction has methodological consequences. Bulk extractions from global spatial
datasets can yield substantially different results not because of geographic coverage gaps,
but due to differences in inclusion criteria. In this case, swimming pools provide a striking
example, though likely not an isolated one, as similar patterns may well be observed in
other categories. A close and systematic examination of individual types of urban amenities,
together with the associated data cleaning, lies beyond the scope of this paper, which is
instead concerned with highlighting discrepancies between datasets. For this reason, we
chose not to alter the original dataset. Hence, without accounting for platform-specific data
logic, analyses risk misinterpretation. The next subsections explore additional factors—such
as extraction radius and classification frameworks—that may further explain and amplify
these discrepancies.

5.2. Dataset Comparison at the Urban Scale: Sensitivity to Spatial Extent and Distance from the
Extraction Point

To assess how spatial extent influences dataset completeness, amenities were extracted
from Google Maps and OSM across concentric buffers of 8000, 5000, 2500, and 1200 m from
the original extraction points. While SMAPE quantifies the discrepancy between the two
datasets, it does not indicate which is richer. To capture the direction of the discrepancy, the
non-standard SMAPE (nsSMAPE, Equation (2)) is introduced. It omits the absolute value
in the numerator, allowing the sign of the value to indicate whether the Google dataset is
richer (negative values) or poorer (positive values) than the OSM dataset.

_ OSM value — GM value

nsSMAPE (0/0) - OSM value+GM value x 100 (2)
2

Overall trends show SMAPE decreasing with smaller radii (Table 3), suggesting
stronger cross-platform alignment at finer scales. This trend is most consistent in Vienna,
while Nice and Gothenburg show a slight SMAPE increase at 1200 m, though still lower
than at 5000 m. Versilia diverges from this pattern: at smaller radii, GM consistently returns
more amenities, yielding negative nsSMAPE values. Similar GM dominance at small extents
is also seen in Gothenburg, whereas OSM retains higher counts at all scales in Nice and
Vienna. High SMAPE values in Vienna and Nice reflect OSM'’s dense coverage in these high-
population, high-tourism contexts—again suggesting potential links between population
density, civic engagement, and VGI dataset richness. Further confirmation of this trend is
provided by the different location of the data extraction point across the four cases: situated
in dense central areas in Gothenburg and Vienna, and in more peripheral, less dense areas
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in Versilia and Nice. To standardise spatial coverage across scales, each case’s datasets
were clipped to the smallest (1200 m) radius. OSM counts remained stable regardless of
original download radius, while GM counts increased as the radius decreased (Figure 3).
Within these clipped areas OSM consistently exceeds Google Maps in Vienna and Nice,
while Google Maps exhibits greater density in Gothenburg and Versilia at smaller radii.
This indicates a key architectural difference: OSM’s data retrieval is radius-independent,
whereas GM'’s is scale-sensitive, likely due to internal ranking and zoom-level constraints

(Figure

4).
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Figure 3. Trend in the number of retrieved urban amenities across different download metric radii
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Table 3. Retrieved urban amenities within varying metric radii.

1200

o Google Wien

e~ - OSM Wien

SQUARE ROOT OF VALUES

. 8000-m 5000-m 2500-m 1200-m
Case Studies Database Radius Radius Radius Radius
Google Maps 1922 1761 951 168
Versilia OpenStreetMap 2639 1615 380 63
nsSMAPE (%) 31 -9 —86 —-100
Google Maps 2662 2604 2106 248
Nice OpenStreetMap 13,599 9864 3264 496
nsSMAPE (%) 135 116 43 67
Google Maps 2402 2227 1031 483
Gothenburg OpenStreetMap 7127 5224 1013 327
nsSMAPE (%) 99 80 -2 -39
Google Maps 2921 2880 2580 1979
Vienna OpenStreetMap 35,660 24,382 10,022 3628
nsSMAPE (%) 170 158 118 59
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NICE

GOTHENBURG

N

A ?27 4 ?27 0 05 lkm
8000 m 5000 m 2500 m 1200 m
DOWNLOAD RADIUS
4 OpenStreetMap data * Google Maps data Additional Google Maps data

Figure 4. Spatial distribution of urban amenities retrieved within decreasing metric radii (left to right)
in the test areas of Gothenburg and Nice. Yellow markers highlight additional amenities identified
via Google Maps at each radius, relative to the set retrieved at the immediately larger radius (the
preceding circle on the left).

5.2.1. Distance from the Extraction Point

We first show that downloaded place counts vary with the size of the extraction area,
reflecting Google Maps’ retrieval process and ranking mechanisms (which prioritize POlIs
based on user interaction) [14]. We then test whether the distance between the extraction
point, and POlIs further affects the completeness of the Google Maps dataset (Figure 5).
The Percentage Change metric (Equation (3)) measures deviation between these datasets for
each location, by quantifying how the density of POlIs retrieved at each local 1200-m buffer
compares to that of the corresponding area in the 8000-mdataset. High positive values
indicate that smaller-radius queries yield more amenities than the same location’s clipped
section from the larger-radius download.

|G M1200m — GMsgooom |
G Msgooom

Percentage Change(%) = 100 x (©)]
Results consistently show that local downloads at 1200 m—regardless of the extraction
point’s specific location—produce richer datasets than the corresponding clipped sections
of the 8000-m download, thereby confirming the trend identified in the previous section.
However, the Percentage Change is not strictly increasing with distance from the centre,
suggesting that no monotonic relationship exists between centroid distance and data
completeness. Notably, in 9 out of 12 cases, the metric increases from dn to dn+1, indicating
a general trend of growing divergence with increasing distance from the barycentre. This
pattern, however, is not observed in Versilia, Nice, and Gothenburg, where the Percentage
Change at distance d1 exceeds that recorded at d0, deviating from the expected progression.
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A closer examination reveals a possible explanation for this potential outlier. In
Versilia, Nice and Gothenburg, the d1 extraction buffers intersect areas with a higher
presence of POlIs compared to those at d0, resulting in richer 1200-m downloads (Figure 5).
Conversely, in Vienna, both 40 and 41 fall within uniformly dense urban areas, leading to
more consistent retrievals across distances.

As highlighted in Anselmi et al. [32], a key limitation in Google’s data retrieval mecha-
nism lies in its cap of approximately 60 POIs per PlaceType per request. Consequently, in
high-density zones where specific categories surpass this threshold, the downloaded dataset
underrepresents the actual amenity landscape available within Google’s full database. This
limitation likely contributes to the non-monotonic behaviour of the Percentage Change
function observed in Nice, Gothenburg, and Versilia—where the number of POls retrieved
at d1 surpass those at 0.

4500 1 2250
4000 | -+ 2000
[%2]
3500 f 4 1750 g
<<
(o4
w 3000 f < 1500 £
O o
22 s
5= 2500 | i 1250 @
4 3 5 2
25 | 1000 B4
E35 2000 < 1000 Z ¥
LLJC w o
o S £
xS <
- 1500 175 9
G
1000 4 500 [
o
500 | 250
0 0
do d1 d2 d3

CENTROID DISTANCE

Versilia Nice Gothenburg Vienna

Figure 5. Percentage Change in Google Maps data between 8000- and 1200-m radii vs. distance from
the 8000-metre centroid.

To illustrate this phenomenon, Figure 6 presents the case of Versilia: while the d0-centred
areas show comparable POI counts among the 1200 m- and the 8000 m clipped- extraction,
the peripheral d3-centred area demonstrates a stark discrepancy, with the 8000 m clipped
download capturing significantly fewer amenities than the localized 1200-m extraction. These
patterns imply that Google Maps retrievals lose spatial consistency as the distance from the
query centre increases, particularly when large-scale urban extents are involved. Alongside
the ranking algorithm, which reflects user interaction with the platform, the spatial positioning
of POlIs relative to the requester—that is, the extraction point—emerges as a key element in
the logic governing the retrieval of places in Google Maps.
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Figure 6. Accuracy loss in Google Maps data with distance from search centre: the Versilia case study.

5.2.2. Implications

Overall, these findings highlight a critical limitation in using Google Maps for urban-
scale bulk downloads: broader-radius queries introduce distortions, especially at the
periphery, due to algorithmic biases and ranking filters. In contrast, downloads with a
smaller radius yield more accurate and spatially consistent datasets, although they may still
be affected by additional category-related distortions, as highlighted by Anselmi et al. [32].
OpenStreetMap, by comparison, shows no sensitivity to either radial extent or distance from
centroid, confirming its internal consistency and suitability for uniform spatial sampling.

5.3. Semantic Divergence and the Representation of Key Urban Functions

This stage of the analysis examines how semantic categorisation influences the rep-
resentation of urban amenities in OSM and Google Maps. A marker-based approach
was used to assess the consistency, completeness, and spatial overlap of specific place
types, focusing on how classification frameworks shape coverage and reliability. Three
urban amenities—selected for their everyday relevance and relatively straightforward
cross-platform mapping—were analysed: pharmacies (OSM value = pharmacy, GM place
type = pharmacy), bookstores (OSM value = books, GM place type = book_store), and
bars (OSM value = bar, GM place type = bar). Given the findings from Section 5.2, the
comparison was conducted within a 1200 m radius, where GM data had previously shown
greater completeness.

5.3.1. Quantitative Trends

nsSMAPE values for these markers are often negative, indicating that OSM generally
underrepresents these functions compared to Google Maps—contrary to aggregate patterns
at larger scales. However, no consistent spatial trend emerges across the cities. Figure 7
illustrates that the datasets are not simple subsets of each other: in most cases, there is
substantial spatial divergence between the two sources, even when amenity counts are
similar. Exceptions include bookstores in Nice, pharmacies in Versilia and Vienna, and
bars in Gothenburg—though the latter displays notably sparse coverage. In contrast,
spatial mismatch is evident in most other cases, including pharmacies and bookstores in
Gothenburg, where the absolute counts are equal, but locations differ.
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Figure 7. Comparison of place marker representation at local scale (1200-m radius) between the

two data sources.

Among all cases, Versilia exhibits the highest average SMAPE values, driven by a
significant underrepresentation in OSM across all three categories.

5.3.2. Semantic Complexity

Although the three selected markers—pharmacies, bookstores, and bars—may appear
semantically unambiguous, closer inspection of the categorisation systems used by Open-
StreetMap (OSM Map Features) and Google Maps (Google Maps Platform) reveals notable
divergences. While both platforms provide taxonomies, these are neither mutually aligned
nor internally consistent. As a result, one-to-one correspondence between categories is
often unattainable in practice, despite superficial semantic similarities.
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This complexity stems from several factors. As noted by Biljecki et al. [33], variations
in language, cultural context, and socio-spatial interpretations shape how amenities are
perceived and tagged. For instance, the category “bar” may encompass vastly different
establishments across countries and platforms—ranging from cafés to nightclubs—leading
to inconsistencies in visibility, classification, and retrieval.

Table 4 details the entries associated with each selected marker across the platforms. Book-
stores exhibit consistent, unique tag associations in both databases. Pharmacies show moderate
variation, with some extended forms (“pharmacy+") leading to higher counts—particularly in Vi-
enna, where the broader interpretation results in a near doubling of retrieved data. Bars, however,
reveal significant semantic divergence. Their classification encompasses a wide array of related
place types, leading to inflated results: in some cities, retrieved bar data are three to four times
higher when using extended tagging schemes (Table 5). The case of Gothenburg is especially
illustrative. While bookstores and pharmacies display minimal variation across platforms and
classification schemes, bars exhibit high SMAPE values and substantial numerical discrepancies.
Under an extended categorisation, bar-related entries are nine times higher in Google Maps and
up to seventeen times higher in OSM.

Table 4. Semantic ambiguity in the definition of the urban categories: list of considered tags.

Marker Google Maps OpenStreetMap
Pharmacy “pharmacy” “pharmacy”
e h VAT : rr
armac herbalist
Pharmacy+ “pharmacy”, “drugstore” " pharmacy=, ,,’
nutrition_supplements
Bookstore “book_store” “books”
Bar “bar” “bar”
“bar”, “cafe”, “coffee_shop”,
“cafeteria”, “cat_cafe”, “dog_cafe”, “bar”, “café”, “internet_cafe”,
Bar+ o

a7

“tea_house”, “internet_cafe”,
“bar_and_grill”, “pub”, “wine_bar”

“biergarten”, “pub”

Table 5. Semantic ambiguity in the definition of the urban categories: quantitative assessment at the
local scale.

Case Studies Marker Google Maps OpenStreetMap nsSMAPE (%)
Pharmacy 11 6 —58
Pharmacy+ 12 6 —67
Versilia Bookstore 13 0 —200
Bar 43 17 —87
Bar+ 120 32 —116
Pharmacy 60 67 11
Pharmacy+ 64 68 6
Nice Bookstore 38 14 —-92
Bar 60 46 —26
Bar+ 176 162 -8
Pharmacy 4 4 0
Pharmacy+ 4 6 40
Gothenburg Bookstore 2 2 0
Bar 9 1 —160
Bar+ 78 17 —128
Pharmacy 39 31 —23
Pharmacy+ 72 33 —74
Vienna Bookstore 57 31 —59
Bar 60 119 66

Bar+ 166 337 68




Sustainability 2025, 17, 9016

16 of 23

5.3.3. Internal Classification Ambiguities

From a technical standpoint, the internal classification within each downloaded entry
introduces an additional layer of complexity. OSM allows at most two tags per key for a sin-
gle item, but the same element can appear under multiple keys depending on the recorded
attributes. Google Maps, similarly, includes multiple labels per location, derived from both
PrimaryTypes and additional descriptors. While this increases retrieval flexibility, it also
introduces ambiguity: a single feature may fall under several categories without a clear
indication of its primary function. For applications requiring fine-grained typologies, such
ambiguity complicates the consistent use of these databases in discrete functional models.

Despite this possibility, it was observed that such ambiguity is relatively limited
in OSM. In contrast, for GM, the place types associated with each retrieved feature are
never unique. This could arguably be seen as a strength of Google Maps, as the broader
categorization may support the identification of all relevant amenities linked to a given
location. However, in this study, to ensure a rigorous and non-discretionary procedure,
only the first label listed in Table A from the Google Maps Platform was used to assign the
corresponding macro-category.

5.3.4. Technical Constraints

A further limitation of Google Maps also emerges. Close inspection of the data
revealed that in 3 out of 12 cases, the number of registered activities was exactly 60 units.
This reflects the limitation discussed in Section 5.2, and is likely to have also affected the
extraction of categories in their extended forms (e.g., pharmacy+ and bar+ in Nice, and
bar+ in Vienna). Without this technical constraint, one could reasonably expect—consistent
with the overall trend—that the number of activities retrieved from Google would exceed
those retrieved from OSM.

5.3.5. Implications

These findings underscore the importance of understanding data semantics and clas-
sification granularity when selecting datasets for urban modelling purposes. Seemingly
comparable categories may yield non-overlapping spatial realities, which could lead to
misleading conclusions if not critically assessed in advance. Moreover, semantic alignment
between platforms does not guarantee spatial consistency or completeness. Therefore,
for fine-grained urban modelling dataset selection must consider not only coverage and
density, but also the semantic architecture of the source.

5.4. The Impact of Data on Urban Modelling: The 15-Minute City

The preceding analyses reveal substantial divergences between GM and OSM across
multiple dimensions: data volume, spatial distribution, semantic categorisation, and sen-
sitivity to scale and proximity. While both platforms are widely used in urban research
due to their coverage, regular updates, and relative accessibility, the differences observed
are methodologically significant. As shown, the choice of dataset can materially influence
modelling outputs, particularly in frameworks that rely on precise locational accuracy and
comprehensive coverage.

The 15-min city model—taken here as an applied test case for proximity-based
planning—offers a clear illustration of this effect. In accessibility assessments, the spa-
tial distribution and typological classification of amenities directly shape perceptions of
urban vibrancy and liveability [34]. Divergences in service representation between plat-
forms can therefore produce markedly different readings of suburban accessibility and
functional diversity.
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5.4.1. Analytical Approach

A supply-based approach was adopted to discuss the impact of databases on proximity-
based assessment in selected suburban areas in four case studies—Versilia, Nice, Gothen-
burg, and Vienna—by evaluating the presence of amenities (listed in Table 1) within 15-min
walking catchments. Rather than relying on a user-based or grid-centroid method—whose
arbitrariness has been shown to influence results [2]—this study examines a predefined
suburban area in each city independently of base grid or origin assumptions. The areas
have been chosen in the first peri-central rings contiguous to the historic cores, charac-
terized by lower residential density and building coverage than the core areas while still
exhibiting a functional mix and good accessibility, according to the guidelines of the DUT
Emc2 project. Amenities were extracted using a 1200 m buffer—the standard walking
distance approximation for a 15-min city [30] and, as established in Section 5.2, the most
reliable radius for balanced dataset retrieval.

Table 6 summarises the number of amenities (as defined in Table 1) retrieved within
each isochrone. In Versilia and Nice, Google Maps consistently reports a higher number
of amenities. Gothenburg shows comparable values across platforms, with a low SMAPE
score. Vienna, conversely, displays a predominance of OSM data. These contrasting
patterns are visualised in Figure 8, which highlights the particularly divergent cases of
Versilia and Vienna: the former showing OSM underrepresentation, the latter revealing an
exceptionally high level of OSM data density.

Vienna
Obersiebenbrun®

untersie!

ger Donau

Schwechat m
a'@ o

® Google Maps data 4 OpenStreetMap data — Case study boundary ~ —= 15-min isochrone

uesi oo E

Figure 8. Comparison of place retrieval within 15-min isochrones in suburban areas of Versilia
and Vienna.
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Table 6. Quantitative comparison of the two data sources within 15-min isochrones in suburban case
study areas, based on the distribution of selected urban amenities.

Case Studies Google Maps OpenStreetMap SMAPE (%)
Versilia 171 47 114
Nice 311 39 155
Gothenburg 155 112 32
Vienna 319 693 74

5.4.2. Interpretation and Limitations

These results do not imply that one platform offers a more accurate reflection of
on-the-ground reality. The observed discrepancies underscore the need for caution when
interpreting accessibility scores derived from open data sources. Despite the effort required
and the subjective variables it entails, without field validation it remains impossible to
determine the reliability of either dataset [35]. Future work should incorporate empiri-
cal ground-truthing—or alternative validation strategies—to calibrate digital datasets for
proximity-based modelling. Without this step, outputs risk overestimating or underesti-
mating accessibility, depending on platform biases.

5.4.3. Typological Composition

Using the Papadopoulos et al. [16] classification framework (Section 2), the analysis also
compared the functional mix of amenities in each isochrone. The contrast between Versilia and
Vienna is instructive. In Versilia, OSM returns a sparse dataset, limiting the capacity to detect
a diverse mix of urban functions. In Vienna, by contrast, OSM presents a rich dataset, yet this
abundance introduces its own challenge: several retrieved amenities—such as recreational
facilities (e.g., private swimming pools)—fall outside the intended scope of analysis. While
these features reflect real and functionally relevant spaces, their inclusion highlights the need
for careful control over category filtering when assessing accessibility or functional diversity.

These variations substantially influence the interpretation of an area’s functional
character. As shown in Table 7, in Versilia all considered categories are well represented in
Google Maps, with a marked prevalence of retail and trade activities—an aspect that does
not emerge from OpenStreetMap. In Vienna, the strong presence of sport facilities—driven
primarily by the inclusion of private swimming pools (specifically, 485 out of 518 sport-
related entries)—suggests a distinct sporting vocation for the area. In contrast, Google
Maps indicates a predominance of commercial activities and health services. A further
layer of complexity arises from entries assigned to ambiguous or residual categories such as
“other” or “generic”. These encompass activities either not explicitly requested or lacking
precise semantic attribution, rendering them unclassifiable within the adopted framework.
Their presence not only complicates comparison between datasets but also underscores
the risk of overestimating functional richness due to poorly defined or inconsistently
applied tags.s5.4.4. Implications for ModellingsUltimately, the reliability of proximity-
based urban models—whether for the 15-min city or similar frameworks—depends on
three intertwined conditions:

e Data completeness—ensuring full coverage of relevant amenities;
e  Semantic clarity—avoiding misclassification or over-generalisation;
e  Functional relevance—excluding features outside the intended analytical scope.

As this analysis shows, data quality issues can manifest as absence (underrepresen-
tation), excess (overrepresentation of marginal features), or ambiguity (poorly defined
categories). Each can distort modelling outputs if left unchecked. Automated top-down
extractions must therefore be complemented by critical pre-processing—including tag
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review, category filtering, and validation against independent sources—before integration
into decision-support systems.

Table 7. Selected categories observed within 15-min city isochrones in suburban contexts.

Case Studies Place Categories Google Maps OpenStreetMap
Total places 171 47
Economic facilities 3 3
Entertainment facilities 9 7
Food/grocery stores 19 6
. Health services 27 6
Versilia Restaurants 11 4
Retail services/trade 72 11
Sports facilities 4 10
Other 14 0
Generic 12 0
Total places 319 693
Economic facilities 6 5
Entertainment facilities 18 12
Food/grocery stores 24 15
. Health services 89 38
Vienna Restaurants 31 38
Retail services/trade 117 67
Sports facilities 9 518
Other 8 0
Generic 17 0

5.5. Data Gaps and Biases in Digital Mapping

The analyses and the results developed within this research—an initial step toward as-
sessing the practical reliability of big data for urban-planning applications—quantitatively
corroborate patterns reported in prior work: digital mapping datasets embed systematic
gaps and biases driven by mapping procedures, internal visibility mechanisms and by the
economic-social salience of mapped places [36].

OpenStreetMap and Google Maps represent two structurally distinct models of ge-
ographic data production, each characterised by specific omissions and biases. OSM,
sustained by volunteer contributions and an anti-commercial ethos, provides free and
openly accessible data, but its soundness is questionable, and its completeness is highly
uneven, with coverage being potentially underrepresented in peripheral and disadvan-
taged zones [37]. Participation is markedly skewed—the familiar 90-9-1 pattern [38], and
contributors tend to maintain a consistent geographic focus over time, reinforcing existing
inequalities [37,39-41].

By contrast, Google Maps is a proprietary platform built on closed datasets, third-party
sources, and machine-learning models. It provides extensive consumer-facing services but
operates under commercial constraints. Platform governance strongly shapes data visibility
and the mechanisms for access and download: ranking algorithms, Business Profile verifica-
tion, user reviews, and API result caps privilege prominent or commercially active venues,
while community spaces, low-visibility facilities, recently opened activities or specific types of
amenities are harder to retrieve, especially in competitive urban contexts [4,14,41].

Beyond these intrinsic limitations, competitive dynamics between the two platforms
further accentuate asymmetries: the expansion of Google Maps has been linked to a reduction
in overall OSM contributions, as many potential new users turn to Google Maps instead [42].
At the same time, a smaller group of established contributors intensifies their efforts, motivated
by ideological commitment to the open-source ethos and, to some extent, by community
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interaction [43]. These social, spatial, and temporal filters determine which amenities become
analytically visible and, in turn, cascade into 15-min accessibility outcomes.

6. Conclusions and Further Developments

This study critically examined how differences between two of the most widely used
spatial datasets—OpenStreetMap (OSM) and Google Maps (GM)—shape the modelling
of urban phenomena, with a specific focus on accessibility analyses within the 15-min
city framework. By systematically comparing the two platforms across four European
cities—Versilia, Gothenburg, Nice, and Vienna—this research demonstrates that dataset
choice is far from a neutral technical step. Instead, it has a measurable and often substantial
influence on both the quantitative assessment of service proximity and the qualitative
interpretation of functional urban identity.

The findings point to three major areas of divergence between the datasets. First, data
volume and spatial consistency vary substantially by platform and location. Google Maps
tends to yield higher place counts exclusively at finer spatial scales, reflecting its sensitivity
to the representation level. OSM, while more consistent in its tagging structure, tends to un-
derrepresent certain functions—especially in peripheral or less densely mapped areas—and
includes elements that may have low relevance for urban planning purposes, highlighting
the need for careful evaluation of data characteristics and contextual significance.

Second, semantic categorisation plays a critical role. Even for apparently straightfor-
ward amenities such as pharmacies, bookstores, and bars, substantial inconsistencies were
observed in how categories are defined, structured, and retrieved across the two platforms.
These semantic mismatches complicate both data integration and model comparability,
especially in contexts requiring fine-grained functional distinctions.

Third, and most crucially, these differences cascade into the modelling process itself.
Using the 15-min isochrone as a lens, the study revealed that accessibility scores and
spatial interpretations of urban vibrancy vary not only in magnitude but also in meaning
depending on the data source used. This is particularly relevant in decision-support systems
and planning workflows, where data-driven insights are translated into spatial strategies.

In practice, much applied work relies on a single platform—typically OSM or Google
Places—often with minimal justification and without cross-source sensitivity checks. Taken
together, these findings show why that choice is not neutral. On the contrary, they reflect
distinct epistemological models of the urban: one rooted in participatory, volunteer-
based mapping; the other governed by commercial logic and algorithmic visibility. Each
has its own strengths and limitations. While it remains unclear which of the two more
accurately reflects real-world conditions, it is likely that both diverge, in different ways,
from the urban reality they aim to represent—a question that is currently being explored in
ongoing research.

Specific findings that could drive the use of these datasets or stimulate further re-
search are

e  Functional non-equivalence. OSM and GM differ fundamentally in structure, category
logic, and extraction protocols, with direct consequences for modelling outputs;

e  Scale sensitivity. OSM retrievals are insensitive to search radius or centroid distance;
GM retrievals vary with spatial extent, losing consistency over larger urban areas;

e  Semantic misalignment. No one-to-one category correspondence exists; even overlapping
primary tags rarely match spatially or quantitatively, complicating DSS integration.

For planners, spatial analysts, and policymakers, the implications are clear: data
selection must be treated as an explicit modelling decision, not a neutral technical
step. Proximity-based frameworks like the 15-min city depend on more than conceptual
clarity—they rely on data infrastructures that are themselves uneven, contingent, and
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often opaque. A thorough analysis of the operating mechanisms of the selected database,
the pre-filtering of features according to research objectives, and the adoption of smaller
search radius are strongly recommended.

Situated within the broader agenda of sustainable urban transitions and evidence-
based planning, our findings have three implications. First, environmental efficacy: credible
proximity metrics are prerequisites for demand-side measures that reduce car dependence
and emissions; our cross-platform tests identify when and why such metrics may over- or
under-estimate reachable amenities (Sections 5.1 and 5.2). Second, social equity: platform
biases—underrepresentation of peripheral amenities in OSM and ranking/visibility filters
in Google Maps—translate into unequal analytical visibility of everyday services, with
consequences for spatial justice and targeted investment (Sections 5.3 and 5.4). Third,
governance and reproducibility: transparent protocols, hybrid sourcing, and cross-platform
semantic harmonisation operationalise open, auditable evidence for planning, aligning
with the journal’s emphasis on robust methods for policy-relevant sustainability research.
By treating spatial data selection as an explicitly theory-laden modelling choice, the study
provides practitioners with concrete levers—radius design, semantic controls, and valida-
tion checkpoints—to improve DSS reliability and, ultimately, the robustness and fairness of
proximity-based interventions.

Future research should pursue several key directions. First, the integration of ground-
truth datasets is needed to benchmark the representational accuracy of both platforms and
to assess how data quality correlates with urban form, city function, or specific amenity
types. Second, there is a pressing need to develop a harmonised and extensible categorisa-
tion schema capable of bridging semantic mismatches and enabling robust cross-platform
comparisons. Third, hybrid approaches that leverage the complementary strengths of
both OSM and Google Maps should be explored, alongside the development of validation
protocols tailored to distinct urban contexts. Lastly, more fine-grained, intra-urban analyses
should be prioritised, moving beyond citywide generalisations to account for the hetero-
geneity of urban space and to support more context-sensitive modelling of accessibility and
proximity. By foregrounding the epistemic and technical implications of data choice, this
study positions spatial data selection as a critical, theory-laden decision in urban analytics—
one that directly shapes the narratives, priorities, and policy interventions derived from
data-driven models.
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