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Abstract

This study examines the effects of injection timing and cerium oxide (CeO2) nanoparticle
(NP) size on NOx emissions and brake thermal efficiency (BTE) in a compression ignition
engine, contributing to Sustainable Development Goals 7 and 13. Experiments were
conducted at four load conditions (25–100%) using NP sizes of 10 nm, 30 nm, and 80 nm.
An artificial neural network integrated with multi-objective particle swarm optimization
(ANN-PSO) was employed to identify optimal operating parameters. The optimized
configurations improved BTE and reduced NOx emissions across all loads; for example, at
75% load, BTE increased from 30.38% (average) to 32.13% (optimum), while simultaneously
reducing the NOx emissions from 1322 ppm (average) to 1272 ppm (optimum). Analysis of
variance (ANOVA) confirmed load as the most significant factor (p < 0.001), followed by
injection timing and NP size. The model predictions closely matched experimental results,
validating the optimization approach. The optimization suggests an interpolated optimal
NP size of approximately 45 nm, highlighting the potential for further exploration. This
integrated experimental and computational approach offers a promising framework for
improving combustion efficiency and reducing emissions, thereby advancing cleaner and
more sustainable fuel technologies.

Keywords: clean combustion; energy efficiency; NOx emission; sustainable fuel technologies;
optimization

1. Introduction
The combustion of fossil fuels in the industrial and transport sectors intensifies global

warming and air pollution [1], with 2024 CO2 emissions reaching a record 37.8 Gt [2].
To meet UN Sustainable Development Goals 7 and 13 [3], research focuses on cleaner
combustion and renewable fuels [4]. Fuel injection pressure and timing critically influence
atomization [5–8], combustion duration, and emission formation. Biodiesel, oxygenated
additives [9–14], and metallic nanoparticles have demonstrated improved brake thermal
efficiency and reduced CO, HC, and smoke emissions [15–19]. Cerium oxide nanoparti-
cles, in particular, enhance combustion and thermal conductivity [20], resulting in lower
fuel consumption and optimized emission characteristics at appropriate particle sizes
and concentrations.
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The literature review indicates extensive studies on nanoparticle–biodiesel blends
examining engine performance and emissions. However, limited research has explored
the influence of nanomaterial size in B20 blends under varying injection timings. As fuel
injection timing critically governs ignition delay and combustion quality, this study investi-
gates the combined effect of nanoparticle size and injection timing on the performance and
emissions of a biodiesel-fueled engine. Unlike prior studies, the present research jointly
optimizes these parameters using a machine learning-assisted, load-specific optimization
framework validated across multiple operating conditions.

2. Methods
2.1. Experimental

Waste cooking oil biodiesel was procured from a local biodiesel development center.
The B20 biodiesel blend was produced by mixing 20% (by volume) of neat biodiesel with
80% (by volume) mineral diesel. The physicochemical properties of the fuel blend were
determined as per ASTM and tabulated in Table 1. Cerium oxide nanoparticles (NP) of
10, 30, and 80 nm sizes were purchased from the vendor. Three different fuel blends were
prepared using 10, 30, and 80 nm size nanoparticles at a constant concentration of 80 ppm.
The prepared fuel blends were represented as B20-10, B20-30, and B20-80. The surfactant,
dodecenylsuccinic anhydride (DDSA-C16H28O3), was used to confirm better dispersion of
cerium nanoparticles in the biodiesel blend. Ultra-sonification was carried out for 0.5 h to
ensure a good distribution of ceria nanoparticles in the fuel blends.

Table 1. The physicochemical properties of the fuel blend.

Property Diesel WCO Neat Biodiesel B20 Biodiesel

Density (kg/m3) 825 880 843

Lower calorific value (MJ/kg) 43.2 39.6 40.3

Kinematic viscosity (mm2/s) 3.85 5.3 3.7

Flash point (◦C) 55 135 66

The test setup consists of a four-stroke single-cylinder CI engine with an eddy current
dynamometer for loading the engine. The test setup specifications are given in Table 2. The
schematic of the setup is depicted in Figure 1. Engine cooling is achieved by circulating
water through the engine cooling jacket. A burette was used to measure the fuel flow, and
the time taken to consume 20 cc was measured. The experiments were conducted at three
different fuel injection timings: 24◦ bTDC retarding, 30◦ bTDC advancing, and the standard
fuel injection timing of 27◦ bTDC. The prepared fuel and nanoparticles combinations
were tested at these engine operating conditions. This data was used to calculate the
brake thermal efficiency (BTE) of the engine. The concentration of exhaust emissions was
measured using an AVL exhaust gas analyzer. The experiments were conducted in three
replicates and the average of the three has been reported in this study.

Table 2. Specifications of diesel engine.

Type Single Cylinder, Four Stroke, Air Cooled Engine

Make Kirloskar

Bore × stroke 87.5 mm × 110 mm

Compression ratio 17.5:1

Rated output 5.2 kW at 1500 rpm

Injection pressure 240 bar

Swept volume 661 cm3
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(a) 

(b) 

Figure 1. (a) Actual engine setup used in the study. (b) Representative diagram of the engine
test setup.

2.2. Analysis of Variance (ANOVA) Testing

To statistically assess the influence of input parameters (IT, Load, and NP) on engine
performance and emission characteristics, Analysis of Variance (ANOVA) was employed.
The output variables considered were Brake Thermal Efficiency (BTE) and Oxides of
Nitrogen (NOx) emissions. Each output variable was treated independently to isolate the
individual and interaction effects of the predictors.

The dataset comprised 48 experimental observations, compiled into a Microsoft Ex-
cel file with five columns representing the three independent variables (IT, Load, NP)
and two dependent variables (NOx, BTE). Prior to analysis, the data were examined for
completeness, consistency, and outlier behavior.

The statistical analysis was conducted using Python (v3.10), executed within the
Google Colaboratory environment. The primary statistical libraries utilized were pandas
for data manipulation and import/export operations; statsmodels for performing ANOVA;
and scipy and openpyxl for statistical computation and Excel file handling, respectively.

Each dependent variable was subjected to a three-way factorial ANOVA, considering
the main effects and interaction effects of the independent variables. The significance of
each factor and interaction was evaluated using the F-statistic, with corresponding p-values
computed. A significance level of 0.05 was employed to determine statistical relevance. All
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results, including the F-values, degrees of freedom, and p-values, were programmatically
exported to an Excel workbook to facilitate reporting and reproducibility.

2.3. ANN Modeling

The ANN framework was implemented in MATLAB R2023b using the
Levenberg–Marquardt (L–M) training algorithm, which is known for its superior con-
vergence properties, especially in nonlinear function approximation problems.

The dataset comprised experimentally obtained input-output pairs corresponding
to varying levels of three independent variables: IT, Load, and NP. Prior to modeling, all
variables were normalized within the range of 0 to 1 to ensure numerical stability and
uniform learning behavior across the network.

A feedforward backpropagation neural network architecture was constructed for each
of the two target variables (BTE and NOx), with the following specifications:

• Input layer: 3 neurons (corresponding to IT, Load, and NP).
• Hidden layers: 1 hidden layer comprising 5 neurons with tangent sigmoid

activation functions.
• Output layer: 1 neuron with a linear activation function, tailored for continuous

regression output.

The Levenberg–Marquardt algorithm was chosen as the training function (trainlm in
MATLAB) due to its hybrid optimization approach that combines the advantages of the
gradient descent and Gauss–Newton methods, enabling rapid and accurate minimization
of mean squared error (MSE) for nonlinear regression. The data were randomly partitioned
into training (70%), validation (15%), and testing (15%) subsets. The network was trained
iteratively until convergence criteria were met, typically defined by either a plateau in
validation performance or a maximum of 1000 epochs. The coefficient of determination
(R2) was used to evaluate the model’s predictive accuracy and generalization capability.
Figure 2 shows the neural network architecture for the curve fitting of NOx and BTE with
the input variables. The output equation is then obtained as shown in Equation (1).

y = Wo·tansig
(

Wh·x + bh
)
+ bo (1)

In matrix form, Equation (1) can be further represented as

zh = Wh·x + bh (2)

ah = tansig
(

zh
)
=

2
1 + e−2zh − 1 (3)

y = Wo·ah + bo (4)

where

x = [x1, x2, x3]
T is the input vector comprising injection timing, load, and nanoparticle size.

Wh and bh are the weight matrix and bias vector of the hidden layer.
tansig is the hyperbolic tangent sigmoid function, which maps each neuron’s input to the
range (−1, 1) and introduces nonlinearity to capture complex relationships.
Wo and bo are the weight matrix and bias vector of the output layer.
y = [y1, y2]

T is the output vector representing NOx and BTE.
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Figure 2. Neural network architecture for the curve fitting of NOx and BTE with the input variables
(IT, Load, and NP).

Equations (2) and (3) correspond to hidden layer input and output matrices while
Equation (4) is the final output layer response of NOx and BTE. The inputs of Load, IT, and
NP were varied as (0, 100), (24, 30), and (0, 80), respectively.

The final ANN models exhibited high correlation with experimental data (R2 > 0.99
for both responses), confirming their adequacy for use in downstream optimization. These
trained models were subsequently exported and integrated into the Particle Swarm Opti-
mization (PSO) framework as objective functions to derive the optimal operating conditions.

2.4. Response Surface Plots

To investigate the influence of engine operating parameters on the predicted outputs,
two-dimensional contour plots were developed using a feedforward artificial neural net-
work (ANN) model. The ANN architecture consisted of an input layer with three neurons
corresponding to injection timing (IT), engine load (Load), and nanoparticle (NP) size. A
single hidden layer with five neurons using a hyperbolic tangent sigmoid (tansig) acti-
vation function was used, and an output layer with two neurons representing nitrogen
oxide (NOx, in ppm) and brake thermal efficiency (BTE, in %). The network was initially
designed, trained, and validated in MATLAB R2023b using the Neural Network Toolbox.

After training, the network’s structure, including the input-to-hidden and hidden-
to-output weight matrices, biases, and normalization parameters, were exported from
MATLAB. For the generation of contour plots, the ANN model was re-constructed in
Python using the extracted weights and biases. Prior to feeding inputs to the model, each
input variable was normalized using an affine transformation derived from the original
MATLAB configuration. This ensured consistency between the original trained network
and the reconstructed version. To visualize the relationship between the input variables
and the model outputs, a uniform meshgrid of 100 × 100 resolution was generated across
the domains of IT (27◦–30◦ crank angle) and NP (0–100 nm). At the same time, Load was
held constant at four representative values: 25%, 50%, 75%, and 100%. Each meshgrid point
was combined with the fixed Load value to form an input matrix, which was then passed
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through the reconstructed ANN. The network’s hidden layer computed the activations us-
ing the tansig function, and the output layer applied a linear transformation. The resulting
normalized outputs were then de-normalized using the inverse affine transformation to
obtain NOx and BTE values in physical units.

The outputs corresponding to each meshgrid were reshaped into two-dimensional
arrays and visualized using filled contour plots (contourf) with 20 evenly spaced contour
levels. For each Load, separate contour plots were generated for NOx and BTE to enable
clear interpretation.

2.5. Optimization Modeling

To identify the optimal operating conditions that simultaneously enhance BTE and
reduce NOx emissions, a multi-objective optimization framework was adopted using the
Particle Swarm Optimization (PSO) technique. The surrogate models for both objective
functions were derived independently via ANN modeling (Section 2.3) for each load setting,
trained on experimental data covering IT (ranging from 24 to 30◦) and NP size (ranging
from 0 to 80 nm).

The ANN-based mathematical expressions derived from Equation (1) served as surro-
gate models within the PSO framework. This approach facilitates a continuous, differen-
tiable, and vectorizable formulation suitable for numerical optimization. As both BTE and
NOX are of competing nature, the optimization problem was structured as a bi-objective
minimization-maximization task, where NOx is to be minimized and BTE maximized.

The PSO algorithm employed was implemented in MATLAB 2023b. A proprietary ver-
sion of the PSO code, developed and maintained by the authors in previous works [21,22],
was utilized for this study. The algorithm was configured with the following parameters:

• Swarm size: 200 (calculated as 30 n, where n = 3 represents the number of process
parameters).

• Inertia weight (w): 0.5 (constant across iterations).
• Cognitive coefficient (c1): 2.0.
• Social coefficient (c2): 2.0.
• Maximum iterations: 100.

Initial exploratory runs revealed convergence of non-dominated solutions within
approximately 30 generations; thus, the maximum number of iterations was extended to 100
to ensure exhaustive exploration of the search space and to avoid premature convergence
to local optima.

The PSO was constrained by upper and lower bounds for each decision variable,
following experimentally feasible limits defined for IT, Load, and NP. The algorithm was
executed without penalty functions due to the hard-bound nature of these constraints,
which inherently ensured physical viability of the solutions. The optimization model thus,
contained IT (24–30◦), Load (0–100%), and NP (0–80 nm) as the input variables. The ANN
equations of BTE and NOx developed using Equation (1) are the output variables.

The final output of the optimization comprised a Pareto front, representing the trade-
off surface between BTE and NOx. This front was visualized in two-dimensional objective
space to enable interpretation of optimal compromises between thermal performance and
emission mitigation. The resulting solution set offers a practical decision space for engine
tuning under dual-performance criteria, and the methodology provides a scalable frame-
work for future optimization tasks involving multi-variable, multi-response objectives.
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3. Results and Discussion
3.1. Experimental Results

The experimental study was conducted for three IT (24◦, 27◦, and 30◦ crank angle),
four load settings (25%, 50%, 75%, and 100% of full load), and using NP sizes of 10 nm,
30 nm, and 80 nm. Figure 3a–c shows the emissions of NOx for IT of 24◦, 27◦, and 30◦.
Figure 3d–f shows the BTE for IT of 24◦, 27◦, and 30◦.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3. Emissions of NOx for IT of (a) 24◦, (c) 27◦, and (e) 30◦; and brake thermal efficiencies (BTE)
for (b) 24◦, (d) 27◦, and (f) 30◦.

3.1.1. Effect of Engine Load on NOx and BTE

Engine load significantly influences both NOx formation and energy conversion effi-
ciency. Across all tested injection timings and nanoparticle concentrations, increasing load
from 25% to 75% leads to a marked increase in both NOx and BTE. However, this trend
slightly reverses or saturates at 100% load. At low load (25%), NOx emissions are minimal
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(average of 327 ppm), due to lower combustion temperatures and reduced oxygen demand.
The combustion process is cooler and less vigorous, resulting in suppressed thermal NOx
formation. As the load increases to 50% and 75%, the quantity of fuel injected increases
proportionally, which enhances the in-cylinder pressure and temperature. Consequently,
the formation of NOx through the Zeldovich mechanism is intensified due to elevated
thermal energy and longer residence times at peak temperature. However, at full load
(100%), although the fuel mass and pressure are at their maximum, the oxygen concentra-
tion becomes limiting. Locally rich mixtures and possible diffusion-controlled combustion
regimes can reduce oxygen availability, marginally lowering NOx compared to 75% load.
This points to a thermal–chemical limitation wherein excess fuel without proportional
oxygen causes partial suppression of NOx, despite high combustion temperatures. These
results are consistent with other findings in the literature [23,24].

The increase in BTE with load is largely thermodynamic, wherein higher loads in-
crease the brake power output, thus improving the net efficiency. At 75% load, the peak
BTE (30.4%) was observed, indicating optimal engine operation. At 100% load, a minor
drop in BTE (28.6%) likely results from sub-optimal air-fuel mixing and elevated exhaust
losses. Furthermore, under full-load conditions, late burning and heat rejection to cylin-
der walls are more significant, leading to reduced conversion of chemical energy into
mechanical work.

3.1.2. Influence of CeO2 Nanoparticles on Combustion and Emissions

Cerium oxide nanoparticles, known for their oxygen buffering and catalytic surface
reactivity, impact the combustion process in multifaceted ways. Across all loads and
injection timings, moderate NP sizes (up to 30 nm) improves BTE and reduces NOx,
whereas higher sizes (80 nm) offer diminishing or even reversing benefits.

CeO2 acts as a combustion promoter by releasing labile oxygen atoms at high tem-
peratures, which then facilitates the complete oxidation of hydrocarbons and CO during
combustion. The best BTE improvements were seen at 30 nm, particularly at medium
to high loads. For instance, at 75% load and 30 nm NP, BTE peaked at 32.87%, higher
than baseline diesel. This enhancement stems from improved micro-level fuel-air mixing,
reduced ignition delay, and promotion of secondary oxidation reactions. While the initial
NP sizes (10–30 nm) consistently reduced NOx, further increase to 80 nm showed a slight
rebound in NOx levels. This nonlinearity may be due to excessive oxygen radicals from
CeO2 increasing combustion temperature locally. At 25% load and 30 nm, NOx dropped
from 452 ppm (pure diesel) to 365 ppm, while BTE increased by nearly 3 percentage points.
This indicates that NP sizes are most effective under light to medium load, where their cat-
alytic role can compensate for slower combustion kinetics and insufficient mixing. Larger
particles may also agglomerate more readily, decreasing fuel homogeneity and interfering
with atomization quality, which can in turn reduce combustion efficiency and elevate NOx
formation due to less uniform temperature distribution. Among the tested nanoparticle
sizes, the 30 nm CeO2 particles resulted in the most favorable balance between NOx reduc-
tion and BTE. While direct measurements of particle surface area or dispersion behavior
were not conducted in this study, the observed trends are consistent with known effects in
nanoparticle-supported combustion enhancement [25]. Smaller particles, such as 10 nm,
are prone to agglomeration due to their high surface energy, which may reduce effective
dispersion and catalytic activity. Conversely, larger particles like 80 nm offer fewer active
sites due to lower surface area, limiting their contribution to combustion improvement. The
30 nm particles likely represent an optimal range where adequate surface area and stable
dispersion enable efficient oxidation reactions and better combustion kinetics. Further
research involving surface characterization and dispersion analysis would help to confirm
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these mechanisms. It should, however, be noted that long-term studies assessing nanopar-
ticle retention, potential agglomeration, and their fate in exhaust systems are essential for a
holistic evaluation of the nanoparticle integration in the biofuel. Advanced exhaust treat-
ment technologies, such as particulate filters or after-treatment systems, could be integrated
to mitigate any residual particulate matter that might arise in practical applications.

3.1.3. Role of Injection Timing in NOx and Efficiency Trade-Off

Injection timing is a primary control parameter for combustion phasing. The test data
span early (24◦ CA bTDC), mid (27◦), and retarded (30◦) injection timings. Advancing the
injection timing (24◦ bTDC) increases ignition delay, allowing for more premixed combus-
tion. This leads to a rapid and high-temperature pressure rise, significantly enhancing NOx
formation. NOx emissions are highest at early injection (1487 ppm at 24◦, 75% load, B20
neat). On the other hand, retarding the timing to 30◦ bTDC decreases the ignition delay,
reducing the premixed burn phase and lowering the peak temperature. Consequently, NOx
falls considerably. At 30◦, average NOx dropped to 836 ppm, compared to 1093 ppm at
24◦. This is physically consistent with the thermal sensitivity of NO formation, which is
exponentially dependent on flame temperature.

However, delaying the injection also causes a drop in thermal efficiency. With late
injection, combustion occurs closer to or even after TDC, reducing the expansion work and
increasing wall heat losses. At 30◦, BTE dropped to 24.34%, compared to 27.71% at 24◦. The
trade-off is evident, early injection favors power output but increases NOx; late injection
controls NOX but reduces efficiency, that calls for an optimization.

The most insightful trends emerge from the combined effects of all three parameters.
Considering the experimental trial having 24◦ IT, 75% Load, 30 nm NP, the NOx emissions
were 1432 ppm at BTE of 32.87%. This combination leverages early injection for better
efficiency and NP for improved combustion. However, it sacrifices NOx control due to the
inherent thermal load from premixed combustion. However, at 30◦ IT, 25% Load, 30 nm NP,
the NOx emissions dropped to 240 ppm with a BTE of 19.85%. Retarded timing and low
load combine to suppress NOx drastically. NPs compensate slightly for efficiency loss but
cannot fully overcome the combustion delay and energy inefficiency at low load. Figure 4
shows the response surface plots for NOx and BTE separately for 25%, 50%, 75%, and
100% of full load. These comparisons underscore that no single parameter alone governs
combustion behavior. Instead, it is the interplay between load-dependent thermodynamics,
injection-driven combustion phasing, and NP-catalyzed oxidation that determines engine
response. Hence, to understand the most optimal levels of the inputs, the NOx and BTE
were modeled using an ANN and optimization has been carried out using PSO.

3.2. ANOVA Results

The experimental data was statistically examined using Analysis of Variance (ANOVA),
and the p-values derived from this analysis are summarized in Table 3. Injection tim-
ing was found to have a statistically significant effect on both NOx (p = 0.017) and BTE
(p = 8.58 × 10−5), well below the accepted α = 0.05 threshold. Advancing the injection
timing tends to increase in-cylinder pressure and peak temperature due to longer ignition
delay and increased premixed combustion. The observed significance implies that even
small changes in timing can measurably alter both emissions and efficiency, underlining its
importance in optimization strategies for modern CI engines. Load exerted the most domi-
nant influence on both NOx (p = 4.21 × 10−8) and BTE (p = 1.01 × 10−13), with p-values
several orders of magnitude lower than the significance threshold. As engine load increases,
more fuel is injected per cycle to meet the power demand. This increases the amount of
heat released and elevates the in-cylinder pressure and temperature. As a result, both BTE
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and NOx emissions typically increase. The rise in BTE with load is physically attributed to
better utilization of fuel energy due to higher combustion pressure and improved cylinder
filling, while the increase in NOx stems from higher thermal gradients. The exceptionally
low p-values reinforce that load is a first-order effect in engine performance and emission
behavior. NP size significantly affected both NOx (p = 0.0375) and BTE (p = 0.0452). Cerium
oxide nanoparticles are known oxygen buffers and combustion catalysts. They promote
oxidation of soot precursors and facilitate more complete combustion. This can lead to
enhanced thermal efficiency (observed here as a statistically significant improvement in
BTE) and affects the emission characteristics. At low sizes, CeO2 may enhance combustion
and reduce NOx due to better oxidation, but at higher sizes, localized oxygen enrichment
may raise flame temperatures, counteracting the NOx reduction. The statistical results
capture this nuanced impact, which is often masked in simple trend analyses. None of
the two-way interactions (IT × Load, IT × NP, Load × NP) were statistically significant
for either NOX or BTE, with all p-values above 0.27 and most nearing 1. The absence of
significant interaction effects implies that the individual contributions of IT, Load, and NP
are largely independent in their influence on the response variables. In other words, the
effect of changing injection timing is not significantly altered by the level of load or NP
size, and vice versa. This simplifies the interpretation and modeling of engine behavior,
suggesting an additive model structure rather than a highly coupled system. The ANOVA
analysis supports a clear ranking framework for CI engine optimization. While load can-
not always be arbitrarily adjusted, understanding its impact is crucial in load-following
applications. IT offers a practical means to simultaneously target NOx and BTE, although
a trade-off typically exists, necessitating multi-objective optimization. NP size provides
a promising, chemically tunable route to enhance combustion performance, albeit with
diminishing returns or conflicting effects at higher concentrations. Importantly, the lack
of interaction effects simplifies the modeling and control strategies, enabling more robust
calibration of engines across different operating regimes. Although the ANOVA results
in Table 3 show significant main effects for injection timing, load, and nanoparticle size,
the interaction terms are not statistically significant at 95% confidence level. However,
the response surface plots in Figure 4 visually suggest interaction-like trends between the
parameters. This apparent discrepancy arises because the ANOVA tests interaction effects
based on predefined linear or polynomial relationships, whereas the ANN model used to
generate the response surfaces captures complex nonlinear relationships that can produce
interaction patterns even when formal interaction terms are not statistically significant.
Therefore, the visual trends observed in Figure 4 are consistent with the nonlinear behavior
learned by the model and do not contradict the ANOVA findings. This distinction is
important in interpreting the results and reinforces the complementary roles of statistical
analysis and machine learning-based modeling.

Table 3. ANOVA table for different input parameters and their interaction effects.

Variable
p-Value

Significance
NOx BTE

IT 0.017253 8.58 × 10−5 Significant

Load 4.21 × 10−8 1.01 × 10−13 Significant

NP 0.0375 0.0452 Significant

IT × Load 0.896 0.275 Not Significant

IT × NP 0.928 0.907 Not Significant

Load × NP 0.915 0.999 Not Significant
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(a) 

(b) 

(c) 

(d) 

Figure 4. Response surface plots for NOx and BTE obtained using ANN model for load variation at
(a) 25%, (b) 50%, (c) 75%, and (d) 100%.
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3.3. Optimization Using ANN-PSO

The ANN models for BTE and NOx prediction achieved coefficients of determination
(R2), exceeding 0.99 for training, validation, and testing, confirming the models’ robustness.
The corresponding weight and bias coefficients are provided in Table S1 (Supplementary
Material). These ANN equations were subsequently integrated into the PSO framework,
wherein the ANN outputs served as objective functions. The optimization yielded a Pareto
front representing the trade-off between BTE and NOx reduction. The non-dominated
solutions define the feasible region for engine calibration, enabling selection of optimal
operating conditions under dual-performance criteria. Recognizing that engine load exerts
a dominant influence on both combustion kinetics and emissions profile, the optimization
process was segregated into four distinct load points (25%, 50%, 75%, and 100% of full
load). This load-specific optimization strategy not only ensures practical relevance but also
captures the nonlinear influence of load on the response surface. The optimization results
and their corresponding experimental validations are summarized in Table 4. Figure 5
shows the Pareto front of the optimized NOx against the corresponding optimized BTE for
each of the four distinct loads. For each load condition, the PSO algorithm converged to a
unique combination of IT and NP that offered the best trade-off between NOx and BTE.

(a) (b) 

(c) (d) 

Figure 5. Plot of Pareto front of the optimized objective functions (NOx and BTE) after executing PSO
for engine loads of (a) 25%, (b) 50%, (c) 75%, and (d) 100%.

At low load (25%), the optimized injection timing of 26.66 and NP size of 33 nm
yielded a PSO-predicted NOx emission of 407 ppm and a BTE of 21.17%. Experimentally,
the NOx value was even lower at 305 ppm, with a comparable BTE of 21.1%. This close
agreement validates the ANN-PSO model’s accuracy at low thermal loads. The relatively
advanced injection timing favors better combustion initiation due to the lower cylinder
pressure and temperature at light loads. Simultaneously, CeO2 nanoparticles likely act as
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combustion catalysts and oxygen donors, improving oxidation of unburnt hydrocarbons
without substantially increasing NOx formation due to lower peak flame temperatures.

At 50% load, the model predicts an optimum timing of 28.40◦ and an elevated NP size
of 45 nm. This configuration yields a PSO NOx value of 1021 ppm and a BTE of 25.99%,
against an experimental NOx of 1108 ppm and BTE of 24.6%. The modest underprediction
of NOx by the PSO model may stem from localized hot spots or insufficient mixing at this
intermediate load. However, the rise in BTE reflects improved energy conversion due to
enhanced ignition delay and better premixing.

Table 4. Validation of the results obtained from the ANN-PSO model with the experimental data.

Load
PSO Experimental

IT
(◦)

NP
(nm)

NOx
(ppm)

BTE
(%)

IT
(◦)

NP
(nm)

NOx
(ppm)

BTE
(%)

25% 26.66 33.07 407 21.17 27.00 30.00 305 ± 6 21.11 ± 0.14

50% 28.40 44.85 1021 25.99 27.00 50.00 1108 ± 23 24.62 ± 0.16

75% 27.95 35.78 1160 31.49 27.00 30.00 1272 ± 27 32.13 ± 0.21

100% 30.00 21.92 1096 31.71 30.00 20.00 996 ± 21 28.58 ± 0.19

In the 75% load regime, optimization suggests an injection timing of 27.95◦ and 36 nm
NP, resulting in 1160 ppm NOx and a BTE of 31.49%. Experimental values closely mirror
these with 1272 ppm NOx and a slightly higher BTE of 32.1%. Here, the combustion
dynamics are governed by a more favorable pressure-temperature regime, wherein the
NP’s oxygen-buffering and thermal conductivity-enhancing characteristics promote flame
stability. The marginal underestimation of BTE by the model may indicate a need for finer
granularity in the surrogate model or slight experimental deviations in fuel-air stratification.

At full load (100%), the optimal configuration shifts to a delayed injection timing
of 30◦ and reduced NP size (22 nm), resulting in 1096 ppm NOx and 31.71% BTE via
PSO. The experimental NOx value of 996 ppm is notably lower, whereas the experimental
BTE (28.58%) trails the predicted value. The larger error in BTE here is possibly due to
heat losses at high loads that the ANN-based surrogate model could not fully capture.
The relatively retarded injection timing at high load is thermodynamically justified as it
mitigates NOx formation by limiting the peak temperature, while the reduced NP size
prevents excess catalytic surface area that could unintentionally favor NOx chemistry under
these aggressive conditions.

The trend across load points describes the nonlinear and coupled influence of injection
timing and NP size. Injection timing increases with load, shifting from 26.66◦ at 25%
load to 30◦ at full load. This advancement reflects the requirement for longer ignition
delays and better charge preparation under higher pressure conditions. NP size shows
a parabolic trend, peaking at 50% load. At lower loads, CeO2 improves combustion
without triggering NOx penalties, while at full load, excessive nanoparticles may aggravate
NOx due to elevated in-cylinder temperatures and secondary oxidation pathways. The
trade-off between BTE and NOx becomes more pronounced with load. At low loads,
combustion inefficiencies dominate; at high loads, the thermal NOx mechanism seems to
be the controlling factor. The PSO framework effectively navigates this trade-off.

The PSO results were experimentally validated using engine trials at the predicted
optimal operating conditions. The relative error between model-predicted and experimental
NOx values for 25%, 50%, 75%, and 100% loads were, respectively, 25.1%, 8.5%, 9.7%, and
9.1%, with an overall mean of 8.8%. Similarly, the relative error concerning BTE for the same
four loads was, respectively, 0.3%, 5.3%, 2.0%, and 9.9% with an overall mean of 4.4%. The
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application of the ANN-PSO optimization framework yielded noticeable improvements
in engine performance and emissions across different load conditions. At 25% load, the
average BTE across all tested nanoparticle sizes and injection timings was 20.23%, which
improved to 21.1% after optimization. Similarly, at 50% load, the average BTE of 24.49%
increased to 24.62%; at 75% load, a significant improvement from 30.38% to 32.13% was
observed; and at 100% load, the BTE remained stable with a slight adjustment from 28.59%
to 28.58%. In terms of NOx emissions, substantial reductions were achieved: at 25% load,
average emissions of 327 ppm decreased to 305 ppm; at 50% load, 1161 ppm reduced to
1108 ppm; at 75% load, 1322 ppm decreased to 1272 ppm; and at 100% load, 1120 ppm
dropped to 996 ppm. These results demonstrate the effectiveness of the integrated ANN-
PSO approach in identifying optimal combinations of injection timing and nanoparticle size,
particularly at moderate loads where improvements in combustion efficiency and emission
control were most pronounced. These values are within acceptable bounds for optimization
using the hybrid ANN-PSO technique, especially considering real-world engine variability.
The relatively high reliability of the model underlines the robustness of the ANN-PSO
framework. The results also suggest that load-specific optimization strategies are superior
to global models when dealing with systems exhibiting strong nonlinear behavior and
cross-parameter interactions.

4. Conclusions
This study investigated the combined influence of injection timing and cerium oxide

(CeO2) nanoparticle size on NOx emissions and brake thermal efficiency (BTE) in a CI
engine under varying loads. The experimental data showed that both injection timing and
nanoparticle addition significantly influenced engine performance. CeO2 nanoparticles
improved BTE across all loads due to their oxygen buffering and catalytic activity, but their
effect on NOx emissions was load-dependent. At higher loads, NOx increased slightly due
to elevated combustion temperatures, despite the presence of nanoparticles.

ANOVA analysis confirmed the statistical significance of the input parameters.
Load was the most dominant factor influencing both NOx (p = 4.21 × 10−8) and BTE
(p = 1.01 × 10−13). Injection timing (IT) also had a strong effect (p < 0.05), affirming
its role in combustion phasing and thermal efficiency. Nanoparticle size (NP) showed
moderate but significant influence on both NOx (p = 0.0375) and BTE (p = 0.0452). In-
teraction terms between variables, however, were statistically insignificant, indicating
minimal interdependence.

To identify optimal conditions, multi-objective particle swarm optimization (PSO)
was performed separately for each load level. The goal was to minimize NOx while
maximizing BTE. At all loads, the PSO algorithm successfully provided injection timing
and nanoparticle concentration values close to the experimentally validated optimum. The
differences between PSO-predicted and actual experimental outcomes remained within
acceptable limits, demonstrating the validity of the surrogate model used.

Overall, this integrated study demonstrates that injection timing and nanoparticle
dosage must be fine-tuned based on engine load. The proposed ANN–PSO framework is a
powerful tool for identifying these optimal conditions. This approach can serve as a basis
for developing real-time engine control strategies for improved efficiency and reduced
emissions in future diesel engine applications. Future research will include a detailed life
cycle assessment to quantify the environmental and economic impacts associated with the
production and use of cerium oxide nanoparticles in biodiesel blends. This will help to
better understand the net sustainability benefits and trade-offs, ensuring alignment with
global climate goals and energy accessibility objectives.
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