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Abstract

Karst springs play a critical strategic role in regional economic and ecological sustainability,
yet their spatiotemporal heterogeneity and hydrological complexity pose substantial chal-
lenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage
hybrid deep learning architecture for daily spring flow prediction that integrates multi-
feature signal decomposition, meta-heuristic optimization, and interpretable neural net-
work design: constructing an Feature Mode Decomposition (FMD) decomposition layer to
mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops
Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolu-
tion, overcoming the limitations of traditional grid search; designing a Bidirectional Gated
Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring
flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov—
Arnold Networks (KAN) to replace the fully connected layer, and improving the model
interpretability through differentiable symbolic operations; Additionally, residual modules
and dropout blocks are incorporated to enhance generalization capability, reduce overfit-
ting risks. By integrating multiple deep learning algorithms, this hybrid model leverages
their respective strengths to adeptly accommodate intricate meteorological conditions,
thereby enhancing its capacity to discern the underlying patterns within complex and
dynamic input features. Comparative results against benchmark models (LSTM, GRU, and
Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in
MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction
errors are more tightly distributed, and the proposed model surpasses the benchmark
model in overall performance, validating its superiority. The model’s exceptional predic-
tion ability offers a novel high-precision solution for spring flow prediction in complex
hydrological systems.

Keywords: karst spring discharge; hydrological complexity; meta-heuristic optimiza-
tion; feature mode decomposition; bidirectional gated recurrent unit Kolmogorov—
Arnold networks

1. Introduction

Karst aquifers, as an important groundwater resource, are widely distributed in karst
landforms around the world, especially in China, Europe, and the United States [1,2]. The
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groundwater systems in these areas usually have complex hydrological characteristics, and
the interaction of cracks, fractures, and micropores forms a complex groundwater flow
network [3-5]. As a visible manifestation of the groundwater system, karst springs serve as
a crucial indicator for understanding the system’s dynamics [6]. Moreover, springs play a
vital role in supporting ecological, economic, and societal development [7]. Consequently,
investigating springs is of paramount importance.

There has been a growing body of research on simulation and prediction techniques
for spring discharge in recent years, with widespread applications. Gallegos et al. [8]
used MODFLOW-CEFP to establish a pipeline flow numerical model and analyzed the
impact of karst pipeline structure on the change of spring water flow. Some scholars
have proposed that semi-distributed hydrological models exhibit excellent performance in
predicting watershed runoff and spring discharge, particularly during high-flow and low-
flow periods [9]. Call1 et al. [10] proposed a new preprocessing method SCA routine, based
on the KarstMod model, which fully considered the impact of snowmelt on spring water
flow and further improved the model representation ability. Models based on physical
methods can provide valuable information for understanding the hydrological processes
of groundwater environments, but these methods rely on a large amount of observational
data on hydrological and geological conditions. To overcome the problem of insufficient
data, [11] constructed a simple physical model, DISHMET, that does not require complex
parameters and high-precision input data. It is used to reconstruct historical spring flow in
the absence of model assumptions. Therefore, it has strong applicability and can be used
in spring flow prediction scenarios in different regions. For incomplete time series data,
Katsanou et al. [12] improved the Modkarst model [13] in the time dimension, which can
process and fill in incomplete data, reduce the impact of missing data on model accuracy,
and provide estimates for some key parameters of karst aquifers. Although these improved
models help solve the problem of incomplete data, they still rely on a large amount of
observational data and detailed basin geological data, and the model calculation is large,
making it difficult to adapt to complex or data-deficient areas.

Recently, many scholars have conducted studies to understand the temporal changes
in spring discharge by analyzing historical records, which has facilitated forecasting. For
example, Farzin et al. [14] combined statistical methods with machine learning methods to
explore the differences in groundwater potential prediction using different combination
models. Granata et al. [15] used three machine learning models to predict spring flow and
concluded that a small amount of spring flow and precipitation data can achieve good
prediction results. At present, some studies have begun to apply deep learning methods
to spring flow prediction. The study developed a novel integration of decomposition
techniques with LSTM, and the findings revealed that the fused model exhibits superior
predictive capabilities compared to the individual LSTM model [16,17]. The DWT-WaveNet-
LSTM model constructed for spring flow prediction is superior to the single model at all
time steps by Zhou et al. [18]. Polz et al. [19] conducted a comparative analysis and believed
that Transformer has a greater advantage in spring flow prediction when the response time
is longer. However, due to the complex architecture of models such as Transformer, it is
difficult to effectively model local time series features under small sample sizes. Therefore,
the GRU model is more suitable for small sample time series prediction tasks [20].

For subsequences with nonlinear and non-stationary properties, direct modeling will
affect the robustness and accuracy of the model [21]. Therefore, some studies have tried to
use time-frequency analysis methods for noise reduction. For example, Zhou et al. [22,23]
applied the DWT and EEMD algorithms to decompose precipitation characteristics, thereby
facilitating the capture of overall trends and extraction of valuable information across
multiple scales. An et al. (2020) [17] used the decomposition results of SSA and EEMD to
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build models and compared the effects of different decomposition methods on the model
results. The selection of hyperparameters in deep learning algorithms has a significant
impact on the model’s effect. The manual tuning of parameters is characterized by sig-
nificant temporal and equipment costs; hence, the utilization of intelligent optimization
algorithms has become increasingly prevalent [24]. Rahbar et al. and Zhang et al. have
successfully utilized a genetic algorithm (GA) for hyperparameter optimization in their
prediction models and achieved good results. Dodangeh et al. [25] used GA and HS in
combination with different models, respectively, and proved that the model performance
was significantly improved and the transferability of the model was enhanced after use.
The AGTO [26] intelligent optimization algorithm is a multi-faceted improvement on the
GTO [27] intelligent algorithm. It enhances global search capabilities, convergence speed,
and adaptability, and can better solve complex optimization problems. Hussien et al. [28]
found that many fields of research use the AGTO optimization algorithm, which is of
great help to their own research. For example, Singh et al. [29] applied it to the field of
wind farm market bidding, calculated the optimal bidding strategy, and solved the non-
linear optimization problem. Tayab et al. [30] utilized the AGTO algorithm to fine-tune
the hyperparameters of the proposed machine learning and deep learning models, result-
ing in optimal performance. Although new intelligent optimization algorithms such as
AGTO have demonstrated excellent capabilities, they have not yet been widely used in the
hydrological field.

This study proposes a long-term transferable hybrid model, FMD-mGTO-BiGRU-
KAN, which integrates BiIGRU [31] and Kolmogorov—Arnold Networks [32] to capture
complex temporal patterns in spring discharge. FMD [33] decomposes nonlinear, non-
stationary precipitation data into multiple intrinsic mode functions, enhancing the model’s
adaptability to different frequency components. The decomposed precipitation components
and mean temperature serve as inputs. The integrated architecture incorporates convo-
lutional feature extraction and residual connections to enhance representational capacity,
while employing dropout regularization and L2-norm constraints to mitigate overfitting
and improve training stability /efficiency. Advanced intelligent optimization via modified
Group Teaching Optimization enables efficient hyperparameter search and adaptive tun-
ing, establishing a robust forecasting system. Compared with prior research, the model
demonstrates significant advantages: Unlike physics-based models (e.g., MODFLOW-CFP,
KarstMod) requiring extensive hydrogeological parameters, it maintains stable perfor-
mance in data-limited scenarios through FMD decomposition and intelligent optimization,
overcoming traditional models’ strong dependence on data completeness and geological
details. Relative to single deep learning models, the BiGRU-KAN fusion enhances dual
capture capabilities for temporal features and nonlinear relationships, with convolutional
extraction and residual connections further improving generalizability. mGTO outperforms
traditional algorithms (e.g., GA) in hyperparameter optimization efficiency, while FMD’s
processing of nonlinear data facilitates rapid adaptation to new regions, addressing lim-
itations of existing models in small-sample, complex-data scenarios. The incorporation
of FMD and mGTO enables future rapid architectural /parametric adjustments for new
datasets, supporting transfer applications across diverse study areas.

2. Study Area and Data Acquisition
2.1. Study Area

The Baiquan Spring Group, situated in Xinxiang City, is a renowned karst spring
cluster in China. It is positioned at the juncture of the northern Henan Plain and the
southern foothills of the Sumen Mountains (Figure 1). It is the connecting area between
the Taihang Mountains and the North China Plain. The total area of the springs is
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1260 km?, spanning the administrative regions of Huixian City, Weihui City, and Linzhou
City. The northern part of the spring area is an exposed mountainous area, with geological
structures mainly composed of carbonate rocks, and the southern part is a plain and valley.
The north, south, and southwest are separated by compressional faults; the northeast is
separated by the uplifted Archean relatively separated strata and magmatic rock intrusion
zone; the southeast is separated by the Qingyangkou deep fault, forming a relatively closed
hydrogeological unit. The Baiquan spring is located at the junction of the hills and the
plains, close to the convergent end of the broom-shaped structure formed by compressional-
torsion faults. The stress concentration in this area causes the rocks to break and form dense
fissures, which become an ideal place for karst water to flow and gather. The Huashan Fault
on the south side separates the Middle Ordovician limestone from the Neogene sandstone
and mudstone, which hinders the karst water in the fissures and eventually overflows on
the surface to form Baiquan. At present, the main drainage method is artificial mining, and
the natural drainage volume is relatively small [34,35].
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Figure 1. Baiquan Spring DEM.

The karst water recharge area of Baiquan Spring Area is mainly in the exposed bedrock
area dominated by carbonate rocks in the north and the exposed limestone area in the north-
east. The recharge method is direct or indirect infiltration of atmospheric precipitation. Due
to the cracks and pores in the rock strata, fissure karst is developed, which provides good
conditions for groundwater recharge. Therefore, precipitation is an important influencing
feature of spring water flow. Temperature is deeply involved in regulating the regional wa-
ter cycle and indirectly affects precipitation and infiltration by affecting evapotranspiration,
which is an important feature affecting spring flow. Therefore, this study uses precipita-
tion and temperature as input features to predict and analyze the spring flow of Baiquan
in Xinxiang.

2.2. Data Collection

The Baiquan Spring Group in Xinxiang City is currently managed and monitored by
the Baiquan Irrigation District Service Center in Huixian County, Henan Province. The
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existing monitoring data are from January 1964 to May 1979, and the data scale is monthly.
From 1979 to 2020, there was intermittent dry-up, and only a brief resumption of flow
occurred during the flood season. After the spring area suffered heavy rains in July 2021, it
began to resume flow on 24 July, and the data scale is daily. Since the early data before 1979
were on a monthly scale and had a small amount of data, they were not suitable for deep
learning modeling, and due to the long-term interruption from 1979 to 2020, they were
not of research value. Therefore, this study used the monitoring data from 24 July 2021 to
25 August 2024 as the research object, with a total of 1125 data points. The precipitation
and temperature data were sourced from the China National Meteorological Science Data
Center. The ridge plot of temperature variation distribution (Figure 2) presents the monthly
temperature patterns in the study area, which is of great significance for the research on
predicting spring flow based on temperature and precipitation. From January to March, the
temperature distribution is concentrated at relatively low values. Under the cold climate,
the low temperature will result in weak water evaporation and slow infiltration, thus
affecting the recharge of springs. From April to July, the temperature peaks gradually rise.
The warming promotes the melting of snow and ice (if any) and enhances the activity of
soil moisture, altering the process of precipitation transforming into spring water. From
August to October, the relatively high temperature is maintained, accelerating surface
evapotranspiration, affecting the groundwater cycle, and being correlated with spring
flow. From November to December, the temperature drops. The cooling environment
changes processes such as water infiltration. By cooperating with precipitation, it jointly
acts on spring flow. Its seasonal cycle provides a crucial dynamic basis of temperature for
flow prediction.
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Figure 2. Temperature Variation Distribution Ridge Plot.

2.3. Experimental Setup

The experiments were conducted on a computer equipped with an Intel (TM) I9-13900
processor, an NVIDIA RTX4080 graphics card, 32 GB of RAM, and 16 GB of GPU memory.
The model was constructed using the PyTorch (version 11.3) deep learning framework with
Python (version 3.9).

3. Methods

In this study, a new fusion model, FMD-mGTO-BiGRU-KAN, is constructed to dy-
namically model and predict the water flow of Baiquan Spring. Figure 3 describes the flow
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chart of this new architecture. FMD performs feature decomposition on the input data,
mGTO performs global optimization on the hyperparameters of the prediction model, and
constructs a CNN-BiGRU-KAN fusion model for modeling and prediction. Use FMD to per-
form characteristic mode decomposition on precipitation data, fully extract the impact and
periodicity of precipitation, reduce the nonlinear and non-stationarity of the data, capture
multi-time scale characteristics, and enable the model to use the influence of precipitation
more accurately. The decomposed feature components and temperature data serve as input
features for the prediction model, and are subsequently input into the CNN architecture.
Through the convolution, activation, and pooling processes, it can automatically learn
meaningful local patterns from the data and reduce sensitivity to noise. The features gener-
ated by the CNN model are further input into the BIGRU model. The model processes the
sequence in both directions, thereby capturing contextual information from both past and
future elements, which significantly enhances its ability to grasp the global context of the
sequence. The model output layer employs KAN in lieu of the conventional fully connected
layer, thereby enhancing predictive performance and improving the model’s interpretabil-
ity. It is noteworthy that the study implements various strategies to optimize the model’s
predictive performance, alleviate overfitting concerns, and strengthen its robustness and
applicability. (1) The mGTO intelligent optimization algorithm is introduced to perform
global optimization of multiple hyperparameters of the model, making full use of the influ-
ence relationship between various parameters to easily achieve good prediction results. At
the same time, the use of intelligent optimization algorithms can quickly adapt to different
data models in the future, improving the transferability and generalization ability of the
model. (2) Adding a residual block structure allows information to be directly transmitted
from the CNN layer to the KAN layer, avoiding the “degeneration problem” caused by too
many network layers and the gradient attenuation problem caused by multiple nonlinear
transformations [36], which helps to maintain the stability of the gradient and speed up the
convergence of the network. (3) Add Dropout rate and L2 norm. Due to the interruption of
spring flow and the problem of real-world detection, the amount of available data is not
very sufficient, so an overly complex network structure is prone to serious overfitting and
low generalization ability. Hence, the study employs two regularization strategies, Dropout
rate and L2 regularization, to simplify the model, reduce overfitting, and augment the
network’s robustness and generalizability. Finally, this study uses MSE, RMSE, and NSE as
evaluation indicators and compares with the benchmark models LSTM [37], GRU [31], and
Transformer [38]. Through the above multiple designs, this study fully utilizes the effective
information of input features, such as precipitation, to establish a prediction model with
high accuracy, robustness, and portability, while also reducing the huge training cost of
manually adjusting parameters.

3.1. Feature Mode Decomposition

Feature mode decomposition is a novel signal processing technique introduced by
Miao et al. [33], which was initially applied to decompose fault signals in rotating machin-
ery. The algorithm employs a non-recursive decomposition approach, utilizing adaptive
finite impulse response (FIR) filter banks with varying initializations and updating filter
coefficients to select different models (Figure 4). By taking into account the signal’s impulse
and periodicity, it demonstrates promising application potential in precipitation feature
extraction. The main ideas are as follows:
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In the task of signal decomposition, the filter is a very critical tool. It can “filter”
a specific signal by selectively enhancing or suppressing a specific frequency or time-
frequency, thus helping to complete the decomposition task. Filters can be divided into
two types: analog filters and digital filters according to the type of signal they process.
Analog filters use electronic components to simulate circuits and process continuous time
signals; digital filters use algorithms such as convolution to process discrete digital signals.
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FIR is a digital filter implemented in the time domain through convolution. The output
depends only on the current and past input values and does not contain feedback loops.
The mathematical expression [39,40]:

N-1
y[n] = ;}k[i]'x["—j] (1)
=

In the expression, y[n] denotes the filter output at discrete time #; x[n — j] represents
the input sample at lag j (with j = 0 corresponding to the current sample), thereby
incorporating historical information; h[j] are the filter coefficients, serving as weighting
factors that control the influence of inputs at different lags on the output and are initialized
using the window method to satisfy low-pass design requirements; N is the filter order,
which determines the length of the input history included in the computation, with higher
orders enabling a more detailed characterization of temporal features.

FMD designs an adaptive coefficient adjustment method to improve the traditional
FIR filter: The initialization of the filter is performed using a Hanning window-based
approach with a defined cutoff frequency, followed by an iterative optimization process to
refine the filter coefficients, thereby achieving a filtered signal that closely approximates
the target function. The frequency band of the original signal is partitioned into K equal
sub-bands during the initialization phase, and the upper and lower cutoff frequencies,
denoted as f; and f,, respectively, are determined for each sub-band as follows:

fi=k-fi/2K B .
{fez(k+]1).f]-/21< k=012,...K-1 ?

where f; denotes the original signal’s sampling frequency. A new filter bank is created
using Formula (2), consisting of filters with different cutoff frequencies that are uniformly
distributed across the original frequency spectrum.

(2) Filter Update and Period Estimation

FMD selects correlated kurtosis (CK) as its objective function. A high CK value
corresponds to the presence of significant spiky impulses within the signal (e.g., short-
duration intense precipitation), while a low CK value indicates a flatter signal distribution
(e.g., sustained weak precipitation or noise). The FMD framework is transformed into a
constrained optimization problem, with the constraint equation formulated as follows:

N /M 2 /N M
argmax{ CKpy(ug) = Z ( up(n — st)) / (Z “k(")2> )
{fe()} n=1 \m=0 n=1

By identifying a set of filter coefficients { f¢(!)} that maximizes the objective function
CKp(ug), the mode maximizing kurtosis preferentially focuses on the impulsive charac-
teristics of heavy rainfall. This process effectively separates these features from sustained
light rainfall and background noise, thereby providing an enhanced signal foundation for
precipitation intensity classification and extreme weather warning systems. The numerator

N /M 2
Y. < IT ug(n — mTS)> is the sum of the squares of the products of uy (1) at different time
n=1 \m=0

points n — mT; (m from 0 to M), which reflects the correlation of the signal over multiple

delay periods; the denominator normalizes the numerator to enhance the rationality of
comparison between different signals.

]
u(n) = Z%fk(]')X(n —j+1) (4)
=
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shows that uy(n) is the result of filtering the original signal x(n) through the kth FIR
filter fy of length J. In this convolution operation, x(n — j + 1) is the sampling point of
the original signal, and the filtered signal uy (1) is obtained by summing the products
of different j coefficients and corresponding sampling points. The objective function is

defined as: - -
_EXPWMXfe  fERxwx fi
CKM(uk) - HwH — “/H

fi XM X fi fi Rxx fr

In practice, accurately estimating the signal period is challenging. To overcome this

)

problem, the IMCKD technique is adopted to estimate the signal period from the measured
signal, leveraging the principles of autocorrelation theory. At the period position, the
autocorrelation spectrum exhibits a pronounced local maximum, and the first occurrence
of this maximum after the zero point is identified as the estimated period. As the FIR filter
is updated, the estimated period is refined, becoming increasingly accurate.

(3) Mode Selection

The modes representing precipitation characteristics may encompass components
such as seasonal periodicities, short-term rainfall impulses, and noise. The presence of
redundant modal components leads to the occupation of computational resources by
repetitive information, thereby increasing processing overhead. Furthermore, redundant
modes may introduce extraneous interference, obscuring critical precipitation features
and diminishing the accuracy and interpretability of the decomposition results. The
Correlation Coefficient (CC) quantifies the similarity between two modes; a high CC value
indicates significant redundant information shared between them. Consequently, the CC is
incorporated as a modal selection strategy, wherein the mode exhibiting the maximum CK
value is selected, as defined below:

g (up(n) —p)(uq(n) —tq)
CCpy = n=1 (6)
N N
L (up(n) _”b)z\/ Y (ua(n) —1g)°

n=1 n=1

where u;, and u; are the means of u;, and u; respectively. The resulting CC value is
bounded between —1 and 1. The proximity to 1 indicates a higher degree of correlation
between the two modes, suggesting that they share a larger number of identical compo-
nents. To eliminate mode aliasing and redundancy caused by multiple modes containing
shared components, the two modes with the highest correlation coefficient are identi-
fied. The mode with the lower CK value is then discarded, thereby retaining the more
informative one.

The FMD decomposition algorithm considers both the impulsive and periodic char-
acteristics of the signal, thereby enhancing its robustness to interference and noise. The
adaptive FIR filter facilitates the extraction of decomposition patterns without being con-
strained by filter parameters such as shape, bandwidth, and center frequency, thereby
yielding a more comprehensive decomposition. In this study, FMD is used to decompose
precipitation, and the decomposition results are input into the fusion prediction model
for prediction.

3.2. Bidirectional Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a streamlined recurrent neural network architecture
designed to address the vanishing and exploding gradient problems in Recurrent Neural
Networks (RNNs) when processing long-sequence data. Its core mechanism employs an
update gate (z;) and reset gate (r;) to precisely regulate information flow, thereby effectively
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capturing long-term dependencies in time series. The update gate (z;), computed from the
current input and previous hidden state with output values in [0, 1], dynamically balances
historical information retention: When z; approaches 1, greater proportions of historical
information from prior hidden states are preserved to maintain memory of long-term
sequential features; when z; approaches 0, the model prioritizes current inputs to adapt to
abrupt changes. The reset gate (r;), similarly generating outputs € [0, 1] based on current
inputs and previous hidden states, primarily filters and discards irrelevant historical
information: When rt approaches 0, it suppresses redundant historical data to reduce
interference; when rt approaches 1, it permits retention of valid historical information to
sustain temporal continuity. A candidate hidden state is generated by integrating current
inputs with the reset-gate-modulated prior hidden state, enabling refined feature extraction.
The final hidden state is then produced through linear interpolation by the update gate,
adaptively fusing previous hidden states with candidate states. This architecture allows
GRUs to preserve critical long-term dependencies while precisely responding to short-term
perturbations when processing complex long-sequence hydrological data.

zt = 0(Wz - [hy—1,x¢]) (7)
re = (Wy - [he—1,x¢]) 8)
Et = tanh(W . [Tt O hi_4, xt]) 9)
hy = (1 —z1) O hyq +Zt®ﬁt (10)

where W,, W, and W are weight matrices. The outputs of the update and reset gates are
constrained between 0 and 1. The update gate’s output approaching 1 signifies a greater
retention of the previous state, while the reset gate’s output approaching 0 indicates a more
significant forgetting of historical information.

Bidirectional Gated Recurrent Unit is a bidirectional architecture developed based
on GRU. Traditional GRU can only process sequence data in order, calculating hidden
states from front to back. BIGRU contains both forward and reverse GRU, and can process
input sequences from two directions at the same time (Figure 5), thereby better capturing
contextual information in the sequence. The forward GRU processes the input data in
chronological order from the beginning to the end of the sequence, and its calculation
process is the same as that of the ordinary GRU; the reverse GRU processes the input in
chronological order from the end to the beginning of the sequence, and its calculation
process is similar to that of the forward GRU, but the input order is reversed. The fi-
nal output concatenates the hidden states of the forward and reverse GRU at the same
time, namely:

W= [y, i) (1)

ﬁt and Zt denote the forward and reverse hidden states at time step ¢, respectively.
This approach allows the BiGRU model to comprehensively utilize information from both
preceding and succeeding time steps. The forward GRU captures the forward-propagating
influence of historical meteorological conditions on the current flow (e.g., direct recharge
from yesterday’s rainfall to today’s flow). In contrast, the backward GRU mines the
backward-propagating constraints imposed by future meteorological conditions on the
current flow (e.g., correction for today’s evaporative loss due to tomorrow’s temperature
drop). This synergistic action enables a more thorough characterization of the non-linear
lagged relationships among precipitation, temperature, and spring flow. Consequently;, it
overcomes the incomplete modeling of lag effects inherent in unidirectional models that rely
solely on historical data, thereby enhancing prediction accuracy. Compared to traditional
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RNN and LSTM models, BiGRU's bidirectional fusion mechanism fully resolves multi-scale
temporal dependencies, preventing information loss. Furthermore, its more streamlined
architecture and fewer parameters relative to LSTM lead to higher training efficiency and
superior generalization ability, especially in hydrological scenarios characterized by small
sample sizes and high noise levels. This allows the model to strike an effective balance
between accuracy and computational efficiency.

hey |

Xi

Figure 5. BIGRU model architecture diagram.

3.3. Kolmogorov—-Arnold Networks

The Kolmogorov—Arnold Networks [32] embodies a pioneering theoretical neural
network paradigm rooted in the Kolmogorov—Arnold representation theorem. This model
departs from traditional Multilayer Perceptrons (MLPs) by employing learnable spline func-
tions in place of fixed activation functions, substituting each weight with a parameterized
univariate function. This provides exceptional flexibility, as splines dynamically learn via
coefficient optimization rather than adhering to a static form. Their piecewise construction
ensures superior local adaptability to input variations, overcoming the limitations of global
activation functions in capturing local features. This local sensitivity and flexibility lead
to high parameter efficiency, allowing the model to approximate complex functions with
a minimal set of parameters, thereby improving generalization and reducing the risk of
overfitting in high-dimensional contexts. It fundamentally eliminates the dependence
on linear weight matrices and reduces the problems caused by the high dimensions of
traditional models. The core calculation graph formula is as follows:

2n+1 n
flx)=) q>d< <Pd,b(xb)> (12)
i1 =1

Functions ®; and ¢, are expressed as B-spline curves, and the target function is
approximated by learning the spline curve parameters. The B-spline function is generally
expressed as:

spline(x) =} ¢;Bi(x) (13)

The coefficients ¢; is optimized during training to achieve the best fit, and B;(x)
corresponds to the B-spline basis functions that are defined over a grid structure. The dis-
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tribution of grid points determines the effective domain of each basis function. Adjusting
the sparsity and density of grid points systematically controls the functional characteristics:
sparse configurations extend the influence of basic functions to achieve greater smooth-
ness through averaging effects, while dense arrangements restrict effective intervals to
permit localized rapid variations in the function, thereby reducing overall smoothness but
enhancing the ability to capture fine details. Furthermore, the grid distribution regulates
the smoothness of the entire function space by modulating the overlap regions between
adjacent basis functions, where increased overlap produces smoother transitions between
segments. Adaptive grid adjustment through dynamic updating enables the system to
automatically respond to input data distributions by locally refining grids in regions of
high functional variability while maintaining coarse grids in relatively stable domains.
This strategy ensures modeling flexibility while preventing parameter redundancy. Grid
extension techniques, which minimize the distance between coarse-grid and fine-grid basis
function representations, consequently play a critical role in determining both the global
morphology and local smoothness properties of the resultant spline curves. The network
is stacked and deepened by the KAN layer matrix ® = {¢, , } composed of 1D functions.
The KAN network with a depth of L is expressed as:

KAN(x) = (®p_10PL 0+ 0P 0Dg)xs (14)

The activation function is specifically initialized using the residual activation function
¢(x) = wypb(x) + wsspline(x), and the spline grid is dynamically updated based on the
input activation. Unlike conventional MLP models that rely on linear weight matrices
for feature transformation, the KAN framework employs univariate spline functions to
replace traditional linear weights. The localized nature of spline basis functions allows for
decoupled feature transformations, where individual function behaviors can be examined
in isolation without interference from other model parameters, thereby achieving supe-
rior transparency in functional mapping mechanisms. To enhance the interpretability of
the model, the Kolmogorov—Arnold Network (KAN) adopts simplification techniques.

Np
Specifically, it defines the L1 norm of the activation function as |¢|; = N%, Y ’4) (x(5)> ’ and
s=1

Ny n

the L1 norm of the KAN layer as |®|; = ), fft |¢ij|1 [41], while introducing an entropy
i=1j=1

Nip Noy i ]
e Zt |4>l,] 1 log |‘Plr] '), The overall training
=121 @) |@ls

regularization term denoted as S(®) =

J-1 J-1
objective is formulated as $;o101 = Jprea + A | 1 & | @jl1 + 42 ¥ S(®;) |. This architec-
j=0 j=0

tural design facilitates network sparsity by enabling the model to retain only essential
functional components, resulting in a well-defined structural organization. The imple-
mentation of spline functions serves dual advantages: they permit shape visualization
and can be converted into known symbolic functions, thereby achieving a transition from
numerical fitting to symbolic formulations. This transformation allows model behavior to
be expressed through human-interpretable mathematical representations. Finally, KAN
initializes the fine grid parameters based on the existing coarse grid by minimizing the
distance between the new fine grid function and the coarse grid function. Solving the op-

Gy+k—1 Gy+k—1 2
timization function {c]’} =argmin E v C;-B]’-(x) — Y ¢Bj(x) | todetermine
{cp P\ j=0 i=0

the fine grid parameters {C; } This study uses the KAN layer to replace the fully connected
layer of the traditional model as a parameter of the prediction output layer to construct the
fusion model.
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GX(t+1) =

3.4. An Improved Gorilla Troops Optimizer

Inspired by the collective behavior of gorillas, the Gorilla Troops Optimizer (GTO) is a
metaheuristic algorithm designed to solve optimization problems. GTO simulates the social
structure and behavior of gorilla troops to perform optimization operations. The algorithm
comprises two primary stages: exploration and development, with distinct mechanisms
applied during each stage to facilitate effective optimization.

During the exploration phase, three distinct mechanisms were devised, with their
corresponding calculation formulas being;:

(UB —JB) x e1 + B, rand < p,
(e2—C) x X,(t) +] x D, rand > 0.5, (15)
X(t) =T x (] x (X(t) — GXc(t)) +e3 x (X(t) — GXc(t))), rand <0.5.

where represents the gorilla’s present position vector, and GX(t + 1) denotes the prospec-
tive position in the following iteration. When rand < p, where p is a parameter between
0 and 1 that dictates the probability of mechanism selection, and ¢; is a random value
between 0 and 1, the algorithm proceeds to the unknown position mechanism, with UB
and |B representing the variable’s upper and lower limits. This mechanism facilitates
the algorithm’s ability to perform comprehensive explorations within the problem space,
thereby enhancing the discovery of novel potential solution regions. When rand > 0.5, the
mechanism of moving to other gorillas is calculated by the formula:

C=Fx (1—Miilt> (16)
F=cos(2xes)+1 (17)
J=Cxj (18)
D=2ZxX(t) (19)

It denotes the current iteration number, MaxIt is the total iteration count, e; ~ ey
represents random values between 0 and 1, j is a random number in the interval [-1, 1], and
Z is a random quantity within the bounds of [—~C, C]. This mechanism promotes a balance
between exploratory and developmental aspects. When the algorithm is in condition
rand < 0.5, it serves as a mechanism for relocating to a known position. As a result, this
mechanism significantly enhances the algorithm’s ability to search various optimization
spaces and assists in avoiding local optima.

During the update phase, use the “Follow the Silverback” mechanism and the com-
petition for adult females mechanism to conduct more refined searches and improve
search performance.

“Follow the Silverback” mechanism: The entire troop of gorillas abides by the Silver-
back gorilla’s decisions. The mechanism is triggered at C > W:

GX(t+1)=] x H x (X(t)—Xg)+X(t) (20)

Competition for adult females: This means that young gorillas challenge the original
leader and compete for female gorillas. When C < W, the mechanism is triggered:

GX(t41) = Xs — (Xe x Q— X(£) x Q) x A (21)

where X denotes the optimal position vector. Upon completion of the update phase,
the fitness values of all GX individuals are evaluated. If a fitness value meets condi-
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tion GX(t) < X(t), the corresponding individual GX(t) is adopted as the new indi-
vidual, and the optimal solution discovered during the search is designated as the new
silverback gorilla.

mGTO is an enhanced version of GTO, addressing its propensity to converge pre-
maturely and get trapped in local optima when tackling complex optimization tasks. It
integrates Elite Opposition-Based Learning (EOBL) [42] into the initialization and update
phases to enhance the initial solution quality and population diversity. Furthermore, mGTO
combines GTO with the Cauchy Inverse Cumulative Distribution (CICD) and Tangent
Flight Operator (TFO) to bolster its local search capabilities, balance the search strategy;,
and improve convergence, thereby avoiding local optima. The main improvements are
as follows:

Initialization phase: Use EOBL technology to generate the initial population. For
the given problem, the reverse position f; = (Rk1%%2 - %xp) of the individual
X = (xx1,Xk2, - - xkp) in the population is calculated by £;; = F x (dy; + dzj) — xxj,
where F € [0,1] is the generalization factor and the dynamic boundary dy; = min(x; ;) to
dy; = max(xy;). If £ ; < yjor £ ; > y;, then £ ; = rand(y; + z;). This approach leverages
elite individuals to direct the population toward the optimal solution, simultaneously
promoting population diversity.

Update phase: Improved “Follow the Silverback” mechanism: Based on the original
“Follow the Silverback” mechanism of GTO, CICD operator is added. The improved model:

X(t4+1) = X(0)+ ] x Hx (X(£) ~ Xs) % (001an(r(p — 3))) @)

The calculation method of | and H is the same as the original algorithm, p = randan(1,d).
This enhancement decreases the gap between the gorilla and the silverback gorilla, re-
sulting in a rapid reduction in the final step size, thereby facilitating a quicker conver-
gence to the optimal target value. Improve the “competition for adult females” mecha-
nism: Add the TFO operator to the “competition for adult females” mechanism, and the
improved formula:

X(i) = Xs — (X x P — X(t) x P) x tan(vg) (23)

Among them, P = 2 X r5 — 1 and v are random numbers uniformly distributed in the
range of [0, 1], and r5 ranges from 0 to 1. The TFO operator can balance exploration and
development search and control the step size to avoid insufficient precision.

This study applies the mGTO algorithm to optimize critical hyperparameters in the
hybrid model architecture, with training loss specifically designated as the fitness function.
This strategic implementation enables accelerated convergence during model training while
simultaneously enhancing precision in parameter estimation.

3.5. Evaluation Indicators

To comprehensively evaluate the performance of the proposed model and the bench-
mark models, this study employs Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Nash-Sutcliffe Efficiency (NSE) as evaluation metrics. The specific formulas
are as follows: ;

1 N
MSE =~ Y (y; — 9:)° (24)
i=1

RMSE = [13" (y; — ;) (25)
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Y (Qoi — Qsi)?

NSE =1- g
Z(Qo,i - Qo)

(26)

4. Results
4.1. Determination of Parameters of FMD Characteristic Modes

This study used precipitation and average temperature to predict spring flow. As
shown in Figure 6, the original data without decomposition was used to directly model
the model. The MSE and NSE of the prediction were 0.06831 and 0.0179, respectively,
which is a very poor result. After decomposition, the prediction accuracy began to improve
significantly, indicating that the use of FMD has a huge improvement in the modeling
and prediction of spring water flow. In the FMD decomposition process, the number of
modes needs to be determined according to the actual data. In order to find the optimal
decomposition characteristic number, this study decomposes the precipitation data starting
from n = 3 and gradually increasing by 1. The maximum decomposition number is 15.
The decomposition results are input into the model for modeling. Through 16 rounds of
operation, the average results of multiple runs in each round are taken to calculate various
evaluation indicators.

—— MSE RMSE —— NSE
best NSE: 0.9732
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Figure 6. Evaluation of the predictive performance of the selective BIGRU-KAN hybrid model using
varying numbers of decomposition components as input features. The numbers on the x-axis are
arranged from small to large, where 0 means using the original undecomposed data. The number of
decompositions starts from 3, and the maximum number is 15.

As shown in Figure 6, when the number of modes is 8, the MSE and RMSE are the
smallest, which are 0.014 and 0.0375, respectively, and the NSE is the largest at 0.9732, which
has very good prediction accuracy. For decomposition numbers less than 8, an increase in
the number of decompositions results in a gradual reduction in loss and a corresponding
improvement in NSE; in contrast, when the number of decompositions surpasses 8, the NSE
tends to decrease and the loss tends to increase, despite some fluctuations in the indicators.
Therefore, choosing 8 as the number of decompositions is reasonable and effective.

As illustrated in Figure 7, the Baiquan area is situated in the northern region of
the North China Plain, characterized by highly uneven precipitation, which results in
significant nonlinearity and instability in the original precipitation data. Direct use not
only fails to provide effective information for the model but also causes interference. FMD
is used to decompose this nonlinearity and transform high-frequency oscillation features
into smooth features that can be better recognized and utilized by the model. When
there are too few decomposed modes, the features cannot be extracted completely and
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effectively, and the decomposition results are still unstable to a certain extent; when there
are too many decomposed modes, redundant information and unnecessary noise are easily
introduced, resulting in greater error in the results, which is not conducive to the next step of
analysis. Therefore, the appropriate number of features has an important impact on research
and analysis.
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Figure 7. FMD decomposition mode and original data.

4.2. Intelligent Optimization Algorithm for Hyperparameter Optimization

This study uses a mature and efficient intelligent optimization algorithm to optimize
the model’s hyperparameters to obtain more accurate and robust model parameters. In
deep learning experiments, the time window length (look back), learning rate, number of
training rounds (num epochs), and batch size have an important influence. The choice of
look-back period influences the number of past observations that are used to forecast future
values in a time series model, which affects its ability to identify temporal dependencies;
learning rate controls the parameter update step size, affecting the model’s convergence
speed and stability; num epochs determines the number of times the model traverses
the training set, affecting training adequacy and overfitting risk; batch size represents
the count of samples processed together for a single parameter update, influencing the
trade-off between memory usage and the precision of gradient estimation. At the same
time, these hyperparameters have a significant mutual influence relationship, and their
synergistic effect will jointly affect the model performance and training efficiency. Therefore,
hyperparameter selection is an important factor affecting the model. In this study, the
mGTO algorithm is employed to optimize the aforementioned four hyperparameters. The
parameters of mGTO are configured as follows: 100 iterations, a population size of 50, and
a probability of 0.03. The range for hyperparameter tuning is presented in Table 1:
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Table 1. Model hyperparameter setting range during mGTO global optimization.

Parameter Range

look back 3~30
learning rate 5x 107°~1 x 1073
num epochs 200~600

batch size 16~128

Figure 8a shows the changes in the population during the optimization process. At
some iteration points, the population diversity dropped sharply. For example, when it
was close to the 40th iteration, the diversity value dropped from about 20 to close to
10, indicating that the algorithm focused on exploring certain local areas at these stages,
resulting in a decrease in the differences between individuals in the population and a
decrease in population diversity. At other iteration stages, the diversity value rose rapidly.
For instance, during the 60th to 80th iterations, the value repeatedly surged from a relatively
low level to over 30, demonstrating the algorithm’s capability to re-explore various regions
of the solution space. This re-exploration enhanced the population’s diversity, thereby
facilitating the escape from local optima and the continued pursuit of improved solutions.
The population size is generally maintained between 15 and 30, and a certain diversity can
be maintained in most iterations, with the ability to continuously explore new solution space
areas. Figure 8b depicts the exploration and exploitation percentages as blue and orange
curves, respectively. The observation that the exploration percentage is generally higher
than the exploitation percentage implies that the algorithm is biased towards exploring
new regions of the solution space, which enables it to identify potentially better solutions
and avoid getting trapped in local optima prematurely. Near the 40th and 80th iterations,
the development ratio increases significantly, indicating that the algorithm focuses on deep
mining and optimization of the discovered better solution areas.

The global fitness shows an overall decline during the optimization process (Figure 8c).
In the early stage of the iteration, the fitness drops rapidly, and drops to about 0.3 around
the 20th iteration. After that, it shows a trend of staged decline. After each decline, it will
remain stable within a certain range until the next decline, indicating that the optimization
algorithm can quickly find a better solution at the beginning, causing the target value
to drop significantly. With the progression of the iterations, the algorithm can continue
to improve the solution and eventually converge, always effectively optimizing in the
direction of the optimal solution. Finally, when it is close to the 100th iteration, the fitness
drops to about 0.15, and finally, a good result is obtained, indicating that the optimization
result can be used for modeling. The running time of each round of iteration is not fixed
(Figure 8d). Although the running time also fluctuates, it generally fluctuates between 1000
and 1400 s, especially after 80 rounds. It generally shows a downward trend, indicating that
the computational efficiency of the algorithm is improving. The above results show that the
global optimization of mGTO obtains a reasonable and effective result, so the optimization
result is used as the model training parameter. The results are shown in Table 2:

Table 2. The best results of hyperparameters for mGTO global optimization.

Parameter Look Back Learning Rate Num Epochs Batch Size
result 6 8.44306 x 1074 303 61
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Figure 8. The global optimization trajectory of the mGTO algorithm is visualized, with the iteration
count on the x-axis. The figure comprises four subplots: (a) illustrates the change in population size
over the course of iterations, (b) shows the dynamic ratio of exploration to exploitation, (c) displays
the evolution of fitness (global optimal value), and (d) presents the running time for each iteration.

4.3. Comparison of Prediction Effects of Different Models

In this study, the FMD-mGTO-BiGRU-KAN architecture was constructed as a predic-
tion model to predict the water flow of Baiquan Spring. We split the data into three distinct
sets: training, validation, and Prediction set, in the ratio of 70:15:15. To compare the perfor-
mance of this model, we used the currently popular spring flow prediction models, LSTM,
GRU, and Transformer as benchmark models for comparative analysis. Since all benchmark
models had very poor prediction results using the original data, with an accuracy of less
than 0.1, they lost their significance as benchmark models for comparison. Therefore, all
four groups of models used FMD-decomposed data for modeling. To ensure the reliability
of the comparison results, the same data partitioning method and architecture parameters
were used, and the average value was taken through multiple repeated experiments for
analysis. Figure 9 shows the change of MSE with the number of iterations during the train-
ing and verification process of FMD-mGTO-BiGRU-KAN and three comparison models. It
can be seen that the loss of the four models decreases smoothly during the training process
and eventually stabilizes, indicating that there is no overfitting phenomenon. At the same
time, it can be seen that the descent process of Figure 9a,d is smoother, indicating that the
training process is more robust.
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Figure 9. Training and validation losses of FMD-mGTO-BiGRU-KAN (a), LSTM (b), GRU (c), and
Transformer (d).

Table 3 shows the MSE, RMSE, and NSE values of the constructed FMD-mGTO-BiGRU-
KAN and three benchmark models in the training, validation, and prediction processes.
The model accuracy is greater than 0.87, and all have good prediction performance. By
comparison (Figure 10), it is found that the FMD-mGTO-BiGRU-KAN model performs
best in all results among the four groups of models. The MSR and RMSE in the training
set are reduced by 61.11% and 37.19% respectively, compared with the average values
of the comparison models, and the prediction process is reduced by 82.47% and 50.15%
respectively. The NSE in training, validation, and prediction is increased by 6.98%, 7.10%,
and 8.01% respectively, and the prediction accuracy is as high as 0.9825. The model has an
accurate prediction ability and is more robust. The losses of the four models all increase
in prediction, but the increase of FMD-mGTO-BiGRU-KAN is much smaller than that of
the comparison model, indicating that this model has excellent generalization ability and
robustness. GRU performed the worst, mainly because its architecture is relatively simple,
sacrificing some prediction accuracy. LSTM and Transformer performed similarly, with
Transformer performing slightly better in training and validation sets, but slightly worse in
the prediction process, indicating that Transformer has a slight overfitting phenomenon
due to its overly complex structure.

Table 3. Comparative analysis of calibration and validation performance among FMD-mGTO-BiGRU-
KAN, LSTM, GRU, and Transformer.

FMD-mGTO-BiGRU-KAN LSTM GRU Transformer

MSE-Train 0.0014 0.0038 0.0044 0.0027
RMSE-Train 0.0376 0.0618 0.0663 0.0515
NSE-Train 0.9637 0.8954 0.8797 0.9274
MSE-Val 0.0007 0.0039 0.0048 0.0038
RMSE-Val 0.0260 0.0625 0.0693 0.0620
NSE-Val 0.9835 0.9237 0.9063 0.9248
MSE-Pred 0.0706 0.3515 0.4840 0.3734
RMSE-Pred 0.2658 0.5929 0.6957 0.6111

NSE-Pred 0.9825 0.9213 0.8916 0.9163
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Figure 10. Evaluation indicators of the prediction effects of four models on different data sets.

Figures 11 and 12 show the prediction errors of the four models. The red dotted line
of y = x in Figure 11 red dotted line, representing y = x, demonstrates the correlation
between predicted and true values. The scatter points’ closeness to the line is indicative of
the model’s prediction accuracy. It is evident from the figure that the FMD-mGTO-BiGRU-
KAN model achieves the highest concentration of points, with a uniform distribution of
errors across stages near the dotted line. The distribution of LSTM and GRU is relatively
discrete, especially when the true value is large; Transformer predicts larger values when
the true value is small, and smaller values when the true value is large, and the prediction
ability of the peak value is insufficient. Figure 12 shows the distribution of prediction
errors. The violin plot of the FMD-mGTO-BiGRU-KAN model is narrow, indicating that
the error value distribution is relatively concentrated, the median (horizontal line in the
box) is close to 0, and the box is short, indicating that most of the errors are concentrated in
a small range, the degree of dispersion is low, and the model prediction error is small and
stable. The violins of LSTM and GRU are wide and have extreme values, indicating that
the prediction is unstable. The median of Transformer is close to —0.25, and the overall

error is large and uneven.
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Figure 11. Scatter plots of the predicted and observed discharges of Baiquan Spring during the four
model prediction phases.
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Figure 12. Violin plots of the predicted and observed Baiquan Spring discharge during the four
model prediction stages.

5. Conclusions

Detecting and forecasting spring flows is a task that is critical to the sustainable
development and utilization of springs, but the complex structure of the groundwater
system makes it difficult to predict using conventional methods. This study proposes a
relocatable hybrid deep learning architecture of FMD-mGTO-BiGRU-KAN for Baiquan
water flow prediction. This architecture integrates different algorithms and uses targeted
algorithms for different stages of prediction: FMD is used in the data stage to perform
feature decomposition of precipitation, which can cope with feature data of different
noises. mGTO is used in the parameter selection stage to perform global optimization of
hyperparameters, and the most suitable hyperparameter combination can be quickly found
for any data and model, thereby improving the model’s transferability and generalization
capability. BIGRU-KAN is used in the prediction stage. The BiGRU architecture is adopted
to handle time series data, identify data in both directions at the same time, and improve
the ability to identify and simulate historical laws. KAN eliminates the traditional reliance
on linear weight matrices, reduces the problems caused by the high dimensionality of
traditional models, and improves the interpretability of the model. The primary conclusions
drawn from this research are presented below:

(1) FMD was used to decompose precipitation data. Through multiple experiments,
the effects of different decomposition numbers on model performance were explored
(Figure 6). The results show that when decomposition is not used, due to the serious
nonlinear and irregularity of precipitation, the model prediction effect is extremely poor,
and the prediction accuracy is close to 0 (the performance is consistent in the benchmark
model). Starting from the number of decompositions of 3, the model performance began to
improve significantly. When the number of decompositions is 8, the MSE and RMSE reach
the minimum, which are 0.014 and 0.0375, respectively, and the NSE reaches the maximum
of 0.9732. When the number of decompositions continues to increase, the volatility of MSE
and RMSE begins to increase, and the volatility of NSE decreases. Our findings suggest
that decomposing the data into 8 features yields the best model performance. When the
number of decompositions is insufficient, effective information cannot be fully mined.
When the number of decompositions is too large, new noise is easily introduced, resulting
in information redundancy. Compared with the use of original data, the introduction
of FMD effectively utilizes the feature data that was originally unusable, consequently
leading to a significant enhancement in the model’s predictive performance. Meanwhile,
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the application of FMD in the benchmark model also greatly improves the prediction effect,
indicating that FMD has significant transferability.

(2) Use mGTO to globally optimize the model hyperparameters to avoid local optimal
problems caused by manual debugging. mGTO is a further optimization and improve-
ment based on the excellent intelligent optimization algorithm GTO, and has excellent
performance. By introducing the intelligent optimization algorithm, on the one hand, we
can better utilize the mutual influence factors between hyperparameters to avoid falling
into local optimality, optimize the model’s overall effectiveness, and reduce the time and
equipment costs caused by manual adjustment of parameters. On the other hand, the
intelligent optimization algorithm is transferable. In the future, when modeling spring flow
data in different regions or adjusting the model architecture, we can search for the best
hyperparameter combination globally more quickly, reduce training costs, and improve
model performance.

(8) Compared with other commonly used models (Figure 10), the FMD-mGTO-BiGRU-
KAN hybrid deep learning architecture has a more accurate and robust prediction effect.
During the training, validation, and testing process, it has lower prediction loss and higher
prediction accuracy. The MSE and RMSE in the test set are 82.47% and 50.15% lower than
the comparison model on average, and the prediction NSE is as high as 0.98, which is
8.01% higher than the baseline model on average. The model’s predictive performance
is outstanding. As evidenced by the analysis of prediction errors (Figures 11 and 12),
the proposed model exhibits a smaller, more concentrated, and uniformly distributed
prediction error, thereby demonstrating its superior predictive stability and robustness.

6. Discussion

The prediction model developed in this study demonstrates substantially enhanced
accuracy compared to existing research, where FMD decomposition significantly improved
model performance (original data Nash-Sutcliffe Efficiency /NSE = 0.0179). This aligns
with findings by Zhou et al. [14,18], confirming the efficacy of time-frequency decompo-
sition for nonlinear hydrological data. By optimizing the modal number (n = 8), our
approach better accommodates daily-scale precipitation data characteristics and overcomes
limitations of conventional decomposition methods in extremely small-sample scenarios.
The BiGRU-KAN integrated architecture exhibits exceptional performance, achieving ap-
proximately 6% higher NSE than LSTM models with superior generalization capability.
While consistent with An Lixing et al. [13] regarding accuracy gains through model fusion,
our framework demonstrates enhanced performance in complex hydrological contexts
due to KAN'’s superior nonlinear relationship capture coupled with BiGRU’s sequential
processing strengths. This research addresses a critical gap in the Baiquan spring system
literature, with quantitative results reflecting methodological trends in comparable studies.
Its breakthrough in data-scarce scenarios establishes a novel paradigm for hydrological
forecasting in similar regions.

The current research has two main limitations. On the one hand, it lacks interpretability
regarding hydrogeological physical processes. Although the model establishes a high-
precision prediction model based on characteristic data and historical data, it provides
insufficient explanations for internal mechanisms such as precipitation infiltration and
fracture seepage. On the other hand, due to the model design focusing on data-driven
prediction logic, it neglects the impacts of stratal lithology, fault structures, and other
factors on groundwater movement. In the future, emphasis will be placed on promoting
the integration of traditional hydrological mechanisms and deep learning models. By
incorporating hydrological model equations, a hybrid model that combines the advantages
of data-driven approaches and mechanism interpretation capabilities will be constructed.
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This model will not only retain the prediction efficiency of deep learning but also reflect
the physical laws of hydrological processes, thereby improving the model’s reliability
and transferability.
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