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Abstract: The interaction between moisture content and soil suction is commonly rep-
resented by a soil–water characteristic curve (SWCC). The direct measurement of water
content can be easily achieved, but it usually requires a destructive method where the soil
sample needs to be oven-dried. Hence, indirect measurement is commonly employed for
monitoring purposes. The limitation of this approach is the variability in water content
at the wilting point, particularly for plants in different types of soil. While the moisture
content at the wilting point varies greatly, suction at the wilting point is typically around
1500 kPa despite varying slightly depending on the type of plant. However, suction mea-
surement using a normal tensiometer is limited to 100 kPa due to cavitation. Hence, it
is not sufficient to cover up to the wilting point. The focus of this paper is the establish-
ment of a polymer-based tensiometer utilizing a 15 bar ceramic disc for the measurement
of high suction. The suitability of the polymer-based tensiometer in measuring the soil
suction of vegetative soil is conducted by performing a soil–water characteristic curve test
on vegetative soil. The SWCC produced from the polymer-based tensiometer is verified
using SWCC produced from a centrifuge test. The results show that the SWCCs from both
polymer-based tensiometer and centrifuge tests are comparable. Hence, suction measure-
ment using a polymer-based tensiometer is deemed reliable. This advancement in suction
measurement technology is crucial for improving irrigation practices, optimizing water
use, and enhancing agricultural productivity, which in turn contributes to environmental
sustainability by minimizing water waste and ensuring efficient soil management.

Keywords: vegetative soils; SWCC; polymer; tensiometer; environment sustainability

1. Introduction
One of the pieces of evidence for climate change is an increase in global mean surface

temperature (GMST), which leads to warmer days and nights and higher precipitation
events in some regions, but drought in other regions [1,2]. As a result, drought-induced
mortality (DIM) increases [2,3]. DIM is triggered by water limitations, which can be
due to a lack of precipitation or an increase in evaporation [4] and causes plants to lose
their hydraulic conductivity, which is usually measured as a percent loss of conductivity
(PLC) [5]. In severe drought scenarios, it becomes necessary to observe the PLC in plants.
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However, PLC monitoring at a large scale is impractical [2]. The prolonged drought
season caused by climate change makes the soil become unsaturated, and, hence, moisture
measurement or soil suction measurement appears to be more practical, especially when
the monitoring is to be conducted on a larger scale. Effective soil suction measurement
can provide valuable insights for managing water resources and mitigating the impacts of
drought, contributing to environmental sustainability by enabling more precise agricultural
practices, promoting water conservation, and supporting the resilience of ecosystems in
the face of climate change.

One of the most important properties for understanding and predicting the behavior
of unsaturated soils is the soil–water characteristic curve (SWCC). The SWCC is a curve of
the interaction between soil suction and moisture content. SWCC describes the amount
of water that can be retained in the soil at a certain soil suction value. The amount of
water in the soil can be expressed in terms of weight (gravimetric water content), volume
(volumetric water content), or degree of saturation [6]. In unsaturated soil mechanics, the
volumetric water content is commonly used to plot the SWCC (SWCC-θw). The volumetric
water content directly represents the volume of water per volume of soil, which is important
for understanding how water flows through the soil. SWCCs with the saturation-based
degree (SWCC-Sr) are also important to understanding the behavior of unsaturated soil,
which is directly connected to critical engineering properties like strength, volume change,
and hydraulic conductivity. The SWCC-Sr is used to determine the air-entry value (AEV),
which indicates the point at which soil begins to desaturate, leading to changes in soil
strength. The SWCC can be generated by conducting either a drying or wetting process
on the sample [7]. The behavior of soil during cycles of wetting and drying is not always
the same, resulting in differences between the drying and wetting curves [8,9]. The suction
and water content measured in the field are generally between the drying and wetting
curves. The zone between the drying and wetting curve is called the scanning curve.
Scanning curves are used to represent intermediate pathways between the main drying
and wetting curves.

Soil suction or soil moisture is monitored to prevent the soil from reaching the wilting
point (WP), which is the maximum soil suction or minimum moisture content at which
the plant will not wilt [10]. Direct measurement of volumetric water content in the field
commonly utilizes frequency domain reflectometry (FDR) or time domain reflectometry
(TDR) for monitoring purposes [11]. The problem with moisture measurement is that the
water content at the wilting point for a plant varies greatly in different types of soil [10].
The other issues are also related to uncertainty due to the hysteresis effect of SWCC [12].
While the moisture content at the wilting point varies greatly, the suction at the wilting
point is typically around 1500 kPa [13], despite varying slightly depending on the type
of plant. Suction in the soil is typically monitored using a tensiometer. A tensiometer
requires constant maintenance due to the generation of water bubbles, which limits the
duration of suction measurement and makes it impractical for continuous monitoring over
a long period of time. The main drawback of a conventional tensiometer is the limitation of
suction measuring range, which is limited to 100 kPa due to cavitation [14]. Hence, it is not
sufficient up to the wilting point (WP).

Polymer-based tensiometers (PBTs) have been developed to have the capability to
measure the suction up to the plant wilting point (1500 kPa) [15–22]. This technology
utilizes the swelling or shrinking of a polymer for suction measurement. The implemen-
tation of polymers has served as an alternative solution as it relies on osmotic pressure
instead of purely water pressure. The polymer particle is placed into the water chamber
to prevent tension in the water due to the presence of positive osmotic pressure, thus
eliminating the potential for cavitation. The osmotic pressure generated by polymers can be
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easily produced without problems related to gas or vapor bubble formation in traditional
tensiometers, causing a disruption in the continuous liquid phase between the soil and the
reference state [20].

The application of polymer-based tensiometers was first established by Peck and Rab-
bidge [20] using polyethylene glycol (PEG). The results indicated that the instrument was
unable to generate a consistent osmotic pressure and produced unreliable data (zero drifts)
for more than 1% of the time due to technological constraints at the time. Bakker, van
der Ploeg [23] developed a tensiometer filled with polyethylene glycol and polyvinyl-
pyrrolidone polymer. The research showed that the polymer tensiometer had the capacity
to measure a larger range of suction pressure, although a gradual drop in osmotic pres-
sure was observed during long-term continuous operation. Hamdany et al. (2022) [15]
investigated PBT (referred as NTU osmotic tensiometer) to conduct field monitoring on
soil suction. It was reported that the pressure decay affected the long-term performance
of the NTU osmotic tensiometer. Liu et al. (2022) [24] further improved the NTU osmotic
tensiometer in order to solve the problem of pressure decay by using the synthesis of
polymers such as polyacrylamide (PAM) and sodium polyacrylate (NaPA) with varying
degrees of cross-linking through ultraviolet polymerization. From the study, the osmotic
tensiometer filled with NaPA had a measuring range above 1000 kPa, but the range con-
tinued to decrease due to slow pressure decay. Otherwise, the osmotic tensiometer filled
with PAM maintained a consistent measuring range of approximately 400 kPa after a rapid
pressure decay process. In Liu et al. (2022) [24], the ceramic disk used in the polymer
tensiometer had an air entry value (AEV) of up to 500 kPa.

There is a concern regarding water flow in a ceramic disk when the measured suction
is beyond the AEV of the ceramic disk (the ceramic disk becomes unsaturated), especially
when the suction measurement range is around the plant wilting point. In this paper, a
polymer-based tensiometer is investigated using a 1500 kPa AEV ceramic disk (15 bar disk).
The suitability of the PBT in measuring the soil suction of vegetative soil is conducted by
performing an SWCC test on vegetative soil. At first, the long-term performance of the
polymer-based tensiometer is evaluated by means of an evaporation test. The moisture
content of the soil sample is recorded using an automatic weighing balance; hence, the
moisture content generated in the laboratory is typically in the form of the gravimetric
water content. A shrinkage test is then conducted using a three-dimensional scanner. By
measuring the volume changes in the soil, a shrinkage curve can be obtained. SWCC-w is
then connected to the shrinkage curve to obtain the SWCC-θw and the SWCC-Sr. The SWCC
obtained using the polymer-based tensiometer is verified by using the SWCC obtained
from the centrifuge test.

2. Materials and Methods
2.1. Preparation of Soil Sample

In this study, commercially available vegetative soil was investigated. Vegetative
soil refers to an approved soil mixture (ASM) that consists of a specific mixture of loamy
soil, compost, and sand that meets the predetermined standards or specifications for
landscaping to effectively help plant growth. The original soil specimen is shown in
Figure 1a. Before measurement of the soil water characteristics, the oven-dried soil was
compacted to determine the compaction curve of the vegetative soil. The soil specimen was
reconstituted (see Figure 1b) to achieve 95% relative compaction using the standard Proctor
effort. The reconstituted soil had dimensions of 70 mm in diameter and 95 mm in height.
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Figure 1. Vegetative soil specimen. (a) Original soil. (b) Reconstituted soil.

The compaction test was carried out in accordance with ASTM D698-12 [25] utilizing
Standard Proctor effort. The compaction curve for the vegetative soil can be seen in
Figure 2. The compacted vegetative soil achieved a maximum dry density of approximately
1.69 mg/m3 at an optimum water content of 17%. The soil specimen was prepared at 95%
of the maximum dry density, which was around 1.6 mg/m3, with a water content of 12%.
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Figure 3 shows the grain size distribution of the vegetative soil, analyzed in accordance
with ASTM D6913-04 [26]. The soil mainly consisted of 90% sand and 10% fines. The soil
was classified using the Unified Soil Classification System (USCS). The specific gravity (Gs)
test was conducted according to ASTM D854-02 [27]. The specific gravity of the soil was
about 2.61. The basic soil properties can be found in Table 1.
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Figure 3. Grain size distribution of vegetative soil.

Table 1. Basic soil properties of vegetative soil.

Specific gravity, Gs 2.61

Dry density, ρ (mg/m3) 1.60

Water content, w (%) 12

Grain Size—Gravel (%) 0

Grain Size—Sand (%) 90

Grain Size—Fines (%) 10

Soil Classification (USCS) Silty Sand (SM)

2.2. SWCC Measurement Using Polymer-Based Tensiometer

The polymer-based tensiometer (PBT) used in this study is presented in Figure 4. The
PBT followed the design described in Hamdany et al. (2022) [15], with modifications made
to the tensiometer cap. The tensiometer cap was made by a ceramic disk with an air-entry
value (AEV) of 1500 kPa. The pressure transducer had a capacity to measure pressure of
up to 3000 kPa integrated with the temperature sensor. The synthesized polyacrylamide
(PAM) polymer was used to prepare the PBT.
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2.2.1. Synthesized Polymer

PAM polymer was prepared following the work of Liu et al. (2022) [24]. The main
composition of the PAM polymer consisted of acrylamide (AM) as a monomer and N,N′-
methylenebisacrylamide (MBA) as a cross-linker. Benzoin was used as the photo-initiator
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during the polymerization process coupled with UV light irradiation. In this study, the
polymer was synthesized to obtain a 10% degree of cross-linking. The mix proportion was
as follows:

1. 7.11 g acrylamide (AM);
2. 0.77 g N,N′-methylenebisacrylamide (MBA).

A certain amount of AM and MBA was dissolved in distilled water and stirred
continuously for 30 min at room temperature (23–25 ◦C) using a magnetic stirrer at 160 rpm.
Following this, benzoin was dissolved in the solution and stirred for an additional 10 min.
Subsequently, the combined solution was exposed to a UV light source for 3 h to complete
the polymerization. The polymer hydrogel was then removed from the container and
shaped as desired. The synthesis process of the polymer can be found in Figure 5.
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2.2.2. Preparation of Polymer-Based Tensiometer

After finishing the synthesis process of the polymer (PAM), the sensor was then prepared
following the procedure described by Hamdany et al. (2022) [15] and Liu et al. (2022) [24].
Prior to contact with soil, the PBT was initially submerged into the water chamber to
observe how the polymer hydrogel swelled when it absorbed the water. The swelling of
PAM polymer hydrogel could generate positive pressure into the pressure transducer. The
swelling pressure reached the maximum at a certain time after the polymer reached the
maximum swell capacity. At this point, there was no suction in the soil.

Before conducting the suction measurement, the sensor needed to be calibrated. To
calibrate the effect of temperature on PBT over time, PBT was saturated for 3 days, and the
osmotic pressure in the water was measured to capture a sufficient temperature fluctuation.
The measurement was conducted at a room temperature of 25 ◦C. The polymer pressure
was calculated based on the difference between the reference pressure and the pressure
measured by PBT, which can be written as follows:

pcalibrated = pPBT − pcorr (1)

where pcalibrated is calibrated pressure of the PBT, pcrorr is the correction pressure (temperature-
compensated), and pPBT is the pressure measured by PBT. The pressure measured by PBT,
pPBT, changes with the temperature. As a result, the reference pressure needed to be
determined during the calibration process at a specific temperature. The reference pres-
sure could be determined from the regression of the uncorrected temperature–pressure
relationship data.

Declines in swelling pressure indicated increases in the soil suction. The gap between
the measured pressure and the maximum swelling pressure served as the soil suction.
This value was regarded as negative pore-water pressure. Pressure and temperature were
recorded, and these data were used for temperature calibration.
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2.2.3. Evaluation of PBT Sensor Performance

The performance of the developed PBT sensor was evaluated through an evaporation
test for 3 months. There were two types of evaporation tests conducted for this study. The
first test is called EVP 1, in which the sensor was subjected to a wetting and drying cycle for
45 days, followed by continuous wetting for around 45 days. The second test is called EVP
2, in which the sensor was subjected to a continuous wetting and drying cycle for more
than 90 days.

One PBT was used for each evaporation test. Hence, two evaporation tests were
conducted simultaneously. In the continuous wetting and drying cycle evaporation test
(EVP 1), PBT was subjected to wetting (up to maximum polymer pressure) and then dried
up to the minimum polymer pressure. The cycle was repeated for three months. The
purpose of the continuous wetting and drying cycle evaporation test was to verify whether
the PBT would exhibit a decay problem when it was subjected to 3 months of wetting and
drying cycles.

PBT underwent a wetting–drying cycle for 2 months, followed by being exposed to
maximum swelling pressure through continuous wetting for 1 month during a continuous
wetting evaporation test (EVP 2). The purpose of the second test was to verify whether PBT
would exhibit a pressure decay problem due to continuous wetting.

2.2.4. Measurement of SWCC Test Using Polymer-Based Tensiometer

In order to obtain SWCC by using the PBT, a reconstituted specimen was put inside
a beaker. PBT was placed at the base of the soil, and the change in the weight of the
soil specimen was measured using a precision balance. The experimental setup of the
measurement devices is shown in Figure 6. Both the PBT and weight scale were connected
to a data logger in order to allow for automatic monitoring of soil suction and water content.
Data were taken every 24 h on a real-time basis. The soil specimen is slowly dried through
evaporation while both the soil suction and water content were recorded.
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2.3. SWCC Test by Using Centrifuge

The procedure for the centrifuge test has been described by Rahardjo et al. (2019) [28].
An Eppendorf 5810R bench-top centrifuge (Eppendorf AG, Hamburg, Germany) was
used in this study. Figure 7 shows the specimen prepared for the centrifuge test. The
four specimens were then placed into the swing bucket rotor and subjected to different
centrifugal forces. The buckets in the centrifuge could be rotated from 200 to 3900 rpm
angular velocities. Different angular velocities of the centrifuge yielded different matric
suction levels. Soil specimens were subjected to a specific angular velocity to observe
the reduction in water from the specimens using a precision balance. The soil specimens
underwent a series of angular velocities, with each velocity representing a specific matric
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suction to obtain the SWCC. Water loss from the soil specimens was measured at each
velocity during this process.
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2.4. Best Fitting for SWCC

The unsaturated soil parameter was determined by fitting all the data using a curve-
fitting equation from Fredlund and Xing (1994) [29], as follows:

θw = C(ψ)

 θs

ln
[
e +

(
ψ
α

)n]m

 (2)

where θw is the volumetric water content; θs is the saturated volumetric water content; ψ is
soil suction (kPa); and α, m, and n are the curve-fitting parameters.

The correction factor (C(ψ)) is required for the equation to ensure that the water content
is neglected at a soil suction of 1 GPa, as follows:

C(ψ) = 1 −
ln
(

1 + ψ
ψr

)
ln
(

1 + 106

ψr

) (3)

The equation by Fredlund and Xing (1994) [29] was selected as it can produce an
accurate model for a wide range of soils.

2.5. Shrinkage Test

The water content measurement from the SWCC test with PBT and centrifuge was
expressed as the gravimetric water content. It is highly important to determine the SWCC
using the volumetric water content and degree of saturation. During the shrinkage test,
the soil specimen was subjected to an evaporation process which allowed the specimen
to slowly air-dry at a room temperature of 25 ◦C. The specimen’s weight was measured
regularly until it reached its equilibrium conditions. The 3D scanner was used to measure
the volume of the soil specimen at regular intervals. This method accounts for the non-
uniformity of the soil sample throughout the sample.

The shrinkage curve was then fitted to the measured data according to Fredlund et al.
(2002) [30]. The following equation was used to generate the shrinkage curve:

e(w) = ash

[
wCsh

bsh
Csh

+ 1
]1/Csh

(4)

where ash is the minimum void ratio (emin), bsh represents the shrinkage limit (SL), csh is the
parameter controlling the curvature of shrinkage curve, and e(w) represents the change in
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void ratio due to the change in w. A conversion between w and θw can be achieved through
a correlation of basic soil properties as follows:

θ(s) =
w(s)Gs

1 + e(w)
(5)

where θ(s) is the volumetric water content, w(s) is the gravimetric water content that
can be obtained from SWCC-w, Gs is the specific gravity, and e(w) is obtained from the
shrinkage curve.

3. Results
3.1. Temperature Calibration

Before conducting suction measurement, the sensor needed to be calibrated. To
calibrate the effect of temperature on the PBT over time, the PBT was saturated for 3 days,
and the polymer swelling pressure in the water was measured to capture a sufficient
temperature fluctuation. The measurement was conducted at a room temperature of 25 ◦C.
The results of the change in uncorrected pressure and temperature over time can be seen in
Figure 8. During the saturation process, the pressure started to increase significantly within
the first six hours until reaching the maximum pressure. It is shown that the pressure
fluctuated following the change in room temperature. Hence, the pressure measurement
should be calibrated against the temperature change.
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Figure 9 shows the change in uncorrected pressure due to the temperature variation
over a period of 3 days. The relationship between temperature and polymer pressure is
closely linear, indicating that the pressure increased with increasing temperature. The linear
regression from the data represents the correction pressure, pcorr. The slope and intercept
obtained from linear regression are 13.4 and 967.2, respectively. Hence, the calibrated
pressures from Equation (1) can be rewritten as follows:

pcalibrated = pPBT − pcorr = pPBT − (13.4T + 967.2) (6)

where T is the current measured temperature. It is shown that a simple regression function
can be used to calibrate the effect of temperature on the uncorrected polymer pressure. The
pressure was calibrated with a room temperature of 25 ◦C.
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3.2. Evaporation Test Result

Figure 10 shows the results for the evaporation test. The evaporation test was con-
ducted with two scenarios called EVP 1 and EVP 2. In EVP 1, drying and wetting cycles
were conducted six times over 45 days. In EVP 2, drying and wetting cycles were conducted
continuously for more than 90 days. It is noteworthy that the measurements of polymer
pressure for both evaporation test scenarios were identical and showed consistent behavior
regardless of whether the test was EVP 1 or EVP 2.
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The maximum polymer pressure for each wetting cycle is presented in Figure 11. It is
shown that the maximum pressure was around 1300 kPa. After 3 months of monitoring, it
was observed that the pressure decay was negligible. Hence, the performance of the PBT
is satisfactory.
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3.3. Shrinkage Test Result

The vegetative soil consisted mostly of sand with some organic matters, and, hence,
was subjected to shrinkage [31]. The volume change of the soil specimen during the drying
process was determined by conducting a shrinkage test. Figure 12 shows the results of the
shrinkage test conducted on vegetative soil. Figure 12 illustrates the relationship between
the void ratio and water content. The void ratio varied from 1.2 to 0.54, indicating the
volume change of the soil. This soil had a void ratio of 1.2 at 42% water content, and
the void ratio continued decreasing as the water content decreased until it reached the
minimum void ratio.
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3.4. SWCC of Vegetative Soil

Figure 13 shows the change in soil suction measured by the PBT and the water content
measured by an automatic weighing balance. It can be seen that the maximum gravimetric
water content started at around 35% and linearly decreased over a period of time due to the
evaporation process. The soil reached the minimum gravimetric water content at around
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20% after 20 days of monitoring. The shrinkage test results were then used to convert the
gravimetric water content into the volumetric water content.
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Figure 13. Monitoring of soil suction and volumetric water content for 20 days.

SWCC-w can be obtained by combining the gravimetric water content, volumetric
water content, suction reading (Figure 14), and SWCC-θw (Figure 15). The SWCC data
were then curve-fitted using the equation of Fredlund and Xing (1994) [29]. Fredlund and
Xing’s curve-fitting parameters for all SWCCs can be seen in Table 2. SWCCs obtained from
PBT were compared with SWCCs obtained from the centrifuge test, showing that both tests
gave comparable results. This result shows that the soil suction of vegetative soil can be
accurately measured using PBT.
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Table 2. Fredlund and Xing [29] curve-fitting parameter.

Curve-Fitting Parameters VWC Centrifuge VWC PBT GWC Centrifuge GWC PBT

a 15.04 20.99 13.11 22.20
n 1.24 1.31 1.34 2.27
m 0.15 0.21 0.25 0.25
ψr 1500 1500 1500 1500
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Figure 15. SWCC-θw of vegetative soil [29].

4. Discussion
In this study, commercially available vegetative soil was investigated. The soil sample

was compacted to achieve a dry density at 95% of the maximum dry density, approximately
1.6 mg/m3, with a water content of 12%. According to the Unified Soil Classification
System (USCS), the vegetative soil was categorized as SW. The soil water characteristic
curve (SWCC) testing was carried out on the investigated soil using a polymer-based
tensiometer (PBT). This tensiometer was supported with a tensiometer cap made from a
ceramic disc with an air-entry value (AEV) of 1500 kPa. The pressure transducer had the
capability to measure pressures up to 3000 kPa and was integrated with a temperature
sensor. The PBT was prepared using the synthesized polyacrylamide (PAM) polymer. The
performance of the PBT was verified through a 3-month evaporation test.

The results for EVP 1 and EVP 2 indicated that the maximum polymer pressure for
both PBTs were equal and showed consistent behavior regardless of whether they were
subjected to EVP 1 or EVP 2. It was shown that, for 3 months of reading, there appeared to
be no pressure decay observed. Hence, the performance of PBT was satisfactory. Changes
in soil suction measured by PBT and water content were monitored over 20 days. The
variables of SWCC from the measurement using the PBT were in agreement with those from
the measurement using a centrifuge. The typical variables of SWCC for the investigated
vegetative soils are as follows: The air-entry value is approximately 20 kPa, the saturated
volumetric water content is 46%, the inflection point is at 1000 kPa, and the residual water
content is zero.

SWCCs obtained from the PBT were compared with SWCCs obtained from a cen-
trifuge, and it is shown that both tests gave comparable results. This result shows that
the PBT is capable of precisely measuring soil suction in vegetative soil. This study offers
valuable insights into monitoring plant health for urban sustainability.

5. Conclusions
In this study, a polymer-based tensiometer (PBT) was developed by using a 15 bar

ceramic disk and 10.8% PAM. The study investigated commercially available vegetative
soil using a polymer-based tensiometer (PBT). Before suction measurement, the sensor
was calibrated by saturating the PBT for 3 days and measuring the osmotic pressure in
water to account for temperature fluctuations over time. Temperature calibration of the
PBT was performed using a simple regression function. The performance of the PBT with a
15 bar disk was evaluated using evaporation tests. Two types of evaporation tests, which
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were referred as a continuous wetting–drying cycle test (EVP 1) and a wetting–drying
cycle test followed with continuous wetting (EVP 2), were conducted on two different
PBTs. The evaporation tests show that the PBT was not subjected to pressure decay over a
3-month period. Hence, the performance of the developed PBT was satisfactory. Based on
the SWCC test conducted using the PBT and centrifuge on vegetative soil, it was shown
that the SWCCs from both PBT and centrifuge tests were comparable. This indicates that
soil suction in vegetative soil can be accurately measured using the PBT. Hence, suction
measurement using the PBT is deemed reliable.
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