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Abstract

Particulate matter (PM) concentration, especially PM2.5, is a major culprit of environmental
pollution from unreasonable energy system emissions that significantly affects visibility,
climate, and public health. The prediction of PM2.5 concentration holds significant impor-
tance in the early warning and management of severe air pollution, since it enables the
provision of guidance for scientific decision-making through the estimation of impending
PM2.5 concentration. However, due to diversified human activities, seasonal factors and
industrial emissions, the air quality data not only show local anomalous mutability, but also
global dynamic change characteristics. This hinders existing PM2.5 prediction models from
fully capturing the aforementioned characteristics, thereby deteriorating the model perfor-
mance. To address these issues, this study proposes a framework integrating multi-scale
temporal convolutional networks (TCNs) and a transformer network (called MSTTNet) for
PM2.5 concentration prediction. Specifically, MSTTNet uses multi-scale TCNs to capture
the local correlations of meteorological and pollutant data in a fine-grained manner, while
using transformers to capture the global temporal relationships. The proposed MSTTNet’s
performance has been validated on various air quality benchmark datasets in the cities
of China, including Beijing, Shanghai, Chengdu, and Guangzhou, by comparing to its
eight compared models. Comprehensive experiments confirm that the MSTTNet model
can improve the prediction performance of 2.42%, 2.17%, 2.87%, and 0.34%, respectively,
with respect to four evaluation indicators (i.e., Mean Absolute Error, Root Mean Square
Error, Mean Absolute Percentage Error, and R-square), relative to the optimal baseline
model. These results confirm MSTTNet’s effectiveness in improving the accuracy of PM2.5

concentration prediction.

Keywords: air pollution; PM2.5 concentration prediction; temporal convolution network;
transformer

1. Introduction
Air pollution, especially fine particulate matter (e.g., PM2.5), has become a serious

global environmental problem due to its severe impacts on public health, climate, and
visibility [1]. PM2.5, characterized as particulate matter with an aerodynamic diameter
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of 2.5 micrometers or less, stands as a pivotal etiological factor in respiratory and cardio-
vascular diseases [2], e.g., malignant neoplasm of trachea, bronchus, and lung, and is
also closely related to premature mortality, e.g., other ischemic heart diseases, pulmonary
embolism, and cerebrovascular diseases [2]. Accurate prediction of PM2.5 concentrations is
indispensable to effective air quality governance, facilitating the implementation of timely
intervention strategies and pollution mitigation measures. Moreover, efficient and effec-
tive PM prediction can strongly complement the advantages of these satellite monitoring
platforms, e.g., TEMPO, CINDI-3, Sentinel-4, and GOME. These platforms can monitor
key gaseous precursors of PM (e.g., NO2 and SO2) and aerosol optical depth (AOD) at
high frequency and high resolution, and the predicted PM data can be used to verify and
calibrate PM estimation products derived from satellite AOD data. However, the dynamic
and non-linear characteristics of PM2.5 are affected by the complex interactions among mete-
orological conditions, industrial emissions, and socioeconomic activities, posing significant
challenges to traditional prediction models.

In retrospect, many methods have been developed for the task of PM2.5 concentration
prediction, such as the autoregressive integrated moving average (ARIMA) model [3],
multi-layer perceptron (MLP) [4], convolutional neural network (CNN) [5,6], recurrent
neural network (RNN) [7,8] and its variants (e.g., long short-term memory (LSTM) [9,10],
gate recurrent unit (GRU) [11,12], and among others. However, the task of PM2.5 prediction
is troublesome since air quality time series data change dynamically with various external
factors, such as human activities, seasonal factors, and industrial emissions.

Classical statistical analysis methods, including linear regression [13] and ARIMA [3],
are easy to comprehend and implement, and have been extensively employed in the sce-
narios of air quality prediction. However, these models generally rest on the assumption
that a linear correlation exists among the variations in air quality data. They struggle
to process the dynamic and high-dimensional data, resulting in degraded model perfor-
mance and adaptability. Ultimately, according to the constraints of linear functions, local
non-linear characteristics and long-term temporal dependencies may fail to be completely
captured [14,15]. Recently, some classical machine learning methods, such as support vec-
tor regression (SVR) [16,17] and MLP [4], have also been widely employed in air quality
prediction tasks. In this regard, SVR and MLP enable modeling the non-linear transforma-
tion relationships of input and output during training stage. The prediction ability is greatly
improved compared to statistical analysis methods. Nevertheless, these models tend to
encounter gradient-related issues and fall into local optimal solutions during the training
phase. This may potentially lead to the deterioration of prediction accuracy for such ma-
chine learning models in air quality prediction tasks. Therefore, for the first two classes of
methods, they are easy to implement, but their performance is limited because they cannot
achieve deep feature extraction for air quality prediction. Moreover, they cannot capture
the dynamic changes among indicators, which also degrades model performance.

With the advancements in artificial intelligence (AI) and deep learning, data-driven
techniques have risen to prominence owing to their capacity to capture non-linear relation-
ships and temporal dependencies. In the context of our research on PM2.5 concentrations
prediction, the importance of using an AI-based model stems from its ability to tackle
problems that are intractable for traditional physical/statistical models. Specifically, AI-
based models can process high-dimensional, non-linear feature data [18–21]. Air pollution
systems are influenced by a multitude of interacting factors (e.g., emissions, meteorology,
chemistry, topography). The relationships among these factors are highly non-linear and
high-dimensional. Traditional linear models (e.g., linear regression [13] and ARIMA [3])
often fail to capture these intricate patterns. AI-based models excel at automatically extract-
ing key features from data without requiring prior physical assumptions, thereby achieving
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effective predictions. Models such as LSTM [10], GRU [11], CNN [5], bidirectional LSTM
(BiLSTM) [18], and their hybrid variants [19–21] have been proven to have superior perfor-
mance in PM2.5 prediction by leveraging their capacity to process complex air quality data.
Within these models, CNNs are employed to model local or spatial correlations within air
quality time series [20]. However, CNN-equipped models often exhibit a limited capacity to
capture temporal and long-term dependencies, attributable to the restricted receptive field
using fixed convolution kernel and single scale form [22]. The RNN model and its variants
are employed to capture temporal dependencies within air quality data [10,11,18], but lack
global modeling capabilities [23,24]. In practical meteorological monitoring process, most
air quality data, e.g., humidity, wind speed, and pressure conditions, show local anomalous
mutability and global dynamic changes in different monitoring stations [25]. These data
features signify unprecedented changes impacted by heterogeneous external factors over
time. This may lead to the omission of relevant and critical information during the training
process, and some noisy data will also affect model learning, thereby deteriorating model
performance. In summary, the model that has fine-grained extraction abilities should be
constructed to capture both local anomalous mutability and global dynamic variation
features, achieving high-precision prediction.

To address the aforementioned issues in air quality prediction tasks, this study presents
a novel framework, called MSTTNet, which innovatively integrates multi-scale temporal
convolutional networks (TCNs) and transformer components, which can capture local
irregular variability and global dynamic variations in meteorological data. On the one
hand, the TCN component is capable of reducing the constraint of fixed receptive fields [22],
and capturing the intrinsic local characteristic in meteorology data. Currently, benefiting
from the architectural advantages, TCNs are being adopted in sequence modeling tasks, e.g.,
sequence prediction and classification [26–30], natural language processing (NLP) [31], and
medical image processing [32]. Transformers can model global correlations and weaken the
impact of noisy data on the model’s learning ability, which is broadly applied in computer
vision [33], pattern recognition [34], and sequence modeling [35–39]. In this paper, the self-
attention mechanism within the transformer block is able to process arbitrary portions of
air quality data without distance constraints, thereby endowing it with a stronger capability
to capture global dependencies.

Specifically, MSTTNet first employs two TCN blocks to capture local features from
the original air quality data. In each TCN block, a multi-scale architecture is designed to
extract local and spatial feature information of different scales in a fine-grained manner by
adopting different filter sizes, and the extracted representational information from different
scales in two TCN blocks is then fused. Subsequently, the fused features are fed into the
transformer part to adaptively learn and model the importance of features and time steps,
thereby facilitating the attenuation of the impact of noisy information. Finally, the flatten
layer and linear layer with one neuron are used to achieve PM2.5 prediction for the next time
slice. The performance of MSTTNet is tested among four real-world benchmark air quality
datasets, including Beijing, Shanghai, Chengdu, and Guangzhou. The comprehensive
experiments demonstrate that the proposed MSTTNet achieves an average improvement
of 2.42%, 2.17%, 2.87%, and 0.34%, respectively, across four evaluation indicators, i.e.,
MAE, RMSE, MAPE, and R2, compared with optimal baseline model BiLSTM. The key
contributions for this study are summarized as follows.

• A new air quality prediction framework called MSTTNet is proposed to model the
local correlation and global dynamic change characteristics of air quality data in a
fine-grained manner.

• MSTTNet innovatively integrates the multi-scale TCNs and transformer based on
their architectural advantages. Multi-scale TCNs are designed to extract local anoma-
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lous mutability and spatial information for different dimensions. The transformer
is adopted to adaptively learn and capture the significance of time steps and global
features, enabling the weakening of the impact of noise information.

• Extensive experiments are performed among four benchmark air quality datasets to
verify the prediction capacity of the MSTTNet. Numerical analyses manifest that the
MSTTNet has superiority in comparison with its eight competitors.

The rest of this paper is organized as follows. In Section 2, the related works on air
quality prediction are introduced in detail. Section 3 describes the architecture of proposed
MSTTNet. Section 4 reports the experimental details and results of the models, and analyzes
the performance difference among models. Finally, Section 5 describes the conclusion and
future work.

2. Related Work
Currently, air quality prediction is a hot research area, since it can assist government

authorities and decision-makers in the comprehensive management of emission control,
traffic management, urban planning, and many others. This prediction mode can also
remind residents to reduce PM2.5 exposure, and protect public health. By reviewing existing
models in air quality prediction, they can be categorized into three classes: statistical
analysis-based models, machine learning-based models, and hybrid models.

2.1. Statistical Analysis Models

This type of model, such as ARIMA, usually has good interpretability and high
computational efficiency, and is often used to predict small amounts of data in the early
years. For instance, Gourav et al. [40] employed the ARIMA time series technique to
model and predict the monthly future air quality in New Delhi, India. In response to
the limitations of the ARIMA model, subsequent studies have proposed a variety of
improvement solutions. Aladağ [41] combined wavelet transform with ARIMA to perform
air quality prediction, which achieved better results than traditional ARIMA. The study first
used wavelet decomposition to decompose the original air quality series into components
of different frequencies, then established ARIMA models for each component, and finally
reconstructed the prediction results [41]. Cekim [3] employed various time series models
to predict PM10 concentrations in 2019 in Hatay and Yalova, and confirmed that singular
spectrum analysis (SSA) is the optimal model.

Furthermore, several linear regression methods have also been employed for the
task of air quality prediction. For example, Abdullah et al. [42] used a multiple linear
regression (MLR) model to predict PM10 concentrations in the transboundary haze events,
and confirmed that the MLR model achieved the best prediction performance with lower
fitting errors. In addition to the above methods, other statistical techniques are often used
in air quality prediction. Zhou et al. [43] designed a seasonal grey model to predict air
quality time series in the Yangtze River Delta. Comparative experiments demonstrated
that the designed model is superior to other competing models in enhancing the prediction
performance when dealing with seasonal air quality variations.

However, air quality data exhibit highly non-linear and complex spatiotemporal de-
pendencies. This will cause the prediction accuracy of traditional statistical methods to drop
significantly, prompting researchers to turn to more advanced machine learning models.

2.2. Machine Learning Models

The revolution of computing power and big data technology has allowed machine
learning models, e.g., MLP [4] and RNN [10], to perform exceptionally well in air quality
prediction. The superior fitting ability of these machine learning models enables them to
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possess the accuracy that is difficult to achieve by traditional statistical analysis models
when dealing with non-linear and non-stationary air quality time series.

For instance, Talepour et al. [44] verified the prediction accuracy of MLR and MLP
models in predicting PM10 and PM2.5 levels. Experiment results showcase that the MLP
has impressive performance compared to the MLR model. The gradient issues inherent
in RNN models have been relieved by the adoption of sophisticated variants, e.g., LSTM,
GRU, and BiLSTM [10]. He et al. [10] implemented a suite of machine learning models,
encompassing LSTM, GRU, BiLSTM, and CNN–LSTM hybrid models, to predict the indoor
PM2.5 concentrations in shared office spaces. This study has assessed for robustness,
uncertainty, and feature importance, and confirmed the outstanding predictive ability
of LSTM over traditional mass balance models and other comparative models. Zheng
et al. [45] first applied a full-connection LSTM model in PM2.5 concentration prediction
for four major cities in China (i.e., Beijing, Shanghai, Guangzhou, and Shenyang) using
previous air quality monitoring data. The proposed model is capable of predicting PM2.5

concentrations over the subsequent 24-hour period by leveraging 72 hours of historical
monitoring data. Moreover, the merits of temporal convolutional networks (TCNs) in
sequence processing have been substantiated [22]. Specifically, TCNs not only showcase
exceptional competence in temporal feature extraction but also display prominent efficiency
in computational performance. Samal et al. [46] developed a TCN with an imputation block
(TCN-I), to simultaneously perform data imputation and prediction tasks. The numerical
results confirmed that the TCN-I model outperforms the baseline models. However, single
models typically exhibit limited generalization capability in parallel data processing and
continue to encounter obstacles in deriving meaningful patterns from complex and dynamic
air quality monitoring data.

2.3. Hybrid Models

The single model is often difficult to comprehensively extract the complex charac-
teristics of air quality data, so hybrid methods that combine the advantages of multiple
models have become a current research hotspot. The hybrid model is capable of alleviating
the issues of inadequate predictive capability and unstable generalization performance
inherent in a single model through the integration of diverse technologies, thereby at-
taining enhanced prediction accuracy [19–21]. For instance, Pak et al. [47] integrated a
spatiotemporal CNN with an LSTM neural network (called CNN-LSTM) to predict the daily
average PM2.5 concentration in Beijing. The CNN-LSTM predictor exhibits proficiency in
extracting the intrinsic features and long-term temporal dependencies from air quality and
meteorological input data. Zhu et al. [20] designed an automated hourly PM2.5 prediction
model by integrating 1DCNN-BiLSTM models utilizing input data from both the target
monitoring station and its adjacent sites. Experimental analysis conformed that proposed
model can promote the prediction ability. Due to the advantage of graph convolutional
network (GCN) to extract features from non-Euclidean spaces, so it is adept at modeling
the spatial features of air quality data. Qi et al. [48] adopted a hybrid framework GC-LSTM
that combines the GCN network and LSTM network to perform hourly PM2.5 concentration
prediction. The experimental analysis demonstrated that the GC-LSTM model is capable of
enhancing prediction performance. In comparison to conventional CNNs, the TCNs are
capable of expanding the receptive field through dilated and causal convolutions, thereby
enhancing the effectiveness of feature extraction. For example, Ren et al. [49] adopted a
hybrid framework that incorporates the TCN module and LSTM module for predicting PM
concentrations in Xi’an City. The TCN module was first employed to extract features from
the influence factors of PM, after which the LSTM network was leveraged to learn from
the TCN-derived high-level features, thereby enabling the prediction of PM concentrations.
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In addition, models based on attention mechanisms are also widely used. Li et al. [50]
proposed a PM2.5 concentration prediction method based on the RCG-attention model,
wherein the residual neural network and convolutional GRU are employed to learn spatial
and temporal features, respectively, and finally the multi-dimensional features can be
obtained by the attention mechanism.

Different from these works, this study adopts a multi-scale TCNs model with different
input channels to extract local anomalous fluctuations and spatial features in a fine-grained
manner. The extracted features are then modeled through the transformer with self-
attention mechanism to capture long-term dynamic changes. This framework focuses on
further promoting the air quality prediction ability while remedying the weaknesses of
traditional single models, e.g., CNN and LSTM.

3. Proposed Method
This section mainly describes the architecture of the proposed MSTTNet framework

to solve the problems mentioned in the air quality prediction tasks. The developed MST-
TNet framework effectively establishes predictive correlations between prior air qual-
ity metrics and subsequent PM2.5 concentration levels at future hourly time intervals.
The architectural implementation of the proposed MSTTNet framework, as illustrated in
Figure 1, comprises three key components: data preprocessing, feature extraction, and
PM2.5 concentration prediction.

Step 2. Feature Extraction

Original Data

Normalization

Step 1. Data 

Preprocessing

Data 

segmentation

TCN1_1

TCN1_2

TCN1_3

ADD

ADD

ADD

TCN2_1

TCN2_2

TCN2_3

ADD

ADD

ADD

Transformer

Encoder

Predicted 

Output

Step 3. PM Prediction

TCN_blocks Transformer_blocks

Flatten

Linear
Transformer

Encoder

Figure 1. The architecture of MSTTNet, including data preprocessing, feature extraction, and PM
prediction steps.

Specifically, the raw air quality data undergoes preprocessing prior to being fed into
the neural network for model training. This stage incorporates two essential processing
techniques: normalization operation and moving window sampling. Then, the multi-scale
TCNs module is constructed by integrating various TCN blocks with different filter sizes to
capture the local anomalous fluctuations and spatial relationships in a fine-grained manner.
Later, the transformer encoder is adopted to adaptively learn and capture the significance of
time steps and global features, enabling the weakening of the impact of noise information.
The final prediction of PM2.5 concentration is generated by processing the fused high-level
features through a dedicated prediction module, which sequentially incorporates a flatten
layer and a single-neuron fully-connected layer. The concrete construction processes of
each step are expounded as below.

3.1. Step 1: Data Preprocessing

Data Normalization: The original data from different sensors is assembled into a
multi-dimensional time series, including variables such as atmospheric pressure, humidity,
and PM concentration. Due to the multi-sensor acquisition of monitoring indicators,
the collected data typically exhibit significant variations in scale and dimensionality. To
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mitigate the adverse effects of such heterogeneity on model training performance, data
normalization represents an essential preprocessing step for sequence modeling tasks [20],
as it standardizes the input features within a uniform numerical range. For notational clarity,
let n denote the number of air quality data samples and m represent the dimensionality of
the feature space (i.e., the number of monitored variables). Formally, the original air quality
data is denoted as X = [x1,x2,x3, . . . , xi, . . . ,xn]

T , xi =
[
xi ,1,xi,2, xi,3 . . . , xi,j, . . . ,xi,m−1,xi,m

]
,

wherein xi,j indicates the measured value of the j-th air quality indicator at time step i.
Following standard preprocessing practices [9], we apply min-max normalization to scale
all features uniformly to the interval [0, 1], as calculated in Equation (1).

xnorm
(i,j) =

x(i,j) − xmin
(i,j)

xmax
(i,j)

− xmin
(i,j)

(1)

where x(i,j) and xnorm
(i,j) are the original and normalized air quality data, xmax

(i,j)
and xmin

(i,j)
denote

the maximum and minimum values observed in the air quality feature space, respectively.
Moving window sampling: Air quality prediction is essentially a typical sequence

prediction task, necessitating the transformation of multivariate time series data into
supervised learning samples through appropriate feature engineering. The moving window
sampling technique is adopted in this work, since this method can explore the temporal
relationship of air quality time series, and can obtain more sample data for model training.
Figure 2 illustrates the operational mechanism of the moving window sampling technique
employed in this study. It should be noted that the prediction target of each input sample,
i.e., features, is the PM concentration at the next moment. L denotes the lookback window
size (i.e., time lag) for historical observations, while m corresponds to the feature space
dimensionality (i.e., number of measured variables).

Time(i-L) i

Fix-length sliding 

horizon

 Input Samples

 ,m
x

 : ,i L i
x



(i-L+1) (i+1) 

Figure 2. Operational mechanism of the moving window sampling technique.

3.2. Step 2: Feature Extraction

• 1. Multi-scale TCNs block

A temporal convolution network (TCN) is an evolutionary structure for the classical
CNN architecture. The comparisons between traditional CNN and TCN are depicted in
Figure 3. To expand the receptive field in conventional CNN architectures, additional
convolutional layers must be sequentially stacked layer-by-layer. Inevitably, the progres-
sive deepening of network layers inherently leads to extreme growth in model param-
eters, which consequently demands greater computational resources for training while
potentially exacerbating gradient-related optimization challenges. In contrast, TCN archi-
tecture achieves receptive field expansion through adjustable dilation factors, which is a
lightweight design and does not increase the trainable model parameters.
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Input

k=3

(a) traditional convolution

Input

Hidden layer

Hidden layer

Output

d=1, k=3

d=2, k=3

d=4, k=3

(b) dilated causal convolution 

Figure 3. Detail description of traditional CNN and TCN structures.

The TCN architecture contains two elaborate components, namely causal convolution
and dilated convolution. The former can ensure strict temporal dependency in the predic-
tion process. This design guarantees temporal causality in sequence processing, where the
output at time step t is strictly conditioned on historical inputs from preceding time steps,
which is a significant distinction from the traditional CNN architecture, as illustrated in
Figure 3. This causal modeling approach effectively prevents temporal information leakage,
making it particularly suitable for sequential prediction tasks, e.g., time series prediction
and speech signal generation. The latter is dilated convolution, which can capture the
dependencies between different time steps in a longer range while maintaining constant
parameter complexity and computational overhead (i.e., dilated coefficient). Therefore, this
architecture enables fine-grained modeling of both local temporal patterns and spatial cor-
relations within air quality time series data. In contrast to conventional CNN architecture,
dilated convolution achieves expanded receptive fields through adjustable dilation factors
while more effectively capturing temporal dependencies within sequential data. The TCN
architecture synergistically integrates these advantages, preserving strict temporal causal-
ity while employing dilated convolutions to extract multi-scale features. This combined
structure enhances the model’s capacity for local–spatial relationship modeling without
compromising computational efficiency. Given an input sample x, for element s at time
step t in sample x, the convolution calculation of DCC [22] for a filter f is represented as in
Equation (2):

F(s) = (x∗d f )(s) =
ks−1

∑
i=0

f (i) · xs−d·i (2)

Among them, ∗ indicates the convolution calculation, d represents the dilation factor
governing receptive field expansion, k represents the size of filters, and s − d · i illustrates
the direction of the historical data. Figure 4 describes the TCN unit structure used in this
paper, including the residual mapping branch and identity mapping branch. Formally, the
calculation procedure for the n-th layer DCC in each TCN block can be represented as in
Equation (3):

DCC(n) = Conv1D(W(n), b(n), inputxi , kernel_size = ks, dilation_rate = d) (3)

After activation, batch normalization, and dropout layers, the extracted features of each
TCN unit can be obtained by adding the output of the residual mapping branch (denoted
as DCC) and identity mapping path (denoted as H(xi)), as calculated in Equation (4):

Oi
tcn_unit = DCC + H(inputxi ) (4)

where i represents the i-th TCN unit, i ∈ 1, 2, 3. Since different scales can model local
information of different granularities of air quality data, we adopt a multi-scale architecture
to perform feature extraction in parallel, as described in Figure 5, in which ks_i indicates the
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kernel size of the i-th TCN unit, and fn denotes the number of convolution filters. Finally,
the output of each multi-scale TCN block can be obtained by fusing the outputs of different
TCN units, as calculated in Equation (5):

hn
multiscale−tcn

= Add
(

O1
tcn_unit

, O2
tcn_unit

, O3
tcn_unit

)
(5)

where n represents the n-th layer of multi-scale convolutional blocks, and hn
multiscale−tcn

represents the fused high-level features from different TCN units.

⊕

BatchNormalization

Dropout

ReLU

1×1 Conv

Output：Otcn TCN unit

Input：xi

Dilated Casual Conv (d=i)

Figure 4. An illustration of the TCN unit.

Add

Input

TCN_1:

(ks_1×input_dim×fn )

TCN_2:

(ks_2 ×input_dim×fn)

TCN_3:

(ks_3 ×input_dim×fn )

Filter 

Addition
Add

Add

Figure 5. An illustration of the multi-scale TCNs block.

• 2. Transformer block

TCN modules are adept at capturing the local anomalous fluctuations and spatial
relationships hidden in air quality data, but their capacity to model long-term dynamic
change characteristics is weak. The limited prediction performance primarily stems from
TCN’s inability to effectively discriminate the relative importance of each time series and
relevant features when processing multi-scale air quality data across varying time steps
and representative features. They also cannot adaptively weaken the impact of the noise
information, which further limits the model performance.

This paper employs the transformer encoder module to address the limitations in-
herent in the TCN network. Specifically, it leverages the encoder component from the
classical transformer architecture to construct a more lightweight model framework [51,52],
which exhibits greater adaptability to the task of long-term feature extraction in air quality
prediction scenarios. The transformer encoder architecture incorporates two fundamental
components: a multi-head self-attention (MSA) mechanism for capturing global dependen-
cies and a position-wise feed-forward network (FFN) for feature transformation, with the
complete network structure illustrated in Figure 6. Notably, each sub-module incorporates
residual connections [23] for information propagation, with an additional requirement for
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layer normalization operations to optimize the learning process. The computation of the
multi-head self-attention mechanism is elaborated through the following procedure.

Q = xWq, K = xWk, V = xWv (6)

In this Equation (6), x, Q, K, and V denote the input sequence, keys vector, values
vector, and queries vector, respectively. The weight matrices, i.e., Wq, Wk ∈ Rdmodel×dk and
Wv ∈ Rdmodel×dv are learnable parameters, while dk stands for the dimensionality of the key
vector space.

Subsequently, the self-attention (SA) scores are calculated through a scaled dot product
operation through the scaled dot product function incorporating a normalization factor of
1
/√

dk, and the corresponding computational procedure is depicted as follows:

SA = Attention(Q, K, V)=So f tmax
(

QKT
√

dk

)
V (7)

where, QKT/√dk denotes the attention weight matrix that computes pairwise relationships
between Q and K vectors, subsequently normalized through Softmax activation to obtain a
probabilistic attention distribution. Through the above complex calculations, the output of
a head can be obtained. Nevertheless, relying solely on single-head attention for feature
extraction tends to be inadequate. Consequently, integrating multi-subspace feature rep-
resentations becomes essential for achieving comprehensive information extraction and
maintaining model robustness. To address this constraint, the MSA mechanism is imple-
mented through parallel computation of H independent attention heads, whose outputs
are subsequently concatenated to form a comprehensive representation. Accordingly, the
calculation of MSA can be expressed as follows:

MSA = Multi − Head(Q, K, V)

=Concat(head1, head2, . . . ,headi, . . . ,headH)
(8)

headi = Attention(Q, K, V) (9)

Upon completion of the computations pertaining to the MSA mechanism, the output
corresponding to this sub-block is derived via residual connections and layer normalization,
which subsequently serves as the input feature to the feed-forward network block. Ultimately,
the extracted features of the transformer block can be obtained, represented as htrans f ormer.

Feed Forward

Add&Norm

Multi-head Attention

Add&Norm

Input：
hmultiscale-tcn

Figure 6. The architecture of the transformer.
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3.3. Step 3. PM Prediction

To derive the final PM2.5 concentration, the extracted features from previous lay-
ers, denoted as htrans f ormer, are input into the prediction module of PM2.5 concentrations,
which comprises the flatten and linear layers. This step serves to accomplish the inference
process that maps the extracted features from previous layers to the PM2.5 concentra-
tion at the subsequent moment. Such an inference process can be formally expressed by
Equations (10) and (11), as follows:

h = Flatten
(

htrans f ormer

)
(10)

PMpred = ReLU(W · h + b) (11)

Here, W and b denote the trainable weight matrix and bias vector, respectively, while
PMpred represents the output of the predicted PM2.5 concentration value. In the training
stage, we employ the Mean Squared Error (MSE) as the objective function to quantify the
regression performance of the model, as formally defined in Equation (12):

LossMSE =
1
n

n

∑
i=1

(
PMpred

i − PMtrue
i

)2
(12)

4. Experimentation and Results
To verify the prediction accuracy of the proposed model, this section performs compre-

hensive comparative experiments on publicly available air quality datasets. Specifically, we
first present the experimental datasets and relevant evaluation indicators, followed by an
introduction to the baseline methods and model hyperparameter configurations employed
for comparative analysis. Finally, we elaborate on the experimental results, along with
associated ablation experiments and parameter sensitivity analysis.

4.1. Datasets Description and Evaluation Indicators

The study utilizes air quality monitoring data collected from four major Chinese
metropolitan cities, including Beijing, Shanghai, Guangzhou, and Chengdu [53]. By combing
through the relevant research literature, we can find that they either use fewer datasets [54], e.g.,
only one dataset, or focus on a specific region, such as India [19] or China [55], Europe [56,57],
and university campuses [58]. Therefore, it is reasonable to use four sets of data from a specific
region, i.e., China, to verify the generalization of the model. The collected dataset comprises
temporally-resolved air quality measurements recorded hourly from January 2010 to Decem-
ber 2015, with complete timestamps (i.e., year, month, day, hour, season) and spatial coverage
across multiple monitoring regions, including the Nongzhanguan, Dongsihuan, and US-posts
sites in Beijing. Since the air pollutants data recorded in US-posts is relatively complete, this
paper uses this column as the target column. In addition, since PM2.5 concentration is strongly
impacted by meteorological conditions, the complementary hourly meteorological data is also
obtained and collated from the weather data of airports and Central Meteorological Agency
(CMA) site in Guangzhou. Concretely, meteorological data includes Dew Point, Temperature,
Humidity, Pressure, etc. Since these datasets have missing data, denoted as NA, we choose
to directly delete the consecutive NAs in the early sampling period, and for the remaining
NAs, this paper uses easy-to-implement mean interpolation to replace them. It is important to
note that there are many time series interpolation methods, such as KNN, GAN, and nearest
interpolation [59,60]. In this manuscript, we did not pay too much attention to which interpo-
lation method is more effective in the air quality dataset, but focused on using a traditional
mean interpolation method [61,62] to solve the problem of missing values. To address the
difficulty of selecting between different interpolation methods, future work could continue
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to explore and design specialized air quality data interpolation methods to further improve
prediction performance. For model evaluation, the dataset was partitioned into training (70%)
and testing (30%) datasets, with detailed statistical characteristics summarized in Table 1. In
addition, MSTTNet and all baseline methods are conducted in the identical experimental
environment, which adopted a desktop equipped with a Core i5-8500 CPU and 8 GB RAM.

Table 1. Data description for experimental datasets.

Variable Type Variable Name Data Type

Air quality data PM2.5 numerical

Meteorological data

Dew Point numerical
Temperature numerical
Humidity numerical
Pressure numerical
Combined wind direction Categorical

(N/E/S/W/SE/NE/SW/NW)
Cumulated wind speed numerical
hourly precipitation numerical
Cumulated precipitation numerical

Timestamp

year numerical
month numerical
day numerical
hour numerical
season numerical

Evaluation indicators: The model’s prediction performance is quantitatively evalu-
ated using the following four indicators, including Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R2. Their
corresponding formulae are specified as follows:

MAE =
1
n

n

∑
i=1

∣∣∣Ypred
i − Yreal

i

∣∣∣ (13)

MAPE =
100
n

n

∑
i=1

∣∣∣Ypred
i − Yreal

i

∣∣∣ (14)

RMSE =

√
1
n

n

∑
i=1

(
Ypred

i − Yreal
i

)2
(15)

R2 = 1 −

n
∑

i=1

(
Ypred

i − Yreal
i

)2

n
∑

i=1

(
Yreal − Yreal

i

)2 (16)

Among them, Ypred
i represents the predicted results, and Yreal

i indicates the correspond-
ing ground truth. For error indicators (i.e., MAE, MAPE, and RMSE), the model can achieve
better performance with a lower value. In contrast, for the indicator R2, the model can
achieve better performance with a larger value, and the upper limit value is 1.

4.2. Baseline Models and Parameter Settings

A set of models within this field that have demonstrated superior predictive perfor-
mance in prior research are constructed and subjected to a rigorous comparative analysis
against the proposed prediction framework, MSTTNet. The detailed descriptions of these
state-of-the-art models are presented as follows:

MLP [44]: This model, known as an artificial neural network (ANN), is capable of
modeling non-linear relationships within the air quality dataset with better accuracy. We
implement it using a classical design with a three-layer architecture.
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1DCNN [5]: The 1DCNN can detect local correlations (e.g., pollutant concentration
fluctuations) within air quality time series through one-dimensional convolutional opera-
tions. Our implementation employs a single convolutional layer with learnable filters and
non-linear activation functions to extract salient local features.

LSTM [10] and GRU [11]: LSTM and GRU networks, developed as advanced variants
of classical RNNs, excel at modeling long-term temporal dependencies. In our implementa-
tion, each model utilizes a single-layer architecture employing either the LSTM or GRU
unit, respectively.

BiLSTM [18]: As a fusion of forward-propagating and backward-propagating LSTM
cells [18], this architecture decodes complex temporal patterns in air quality time series
through bidirectional context analysis. Our implementation employs a single BiLSTM layer
with shared hidden states.

BiGRU-Attention [63]: This hybrid architecture integrates bidirectional GRU process-
ing with attention mechanisms, enabling enhanced modeling of long-term dependencies in
air quality datasets while adaptively suppressing irrelevant features. Our implementation
comprises a BiGRU layer coupled with an attention layer.

1DCNN-LSTM [47]: This hybrid architecture synergistically models localized fluctua-
tions by using 1DCNN and long-range temporal dependencies via LSTM from air quality
and meteorological datasets. Our implementation comprises a single convolutional layer
coupled with an LSTM layer.

1DCNN-BiLSTM-Attention [20]: This hybrid architecture extracts spatiotemporal fea-
tures from air quality data through: (1) localized pollutant pattern capture by using 1DCNN,
(2) bidirectional temporal dependency modeling by BiLSTM, and (3) meteorological feature
weighting by attention mechanism.

To achieve better prediction performance, the selection of parameters within the
constructed model is important. The parameters of the proposed MSTTNet, i.e., epoch,
heads, filters, the number of TCN blocks, and the number of transformer blocks, exert
a profound influence on the prediction performance. To meticulously determine these
parameters, we employ a grid search strategy, conducting a sequential exploration for each
parameter. Specifically, across all air quality datasets, we delineate the search ranges as
follows: [50, 100, 150, 200, 300] for epoch, [16, 32, 64, 128] for the filter, [2, 3, 4, 6, 8] for the
heads, [1, 2, 3, 4] for the TCN blocks, and [1, 2, 3, 4] for the transformer blocks. Through the
search process, we identify the parameter combinations that yielded superior prediction
performance, which were subsequently utilized to configure the MSTTNet framework.
For clarity, all model hyperparameters and their respective configurations are systemat-
ically provided in Table 2. For the baseline models, we adhere to the default parameter
configurations documented in the relevant references.

Table 2. Parameter setting of MSTTNet for each dataset.

Parameters Beijing Shanghai Chengdu Guangzhou

Epoch 200 150 200 300
Head 2 2 3 2
Filter 32 32 32 32
TCN block 2 2 2 2
Transformer block 2 2 2 2
Kernel size (1, 3, 5) (1, 3, 5) (1, 3, 5) (1, 3, 5)

Time lag 24
Optimizer Adam
Batch size 32
Learning rate 0.001
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4.3. Prediction Results Analysis and Comparisons

This section conducts a systematic comparative analysis of MSTTNet against baseline
models through comprehensive experimental evaluations. The key findings are summa-
rized as follows.

We first present the numerical prediction results of each model across the four air
quality datasets in Table 3. As is evident from the table, the proposed MSTTNet attains
the optimal prediction performance, yielding superior results with lower error indicators
compared to the baseline models across most cases (14/16). This phenomenon is primarily
ascribed to the robust feature extraction capability of MSTTNet. The proposed multi-scale,
multichannel architecture enables the effective extraction of complex features in air quality
data through its hierarchical feature learning mechanism, thereby facilitating accurate
predictions. Furthermore, predicting air quality proves to be a challenging task for all
baseline models, as they fail to achieve higher prediction performance and better fitting ef-
fects. Concretely, the baseline models demonstrate significant performance variations when
evaluated across distinct air quality datasets, revealing limited generalization capability.
For instance, BiLSTM obtains the best performance in 2 out of 16 cases: MAPE value (18.40)
for the Shanghai dataset and MAPE value (17.10) for the Chengdu dataset. As a model with a
simple structure relative to CNN-LSTM and 1DCNN-BiLSTM-Attention, BiLSTM achieves
the best prediction performance among all baseline models. This phenomenon explains that
increased model complexity does not necessarily translate to significant performance gains.
BiGRU-Attention achieves better prediction performance in 2 out of 16 cases, i.e., the RMSE
(11.40) and R2 (0.9103) values for the Shanghai dataset, compared to all baseline methods.
In addition, 1DCNN-LSTM achieves better prediction performance in 1 out of 16 cases,
i.e., the MAPE value (22.08) for the Guangzhou dataset, compared to all baseline methods.
Nevertheless, the prediction accuracy of these comparative models in the remaining tasks
is deemed unsatisfactory.

Additionally, since MLP, LSTM, and GRU have limited deep feature extraction capa-
bilities, their prediction performance is unsatisfactory, and shows high prediction errors.
Although 1DCNN-BiLSTM-Attention can model both local and long-range dynamic fea-
tures, its basic architecture hinders effective prediction. This limitation likely stems from
potential information loss during feature extraction, compromising data integrity. Relative
to these baselines, MSTTNet employs the multi-scale architecture operating at different
scales to extract local and global representative features hidden within the air quality data.
It facilitates more accurate predictions, resulting in the observed performance advantages.

Next, we calculate the average improvement percentages of MSTTNet over baseline
models presented in the Table 4, to intuitively demonstrate its prediction capability and
generalization across diverse air quality time series. As shown, MSTTNet achieves signifi-
cant performance gains across all four indicators. Specifically, compared to optimal baseline
model BiLSTM, MSTTNet improves MAE, RMSE, MAPE, and R2 by 2.42%, 2.17%, 2.87%,
and 0.34%, respectively. Compared to the BiGRU-Attention model, the improvements are
4.17%, 3.36%, 3.57%, and 0.52%, respectively. In addition, compared to the shallow model
MLP, MSTTNet improves MAE, RMSE, MAPE, and R2 by 6.36%, 5.70%, 10.62%, and 1.04%,
respectively. Notably, comparative analysis reveals that the 1DCNN-BiLSTM-Attention
hybrid model demonstrates significantly poor prediction performance compared to both
MSTTNet and simple models (i.e., LSTM and GRU). As previously discussed, the model’s
fundamental architecture demonstrates limited capability in simultaneously extracting both
local and global features, resulting in inevitable information loss during feature extraction.
In summary, MSTTNet’s multi-scale architecture and comprehensive modeling capabilities
mitigate information loss, enabling the effective extraction of both local and global dynamic
features from air quality datasets.
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Table 3. Prediction results for each model in four experimental datasets.

Datasets Indicators MLP LSTM GRU BiLSTM BiGRU-
Attention 1DCNN 1DCNN-

LSTM

1DCNN-
BiLSTM-
Attention

MSTTNet
(Proposed)

MAE 11.85 11.59 11.95 11.37 11.71 11.81 11.69 13.93 11.06
RMSE 21.79 21.61 22.13 21.37 21.85 21.39 21.53 22.68 20.85
MAPE 29.71 26.72 27.80 25.26 25.40 29.12 26.18 35.08 23.37Beijing

R2 0.9337 0.9348 0.9316 0.9369 0.9346 0.9361 0.9353 0.9326 0.9393

MAE 7.21 7.04 7.10 6.98 7.07 8.63 7.58 7.70 6.82
RMSE 11.56 11.55 11.51 11.46 11.40 12.50 11.62 11.71 11.09
MAPE 19.86 18.68 18.62 18.40 18.81 28.21 22.83 23.39 19.31Shanghai

R2 0.9079 0.9080 0.9088 0.9095 0.9103 0.8920 0.9064 0.9056 0.9152

MAE 9.00 8.94 8.87 8.68 8.78 9.10 8.89 9.76 8.53
RMSE 13.11 12.79 12.82 12.63 12.76 13.09 12.78 13.51 12.38
MAPE 18.62 18.50 17.42 17.10 17.13 19.43 18.13 22.34 17.63Chengdu

R2 0.9325 0.9356 0.9353 0.9373 0.9360 0.9325 0.9358 0.9283 0.9398

MAE 6.13 5.83 5.87 5.80 5.91 6.08 5.83 6.61 5.63
RMSE 9.36 8.66 8.70 8.62 8.81 9.24 8.71 9.25 8.53
MAPE 22.99 22.30 22.46 22.72 22.68 24.21 22.08 29.70 19.98Guangzhou

R2 0.8958 0.9107 0.9100 0.9115 0.9077 0.8981 0.9098 0.8998 0.9135

* The best-performing results across all models are highlighted in bold, while suboptimal results are indicated
with underlining.

Table 4. Average improvement effects of MSTTNet on four experimental datasets.

Indicators MLP LSTM GRU BiLSTM BiGRU-
Attention 1DCNN 1DCNN-

LSTM

1DCNN-
BiLSTM-
Attention

MAE 6.36% 3.93% 4.83% 2.42% 4.17% 10.25% 5.72% 14.87%
RMSE 5.70% 3.05% 3.70% 2.17% 3.36% 6.73% 3.23% 7.38%
MAPE 10.62% 6.06% 5.51% 2.87% 3.57% 19.50% 9.60% 26.15%Imp.

R2 1.04% 0.51% 0.60% 0.34% 0.52% 1.36% 0.56% 1.13%

Ultimately, owing to space constraints, Figure 7 presents a visualization of fitting
effects between MSTTNet and baseline models, with the Guangzhou dataset serving as
a representative case study. As shown, the MSTTNet model consistently and accurately
captures future variation trends even when confronted with highly variable air quality data,
demonstrating superior fitting capabilities with low deviations. This is particularly evident
in its accurate fitting of several anomalous points within Figure 7. Conversely, baseline
models frequently deviate significantly when faced with local irregular fluctuations, failing
to achieve effective fitting and exhibiting high error. For instance, MLP, 1DCNN, and
BiGRU-Attention models show abnormal fitting for some time point data, e.g., in the data
sample interval [6000, 8000], which will also lead to an increase in model fitting error.
LSTM and 1DCNN-BiLSTM-Attention models also show large errors in fitting at some
sample points, e.g., in the sample interval [5000, 7000]. Although BiLSTM shows relatively
stable fitting ability at most sample points, it also shows insufficient ability at some sample
points, e.g., around sample point 4200. This inability to effectively mitigate the impact of
non-stationary variations during feature extraction is the chief culprit of their higher fitting
errors. Undue focus on these irregular data points significantly weakens the prediction
capability of the models. Furthermore, the selected time slot that contains 200 pieces of
sample data predicted by the competitive models and MSTTNet in Guangzhou dataset
are also depicted in Figure 8. We can observe that air quality prediction is a challenging
and complex task for all models. Each model cannot accurately capture the trend of PM
concentration. However, for MSTTNet, the deviation between the prediction values and
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the actual values remains relatively minimum amplitude in most cases, compared with the
baseline models. The comprehensive evaluations, incorporating numerical analysis, aver-
age improvement effects, and fitting results, demonstrate MSTTNet’s statistically significant
performance superiority. These findings empirically validate that hierarchical multi-scale
local and global feature learning is crucial for achieving accurate air quality predictions.

(a) MLP (b) LSTM (c) GRU

(d) BiLSTM (e) BiGRU-Attention (f) 1DCNN

(g) 1DCNN-LSTM (h) 1DCNN-BiLSTM-Attention (i) MSTTNet

Figure 7. Visualization of the fitting effects on the Guangzhou dataset for the proposed MSTTNet and
comparative models.

Figure 8. The fitting effects of partial subseries for MSTTNet and competitive models.

4.4. Performance Overhead Analysis

The computational efficiency of the models is evaluated by comparing their training
and inference times on the Shanghai dataset, as shown in Figure 9. Under identical training
conditions, MSTTNet requires the longest training time, about 3762 s, exceeding those of the
baseline models, e.g., BiLSTM, GRU, and 1DCNN-BiLSTM-Attention. It should be noted
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that this training overhead is influenced by factors such as the number of epochs; that is,
the larger the epoch, the longer it takes. Nonetheless, during the testing phase, all models
demonstrate low inference time. MSTTNet achieves an inference time of 3.89 s, which
is comparable to the baseline models. During the test process of these models, BiGRU-
Attention takes the longest time, about 4.39 s, while BiLSTM takes 3.6 s to test. However,
the performance of these models is still inferior to MSTTNet. Furthermore, the parameter
scales of all models are provided in Table 5 on the prediction task of the Shanghai dataset,
which is exported by the summary() function in the Keras framework. We can observe from
Table 5 that MSTTNet does not have large differences in model parameters compared with
most baselines. The parameter size of BiLSTM is 375,05, and that of MSTTNet is 43,041,
but MSTTNet significantly outperforms BiLSTM. This shows that MSTTNet can achieve
superior performance improvements with comparable model complexity.

(a) Training time in the Shanghai dataset (b) Testing time in the Shanghai dataset

Figure 9. The comparisons of the training and testing time for all models (time is measured in seconds).

Table 5. Parameter scale of each model on the Shanghai dataset.

Model MLP LSTM GRU BiLSTM BiGRU-
Attention

Parameter
Scale

1057 5281 14,273 37,505 41,049

Model 1DCNN
1DCNN-
LSTM

1DCNN-
BiLSTM-
Attention

MSTTNet

Parameter
Scale 1185 9153 27,357 43,041

4.5. Parameter Sensitivity Analysis

This section investigates the impact of parameter selections on model performance to
justify the selective model parameters. To this end, the sensitivity analysis is conducted
using the Beijing dataset as an example. Key parameters, including epoch, filters, heads,
the number of transformer blocks, and the number of TCN blocks, are adjusted within
reasonable ranges due to their significant influence on performance. The corresponding
results for each parameter combination are presented in Figure 10. It should be noted that
only the results of MAE, RMSE, and R2 are presented herein, given that the remaining
MAPE indicator displays analogous trends and owing to space limitations. The analysis
reveals the following key findings:
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• Regarding parameter ’epoch’: Simply expanding this parameter does not guarantee
improved model accuracy. This performance limitation may derive from either in-
herent architectural deficiencies of the model or intrinsic data limitations. Beyond a
certain point, the model’s performance plateaus and ceases to improve significantly
with additional training iterations. For instance, when trained for 300 epochs, the
model exhibits degraded performance compared to the 200 epochs configuration,
suggesting the onset of overfitting beyond this optimal threshold. Consequently, we
set the epoch value to 200 for the Beijing dataset to optimize the trade-off between
potential accuracy and resource expenditure.

• Regarding parameter ’filter’: The proposed model’s parallel multi-scale design enables
robust prediction performance despite employing limited filter quantities, demon-
strating efficient feature extraction capability. Nevertheless, escalating filter quantities
within the TCN layers fail to yield commensurate performance gains. More critically,
this expansion significantly inflates the model’s parameter volume, thereby elevating
the risk of overfitting. Furthermore, setting the number of filters excessively high intro-
duces unnecessary computational cost and training time overhead. So, we empirically
set the number of filters to 32 for the Beijing dataset.

• Regarding parameter ’head’: Increasing the number of heads in the transformer block
does not guarantee improved model performance. An inappropriate number of heads,
e.g., excessive or insufficient, may induce either overfitting or underfitting, both of
which degrade model efficacy. Therefore, we empirically set the number of heads to 2
to balance performance and efficiency.

• Regarding the number of TCN blocks: Changing this structure parameter of the model
(e.g., increasing TCN blocks quantities) does not bring desired accuracy improvement.
Overly deep and complex model architectures increase the difficulty of model training,
and the introduction of gradient issues can easily degrade model performance. More
critically, blindly expanding the model structure also inflates the model’s parameter
volume, thereby escalating computational costs. In this paper, we configure the
TCN block to 2, as this architecture demonstrate acceptable prediction error during
hyperparameter tuning.

• Regarding the number of transformer blocks: The transformer block quantities also
affect the model prediction performance, as observed in Figure 10m–o. Increasing or
decreasing the number of blocks cannot achieve the optimal performance trade-off.
Moreover, increasing the number of model blocks will also increase computational
overhead without bringing significant performance gains. Finally, we empirically set
the number of transformer blocks to 2 to reach a trade-off between model performance
and computational complexity.

• Regarding parameter ’time lag’: As the time lag increases, the performance of MST-
TNet gradually deteriorates and fluctuates. Increasing the input length of historical
data does not necessarily lead to performance improvements. This is mainly because
the long historical window contains more noise data, which affects model learning and
thus deteriorates model performance. Within the above range, when the time lag is
equal to 36 h, the model prediction error is the largest among these parameters. How-
ever, the 12 and 24 h time lag windows achieve comparable prediction performance,
indicating that the choice of a 24 h time lag in this paper is reasonable.
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(a) MAE vs. epoch (b) RMSE vs. epoch (c) R2 vs. epoch

(d) MAE vs. filters (e) RMSE vs. filters (f) R2 vs. filters

(g) MAE vs. heads (h) RMSE vs. heads (i) R2 vs. heads

(j) MAE vs. TCN block (k) RMSE vs. TCN block (l) R2 vs. TCN block

(m) MAE vs. transformer block (n) RMSE vs. transformer block (o) R2 vs. transformer block

(p) MAE vs. time lag (q) RMSE vs. time lag (r) R2 vs. time lag

Figure 10. The parameter sensitivity evaluations on the Beijing dataset for the proposed MSTTNet
architecture.
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4.6. Ablation Analysis

This section presents systematic ablation studies to quantitatively evaluate the indi-
vidual contributions of both the multi-scale TCNs and transformer components within the
MSTTNet architecture. The comparative analysis incorporates: (1) the 1DCNN-BiLSTM-
Attention baseline, and (2) three architecturally degraded variants of MSTTNet, specifically:

• MSTTNet_1 (single-scale TCNs with transformer): This alternative abandons the
multi-scale structure, which only retains the single-channel TCN, but the structure of
the transformer block remains unchanged.

• MSTTNet_2 (multi-scale TCNs without transformer): This alternative does not con-
sider the transformer block, which only retains the multi-scale TCNs architecture.

• MSTTNet_3 (transformer without multi-scale TCNs): To verify the effectiveness of
the transformer module, this alternative does not consider the multi-scale TCN block,
which only retains the transformer block.

In summary, MSTTNet_1 is used to verify the impact of multi-scale modeling capa-
bilities on model prediction, but it still maintains the modeling capabilities of local and
global features. MSTTNet_2 is used to verify the importance of global feature modeling
capabilities, but it only maintains multi-scale local feature modeling capabilities. MST-
TNet_3 is used to verify the importance of local feature modeling capabilities, but it only
maintains global feature modeling capabilities. The design of the above ablation version
aims to prove that the global–local feature extraction capability is the key to achieving
effective prediction.

Table 6 presents the comparative results of four prediction tasks, with significant
improvements in each task highlighted in bold. A detailed analysis of the numerical results
in Table 6 reveals several important observations. Across the four evaluation indicators,
i.e., MAE, RMSE, MAPE, and R2, MSTTNet_1 demonstrates enhanced performance in
3 out of 16 cases, while MSTTNet_2 fails to show any improvements across all 16 cases.
MSTTNet_3 achieves better predictions in one case. Nevertheless, the proposed MSTTNet
model achieves potential performance enhancements in 12 out of 18 cases, indicating its
overall superiority in most prediction tasks.

Among these models, MSTTNet_1 and the proposed MSTTNet models exhibit rela-
tively better prediction capabilities. The above results show that having comprehensive
feature extraction capabilities and being able to model both global and local features simul-
taneously are the keys to achieving effective prediction. The fact that MSTTNet outperforms
MSTTNet_2 and MSTTNet_3 emphasizes the criticality of simultaneously modeling local
and global relationships in the data during the training process. In contrast, MSTTNet_2 fo-
cuses solely on local and spatial features, while MSTTNet_3 concentrates on global features.
Local fluctuations are actually difficult to capture accurately, and these data can easily
cause the prediction model to “get lost”. Excessive attention to these noisy data will affect
the learning of the model and reduce the model’s ability to learn other stable data (except
noise data). This result strongly suggests that prediction models to address both types
of relationships is essential for achieving accurate predictions. Additionally, fine-grained
multi-scale feature extraction capability is also an important component, which can be
observed from the comparisons between MSTTNet_1 and the proposed MSTTNet.

Furthermore, when compared with the 1DCNN-BiLSTM-Attention model, all variants
have performance advantages, further reflecting the necessity of the designed network
architecture. This indicates that the effective feature extraction is crucial. MSTTNet uses
multi-scale TCN to replace the traditional 1DCNN, and uses transformer architecture to re-
place BiLSTM-Attention, which significantly enhances the model’s prediction performance
while maintaining computational efficiency.
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Table 6. Prediction results for each alternative in four experimental datasets.

Datasets Indicators
1DCNN-
BiLSTM-
Attention

MSTTNet_1 MSTTNet_2 MSTTNet_3 MSTTNet
(Proposed)

MAE 13.93 11.29 11.36 12.42 11.06
RMSE 22.68 20.78 21.36 21.74 20.85
MAPE 35.08 27.10 25.19 34.73 23.37Beijing

R2 0.9326 0.9397 0.9363 0.9340 0.9393

MAE 7.70 6.94 7.63 7.28 6.82
RMSE 11.71 11.11 11.77 11.67 11.09
MAPE 23.39 20.84 23.08 20.00 19.31Shanghai

R2 0.9056 0.9149 0.9046 0.9062 0.9152

MAE 9.76 8.62 8.63 9.01 8.53
RMSE 13.51 12.42 12.58 12.99 12.38
MAPE 22.34 18.31 16.86 16.38 17.63Chengdu

R2 0.9283 0.9394 0.9378 0.9337 0.9398

MAE 6.61 5.85 6.08 5.66 5.63
RMSE 9.25 8.70 8.95 8.67 8.53
MAPE 29.70 19.89 23.47 21.62 19.98Guangzhou

R2 0.8998 0.9101 0.9048 0.9105 0.9135
* The best-performing results across all models are highlighted in bold.

In summary, the empirical results demonstrate that MSTTNet’s multi-scale architec-
ture significantly outperforms single-channel schemes. This enhanced performance stems
from the model’s joint processing of local and global features via dedicated multi-scale
TCN and transformer modules, which achieves efficiency and completeness of feature
extractions and consequently delivers more stable predictions. We can also empirically
observe the complexity of air quality time series modeling. Insufficient or incomplete
feature extraction capabilities will greatly affect model performance. Therefore, we rec-
ommend that performing PM concentration prediction needs to consider both global and
local characteristics, and building a matching network architecture is the primary concern.
Additionally, based on these data analytic results, we elaborate on the explicit linkage to
practical actions and societal benefits. Accurate PM concentrations prediction can guide the
formulation of emission control strategies to combat air pollution problems. For example,
implementing congestion charging zones or promoting electric public transport during
these specific time windows, e.g., morning rush hours, could be highly effective. Another
benefit could be allowing government authorities to issue more accurate and timely health
alerts, advising susceptible populations to reduce outdoor activities.

5. Conclusions and Future Work
The proposed MSTTNet model overcomes the limitations in traditional time series

prediction models (e.g., CNN and LSTM) when capturing the complex structure features
of air quality data. MSTTNet architecture excels in incorporating both local and global
feature information by adopting multi-scale TCNs and the transformer framework, which
contributes to more complete information extraction ability. To validate the architectural
design and hyperparameter configurations, we have conducted systematic ablation studies
and comprehensive sensitivity analyses, which quantitatively demonstrate the rationality
of the model structure and parameter settings. The proposed MSTTNet’s performance has
been validated on various air quality benchmark datasets in the cities of China, including
Beijing, Shanghai, Chengdu, and Guangzhou, by comparing with its eight competition
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models. Extensive experimental evaluations confirm that the proposed MSTTNet achieves
statistically significant accuracy improvements compared to the optimal baseline model.

However, our model may also have some potential limitations. MSTTNet has only
been extensively validated on air quality datasets from different regions within China.
Different global regions (e.g., Europe or North America) and recent air quality datasets
with potentially different emission patterns can be considered, so the generalization of
the model is still worth exploring, but MSTTNet will still be applicable for air quality
data, including local and global features. Future research may explore more advanced
techniques, such as graph learning, adaptive optimization algorithms, and noise filtering
techniques, to improve model performance. Moreover, the joint use of satellite remote
sensing data and general sensor data for air quality prediction tasks can be further explored
in the future, and the use of remote sensing techniques and finer satellite instruments for
PM2.5 detection/retrieval [64] is also important. Our study provides a valuable ground-
based perspective and comparative analysis with their observations. It will complement
the spatial coverage of these satellite missions for future studies.
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41. Aladağ, E. Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal
adjustment. Urban Clim. 2021, 39, 100930. [CrossRef]

42. Abdullah, S.; Napi, N.N.L.M.; Ahmed, A.N.; Mansor, W.N.W.; Mansor, A.A.; Ismail, M.; Abdullah, A.M.; Ramly, Z.T.A.
Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in
Malaysia. Atmosphere 2020, 11, 289. [CrossRef]

43. Zhou, W.; Wu, X.; Ding, S.; Cheng, Y. Predictive analysis of the air quality indicators in the Yangtze River Delta in China: An
application of a novel seasonal grey model. Sci. Total Environ. 2020, 748, 141428. [CrossRef]

44. Talepour, N.; Birgani, Y.T.; Kelly, F.J.; Jaafarzadeh, N.; Goudarzi, G. Analyzing meteorological factors for forecasting PM10 and
PM2.5 levels: A comparison between MLR and MLP models. Earth Sci. Inform. 2024, 17, 5603–5623. [CrossRef]

45. Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting fine-grained air quality based on big data. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
10–13 August 2015; pp. 2267–2276.

46. Samal, R.; Krishna, K. Auto imputation enabled deep Temporal Convolutional Network (TCN) model for PM2.5 forecasting. EAI
Endorsed Trans. Scalable Inf. Syst. 2025, 12. [CrossRef]

47. Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep learning-based PM2.5 prediction considering the
spatiotemporal correlations: A case study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. [CrossRef] [PubMed]

48. Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural
network and long short-term memory. Sci. Total Environ. 2019, 664, 1–10. [CrossRef]

49. Ren, Y.; Wang, S.; Xia, B. Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction.
Atmos Pollut. Res. 2023, 14, 101703. [CrossRef]

50. Li, A.; Wang, Y.; Qi, Q.; Li, Y.; Jia, H.; Zhou, X.; Guo, H.; Xie, S.; Liu, J.; Mu, Y. Improved PM2.5 prediction with spatio-temporal
feature extraction and chemical components: The RCG-attention model. Sci. Total Environ. 2024, 955, 177183. [CrossRef]

51. Nirmala, G.; Nayudu, P.P.; Kumar, A.R.; Sagar, R. Automatic cervical cancer classification using adaptive vision transformer
encoder with CNN for medical application. Pattern Recogn. 2025, 160, 111201. [CrossRef]

52. Liu, Z.; Feng, Y.; Liu, H.; Tang, R.; Yang, B.; Zhang, D.; Jia, W.; Tan, J. TVC Former: A transformer-based long-term multivariate
time series forecasting method using time-variable coupling correlation graph. Knowl.-Based Syst. 2025, 314, 113147. [CrossRef]

53. Liang, X.; Li, S.; Zhang, S.; Huang, H.; Chen, S.X. PM2.5 data reliability, consistency, and air quality assessment in five Chinese
cities. J. Geophys. Res. 2016, 121, 10–220. [CrossRef]

54. Lu, Y.; Wang, J.; Wang, D.; Yoo, C.; Liu, H. Incorporating temporal multi-head self-attention convolutional networks and
LightGBM for indoor air quality prediction. Appl. Soft. Comput. 2024, 157, 111569. [CrossRef]

55. Zou, R.; Huang, H.; Lu, X.; Zeng, F.; Ren, C.; Wang, W.; Zhou, L.; Dai, X. PD-LL-Transformer: An Hourly PM2. 5 Forecasting
Method over the Yangtze River Delta Urban Agglomeration, China. Remote Sens. 2024, 16, 1915. [CrossRef]

56. Sohrab, S.; Csikós, N.; Szilassi, P. Effect of geographical parameters on PM10 pollution in European landscapes: A machine
learning algorithm-based analysis. Environ. Sci. Eur. 2024, 36, 152. [CrossRef]

57. Shetty, S.; Schneider, P.; Stebel, K.; Hamer, P.D.; Kylling, A.; Berntsen, T.K. Estimating surface NO2 concentrations over Europe
using Sentinel-5P TROPOMI observations and Machine Learning. Remote Sens. Environ. 2024, 312, 114321. [CrossRef]

58. Panaite, F.A.; Rus, C.; Leba, M.; Ionica, A.C.; Windisch, M. Enhancing air-quality predictions on university campuses: A
machine-learning approach to PM2. 5 forecasting at the University of Petros, ani. Sustainability 2024, 16, 7854. [CrossRef]

59. Owusu-Sekyere, K.; Chen, Y.; Tian, J.; Wang, J.; Dong, Q.; Wang, Z. A comprehensive study of interpolation methods in
electrohydrodynamic cone-jet across diverse liquid conductivities. Phys. Fluids 2025, 37, 082071. [CrossRef]

60. Sun, Y.; Li, J.; Xu, Y.; Zhang, T.; Wang, X. Deep learning versus conventional methods for missing data imputation: A review and
comparative study. Expert Syst. Appl. 2023, 227, 120201. [CrossRef]

61. Xue, Y.; Tang, Y.; Xu, X.; Liang, J.; Neri, F. Multi-objective feature selection with missing data in classification. IEEE Trans. Emerg.
Top. Comput. Intell. 2021, 6, 355–364. [CrossRef]

62. Hung, C.Y.; Wang, C.C.; Lin, S.W.; Jiang, B.C. An empirical comparison of the sales forecasting performance for plastic tray
manufacturing using missing data. Sustainability 2022, 14, 2382. [CrossRef]

http://dx.doi.org/10.1109/TITS.2025.3545445
http://dx.doi.org/10.1016/j.engappai.2024.109815
http://dx.doi.org/10.1016/j.knosys.2024.111637
http://dx.doi.org/10.1016/j.uclim.2021.100930
http://dx.doi.org/10.3390/atmos11030289
http://dx.doi.org/10.1016/j.scitotenv.2020.141428
http://dx.doi.org/10.1007/s12145-024-01468-3
http://dx.doi.org/10.4108/eetsis.5102
http://dx.doi.org/10.1016/j.scitotenv.2019.07.367
http://www.ncbi.nlm.nih.gov/pubmed/31689669
http://dx.doi.org/10.1016/j.scitotenv.2019.01.333
http://dx.doi.org/10.1016/j.apr.2023.101703
http://dx.doi.org/10.1016/j.scitotenv.2024.177183
http://dx.doi.org/10.1016/j.patcog.2024.111201
http://dx.doi.org/10.1016/j.knosys.2025.113147
http://dx.doi.org/10.1002/2016JD024877
http://dx.doi.org/10.1016/j.asoc.2024.111569
http://dx.doi.org/10.3390/rs16111915
http://dx.doi.org/10.1186/s12302-024-00972-z
http://dx.doi.org/10.1016/j.rse.2024.114321
http://dx.doi.org/10.3390/su16177854
http://dx.doi.org/10.1063/5.0282518
http://dx.doi.org/10.1016/j.eswa.2023.120201
http://dx.doi.org/10.1109/TETCI.2021.3074147
http://dx.doi.org/10.3390/su14042382


Sustainability 2025, 17, 8891 25 of 25

63. Chen, Y.; Ye, C.; Wang, W.; Yang, P. Research on air quality prediction model based on bidirectional gated recurrent unit and
attention mechanism. In Proceedings of the 4th International Conference on Advances in Image Processing, Chengdu, China,
13–15 November 2020; pp. 172–177.

64. Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved satellite retrieval of tropospheric NO2 column density
via updating of air mass factor (AMF): Case study of Southern China. Remote Sens. 2018, 10, 1789. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/rs10111789

	Introduction
	Related Work
	Statistical Analysis Models
	Machine Learning Models
	Hybrid Models

	Proposed Method
	Step 1: Data Preprocessing
	Step 2: Feature Extraction
	Step 3. PM Prediction

	Experimentation and Results
	Datasets Description and Evaluation Indicators
	Baseline Models and Parameter Settings
	Prediction Results Analysis and Comparisons
	Performance Overhead Analysis
	Parameter Sensitivity Analysis
	Ablation Analysis

	Conclusions and Future Work
	References

