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Abstract: In this paper, we introduce a model designed to predict human error probability (HEP) in
the context of fishing boat operations utilizing the cognitive reliability and error analysis method
(CREAM). We conducted an analysis of potential accidents on fishing boats and calculated the
cognitive failure probability (CFP) for each identified accident. The common performance conditions
(CPCs) from the original CREAM were adapted to better reflect the conditions on fishing boats, with
the adapted CPCs’ validity confirmed through expert consultations. To apply CREAM, data were
gathered via a survey of fishermen, with the uncertainty in the collected data addressed through
the application of fuzzy set theory (FST). We then established a Bayesian network (BN) model to
elucidate the relationship between the fuzzy data and HEP, utilizing a weighted sum algorithm to
determine conditional probabilities within the BN. Both basic and extended versions of CREAM were
applied to analyze the most common accidents among fishermen, calculating the CFP for each type
of accident. According to our analysis, the poorer the dynamic CPC, the higher the probability that
a fall accident will occur inside the boat due to human error, necessitating a countermeasure. The
paper proposes safety enhancements for small fishing boats and illustrates the increased precision of
human reliability analysis (HRA) models in forecasting human error by incorporating quantitative
methods. It calls for further data collection and refinement of the model for more accurate operational
risk assessments.

Keywords: human reliability analysis; CREAM; fishing boats; human error probability; cognitive
failure probability

1. Introduction

Fishing is one of the industries carried out for human livelihood, and numerous
fishermen work at sea every day. However, working on fishing boats is an industry
with a remarkably high accident rate. Among the marine accidents that occurred in
Korea from 2018 to 2022, there were 9401 fishing boat accidents, which account for 65.4%
of all marine accidents. The number of casualties reached 1908 [1]. Table 1 illustrates
the accident frequency by ship type, indicating the probability of an accident occurring,
and the individual risk, which denotes the probability of a fatality on that specific ship
type. The data reveal that the frequency of accidents involving fishing vessels in Korea
is comparable to those of other commercial vessels globally, suggesting a similar rate of
accident occurrences among these categories. However, when considering individual
risk (IR) and the Potential Loss of Life (PLL), Korean fishing vessels exhibit a marked
difference, with the IR being three to seven times greater than that of other commercial
vessels. This disparity indicates that the risk of mortality for individual fishermen on board
is significantly elevated compared to other vessel types. Therefore, although the incidence
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rate of fishing vessel accidents in South Korea aligns with the global average for commercial
vessels, the individual risk faced by fishermen is substantially higher.

Table 1. Comparison of accidents involving fishing vessels in Korea and other commercial vessels.
Source: IMO [2–6], KMST [1,7], KOSIS [8].

Fishing Vessel in Korea Container Ship Tanker Ship Cruise Ship Ro-Pax Ship

Accident Frequency
(per ship year) 3.17 × 10−2 3.28 × 10−2 3.28 × 10−2 4.40 × 10−2 4.52 × 10−2

Individual Risk
(per person year) 1.06 × 10−3 2.25 × 10−4 4.21 × 10−4 1.60 × 10−4 2.61 × 10−4

Furthermore, Table 2 outlines the probability of an individual perishing in an acci-
dent on a fishing vessel, segmented by country. Notably, Korea exhibits an exceptionally
high accident fatality rate in comparison to other nations with robust fishing industries.
Specifically, the individual risk in Korea is seven times higher than that in Norway. To
address this issue, it is crucial to develop guidelines capable of forecasting and mitigating
potential human errors in fishing boat operations. Consequently, this paper involves a
survey of fishermen in Korea—a country where accidents on fishing boats often result in
fatalities—to identify the conditions under which human error is most likely to occur.

Table 2. Comparison of individual risks of fishing vessels in Korea and other countries. Source:
IMO [2–6].

Fishing Vessel in Korea Norway Canada Iceland Poland

Individual Risk
(per person year) 1.06 × 10−3 1.45 × 10−4 2.40 × 10−4 5.00 × 10−4 9.00 × 10−4

In particular, the main cause of human casualties is human error [9]. Human errors
that occur during maritime operations can directly lead to accidents, implying that there
are many risks involved in the various tasks required in the fishing industry. Accidents
that frequently occur on fishing boats include getting caught in equipment, slipping while
moving, falling, and getting caught in fishing nets, all of which can result in significant
casualties. Work at sea is highly affected by the weather, and the performance of equip-
ment is often compromised by seawater. Therefore, it is particularly important to present
guidelines that can predict and prevent potential human errors in work performed on
fishing boats.

In this paper, human error is defined as “an out-of-tolerance action, or deviation from
the norm, where the limits of acceptable performance are defined by the system” [10,11].
This definition is commonly utilized in the nuclear field. Such errors can stem from issues
related to sequencing, timing, knowledge, interfaces, procedures, and other factors. By
analyzing the causes of these human errors and identifying contributing factors to accidents,
it is possible to prevent incidents in specific fields, ultimately leading to a reduction in
human casualties.

One of the most commonly used methods in recent research to evaluate and mitigate
human error is human reliability analysis (HRA). HRA can be used to identify potential
human errors and quantify the probability of an accident based on the cause. Additionally,
through quantified probability, it is possible to identify the most serious causes and prepare
measures to prevent them in advance. HRA is divided into first-generation and second-
generation methods. The first-generation methods do not consider the context of the task
and have inherent problems of underestimating human information processing systems, so
they are not widely used these days. Representative first-generation HRA methods include
the technique for human error rate prediction (THERP) [12], the human error assessment
and reduction technique (HEART) [13], and the simplified plant analysis risk human relia-
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bility assessment (SPAR-H) [14]. The second-generation HRA methods are used in various
industries by considering human information processing systems and situational factors,
and representative methods include a technique for human event analysis (ATHEANA) [15]
and the cognitive reliability and error analysis method (CREAM) [16]. Unlike ATHEANA,
which specializes in the field of nuclear power plants, CREAM is widely used to evaluate
human error in various industries such as petrochemicals (Mazlomi et al. [17]), power
plants (Tang et al. [18], Lin et al. [19]), marine (Ung [20], Chen et al. [21]), and aviation
(Lam et al. [22], Lin et al. [23]), etc.

HRA methods have been applied to various fields where human error can lead to acci-
dents. Chen et al. [24] investigate the influence of worker states on unsafe behaviors in coal
mine accidents through a Bayesian network (BN) approach. The study identifies poor states,
including inadequate safety awareness and mental fatigue, as significant contributors to
unsafe behaviors such as violations and decision errors. It concludes that insufficient experi-
ence and poor fitness for duty are the primary factors leading to unsafe behaviors. The study
highlights the utility of BN in analyzing the complex relationships between worker states
and unsafe behaviors, advocating for real-time monitoring of worker states to mitigate
risks. Mohsin et al. [25] identify and rank the main risk factors affecting Pakistan’s fisheries
sector using the fuzzy Analytic Hierarchy Process (AHP) and Importance-Performance
Analysis (IPA). Management risk is highlighted as the most critical, suggesting the need for
effective management strategies to mitigate risks for sustainable fisheries development. The
study emphasizes comprehensive legislative frameworks and the adoption of sustainable
practices to counteract overfishing and enhance the sector’s management. Focusing on
a thermal power plant, Ogmen et al. [26] employ a hybrid approach that combines the
HEART with fuzzy AHP and step weight assessment ratio analysis (SWARA) methods
for a detailed human reliability analysis. By tailoring the analysis to specific operational
contexts and enhancing the assessment of error probabilities, the study aims to improve
safety measures within the power generation sector. It emphasizes the significance of
human error in operational safety and proposes a novel, practical approach to mitigating
such errors in coal-fired thermal power plants.

HRA has also found numerous applications within the maritime sector. Sheng et al. [27]
proposed a Bayesian spatial multinomial logistic model (BSMNL) using geographic in-
formation obtained from historical maritime accidents. The proposed BSMNL model can
be used to investigate the determinants of human errors associated with maritime acci-
dents. Human error was evaluated by inputting accident data that occurred in six areas
of Fujian waters into the proposed model, and it was determined that bad weather and
the intervention of fishing boats were the causes of human error leading to accidents at
sea. Antão et al. [28] evaluated the contribution of human error to ship accidents under
various weather conditions and the impact of high wave heights on the occurrence of
specific accident types. They developed a Bayesian Belief Network model that includes
variables related to various wave conditions as well as marine accidents. As a result of the
verification using data from 857 marine accidents, weather and wave height were perceived
as extremely dangerous factors among fishing boat crews and insignificant risk factors
among recreational boats. Obeng et al. [29] proposed a new human factor analysis model to
analyze small fishing boat operations, and this model was combined with a BN and tested,
focusing on small fishing boats operating in the Atlantic Canada region. They estimated
that the main causes of accidents were the operator’s actions, the natural and technological
environment, unsafe management of operations, and factors associated with the vessel
itself. In this way, HRA cases applied to the marine field showed a strong tendency to
identify the causes of collisions or accidents that occurred during specific tasks.

Analytical research on fishing boat accidents was also actively conducted. Wang et al. [30]
collected and reviewed accident data related to fishing boats and conducted an analysis to
identify the most common causes of fishing boat accidents. This study found that accidents
increased due to differences in language, education, training, and mindset resulting from
the hiring of multinational crew members. To increase safety in fisheries where these
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characteristics are present, they suggest ways to develop a safety culture at all levels of the
industry’s infrastructure and to include human factors in safety assessment frameworks in
a feasible manner. Alwi et al. [31,32] listed risks and their consequences in all aspects and
stages of fishing and identified aspects related to fisher safety management in all institu-
tional parts existing regulations, and human resources, working environment conditions,
and designing work safety models. They also identified through HRA that the largest
number of accidents can occur in fishing gear operations. Irvana et al. [33] analyzed the
risk of fishing boat accidents using the Formal Safety Assessment method and attempted
to improve the safety of maritime transportation. As a result of the analysis, they found
that the risks were high in the following order: mechanical failure, vessel foundering, and
falling overboard. Prior studies have emphasized the dangers of working on fishing boats
and found that accidents can be caused by a variety of factors depending on the area in
which the fishing boat operates or the fishing method.

As an example of applying CREAM to the marine field, Yang et al. [34] proposed a
modified CREAM that integrates fuzzy evidential reasoning and Bayesian inference logic
to facilitate human reliability quantification in marine engineering. They used evidential
reasoning to establish fuzzy IF-THEN rules containing belief structures and used a Bayesian
inference mechanism to aggregate all rules relevant to the work of marine engineers to
estimate failure probabilities. The proposed method was applied to an oil tanker COP
(cargo oil pumps) shutdown scenario to verify its feasibility. Ghasemi et al. [35] performed
task analysis through hierarchical task analysis to predict the probability of human error
in the hydrocarbon road tanker loading operation and calculated HEP using a method
integrating FST, BN, and CREAM. As a result of the HEP calculation, investigating the
internal parts of the tanker and attaching the ground rode clamp were the tasks with the
highest HEP, and working conditions and crew collaboration were identified as the CPCs
that contributed the most to human error. Ung [36] proposes a novel risk assessment study
evaluating the human error contribution to oil tanker grounding, incorporating expert
judgment and a combination of Fault Tree Analysis (FTA), fuzzy CREAM, and Bayesian
reasoning. By establishing a logical safety structure for oil tanker grounding and integrating
expert judgments with a novel application of FTA, fuzzy CREAM, and Bayesian reasoning,
the study offers a comprehensive assessment of human error probabilities. It identifies
fatigue and Collision Regulation (COLREG) violations as key factors in ship groundings.
The study’s approach, emphasizing the logical connection between CPC observations and
contextual control mode (COCOM), provides a systematic methodology for evaluating
and understanding the human error aspects of maritime safety. Zhou et al. [37] presented
an HRA method based on fuzzy logic theory, BN, and CREAM. They modified the CPCs
used in the original CREAM to suit the situation of shipboard oil tanker work. They used
the results of a CPC survey of eighteen sailors of various positions, and they obtained
results showing that HEP varies depending on position and showed that most of the crew
members were in tactical control mode and were reliable.

In prior research, because the CPC of the original CREAM was used as is, there
was a limitation in that it was not optimized for the application field. This study seeks
to overcome such limitations by tailoring the CPCs to the demanding conditions of the
marine environment. Superfluous CPCs for the fishing industry were eliminated, dynamic
conditions were incorporated, and the CPC levels were refined based on fishermen’s
input, ensuring a better fit for the study’s context. Furthermore, previous investigations
lacked the inclusion of conditional probability tables (CPT) that would reflect expert
insights, frequently defaulting to merely classifying control modes in CREAM without
attributing specific values to the probability of human error. This approach highlighted the
inherent qualitative limitations of CREAM and the difficulties in managing the uncertainties
intrinsic to human error analysis within diverse sectors, such as marine operations and the
petrochemical industry.

To address these challenges, our study employs a hybrid technique that combines
FST, BN, and CREAM. By integrating FST, the model gains the ability to manage the
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uncertainties surrounding CPCs with greater nuance, assigning multiple states to CPCs
based on varying degrees of membership. This adaptability substantially improves the
model’s capability to navigate the complexities of real-world scenarios, where the precise
condition of a CPC is often ambiguous. Additionally, the use of BN enhances the model
by mapping out the dependencies among CPCs, control modes, and HEPs, providing a
visual and intuitive depiction of intricate systems. This integration not only surpasses
the static nature of traditional HRA methods but also enables comprehensive reasoning
encompassing both forward and backward perspectives. Such capabilities are instrumental
in identifying and prioritizing measures for accident prevention, marking a significant
advancement in the quantification and mitigation of human error across various industries.

In this paper, we introduce a model that employs FST and BN, grounded in CREAM,
to predict HEPs based on crew experience and types of accidents on small fishing boats.
The study focuses on two principal areas: estimating HEP relative to crew experience and
calculating the cognitive failure probability (CFP) for the five most common accidents
on fishing boats. Surveys were conducted with fishermen possessing over 20 years of
experience to ascertain levels for each CPC, applying FST with triangular and trapezoidal
membership functions to mitigate uncertainty. The data refined by FST served as inputs for
a BN, constructed around CPCs, to compute HEP. This network delineated the relationships
between CPCs and HEPs, utilizing the Center of Area (COA) method to derive crisp values
(CV) and HEPs from the Bayesian analysis outcomes. The investigation of fishing boat
accidents, combined with dynamic CPC assessments, facilitated CFP calculations across di-
verse conditions—categorized as worst, normal, and best. Both basic and extended CREAM
methodologies were used to calculate incident-related CFP, and the results were compared.

In summary, this research significantly advances the quantification and analysis of
human error probability (HEP) by addressing the limitations of current HRA methods
and introducing a hybrid model that integrates FST and BN. It enhances the scientific
grasp of human errors in high-risk tasks and lays the groundwork for devising effective
safety enhancement and accident prevention strategies. The methodologies and insights
generated promise wider applicability across diverse sectors, paving the way for more
secure operational settings. This paper aims to ascertain human error probabilities by
examining experience and accident types, thereby facilitating the consideration of preven-
tive measures.

2. Methodology
2.1. CREAM (Cognitive Reliability and Error Analysis Method)

CREAM is a method introduced by Hollnagel [16]. It is a second-generation HRA
method and is currently used in various industrial fields. The key elements that make
up the CREAM are CPCs and control mode. Because the core of CREAM is that human
error is not viewed as probabilistic but rather determined by the context of the task, it
identifies nine CPCs for a task. CPC is a factor related to operator, technology, and status, as
follows: adequacy of organization, crew collaboration quality, working condition, number
of simultaneous goals, available time, time of day, training and experience, man-machine
interface (MMI) and operational supports, availability of procedures and plans. Each CPC
is divided into levels that affect human behavior and reliability. Time of day and number
of simultaneous goals have only negative and neutral effects, and the other 7 CPCs have all
negative, neutral, and positive effects.

Konstandinidou et al. [38] suggested modifications or changes to optimize CPC for
each industry. Therefore, in this paper, CPCs that are not necessary for fishing were
removed and additional necessary CPCs were added. The modified CPC and each CPC
level are shown in Table 3, and their validity was verified by industry experts.
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Table 3. CPCs and Their levels.

CPC Levels

Fatigue
Appropriate
Acceptable

Inappropriate

Adequacy of training and experience

Adequate, high experience
Adequate, low experience

A little inadequate
Inadequate

Crew collaboration quality

Very efficient
Efficient

Inefficient
Deficient

Availability of procedures/plans
Appropriate
Acceptable

Inappropriate

Number of simultaneous goals
Fewer than capacity

Matching current capacity
More than capacity

Available time

Adequate
Normal

Temporarily inadequate
Continuously inadequate

Technical condition
Advantageous

Compatible
Incompatible

Environmental condition
Advantageous

Compatible
Incompatible

Time of day (circadian rhythm) Very efficient
Deficient

The CPC that has changed from the original CPC is environmental conditions, technical
conditions, and fatigue. The criterion for organization adequacy was omitted because
small fishing boats are not managed or supported by specific organizational management.
Furthermore, the adequacy of MMI and operational support was replaced with technical
conditions because the condition of the equipment itself has a more important impact than
the interface for using the equipment. Working conditions were divided into environmental
conditions and fatigue, considering the difficulty of working in a marine environment. This
refinement reflects the unique circumstances of fishermen, who often operate at sea with
minimal crew and contend with harsh marine conditions, unlike on land. According to a
study by Sheng et al. [27], when the contributing factors to human error were investigated
using the BSMNL model, season, visibility, and time of day could affect the probability of
human error occurring. Therefore, we decided that adding environmental conditions as a
new CPC would be effective in calculating human error in the fishing industry.

Control mode is a characteristic determined by CPC and indicates how well an oper-
ator can solve problems in a specific situation and plan future operations. Control mode
includes four modes: strategic, tactical, opportunistic, and scrambled. The meaning of each
mode is shown in Table 4.
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Table 4. CPC control modes and their probability intervals. Source: Hollnagel [16].

Control Mode Description Probability Interval of Action Failure

Strategic

The operator is well familiar with the situation and the way
it progresses; the operator has an acceptable level of

competence and enough time is available for planning
future actions.

(0.000005, 0.01)

Tactical
The situation is similar to those the operator has faced

before, and some kinds of procedures or rules are available
for the operator to follow.

(0.001, 0.1)

Opportunistic

The operator cannot precisely predict the next action
because he/she is unable to totally understand the present
situation, so the operator looks for noticeable features of the

situation and acts accordingly.

(0.01, 0.5)

Scrambled

The operator encounters a totally unfamiliar situation where
actions have to be randomly selected because the operator
lacks both the required experience and knowledge to decide

the next action appropriately.

(0.1, 1.0)

The control mode determined according to the nine CPC levels appears as shown in
Figure 1, where the x-axis represents the number of CPCs with negative effect, and the
y-axis represents the number of CPCs with positive effect. Each intersection represents a
control mode.
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Similar to the probability interval of action failure in Table 4, the original CREAM
method inaccurately estimates the probability of human error, and only the approximate
probability for each mode can be known. In this paper, we defined the relationship between
CPC and HEP in fishing boat operations and used three methods to accurately calculate
HEP. Basic CREAM and extended CREAM were used to calculate and compare CFP
according to accidents that may occur on fishing boats, and a model combining FST, BN,
and CREAM was used to calculate HEP according to the fisherman’s experience. Figure 2
is a graphical representation of the relationship between each method applied in this paper
and the process of obtaining the results to be calculated.
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2.1.1. Basic CREAM

To calculate CFP in basic CREAM, the context influence index (CII) must be calcu-
lated [39]. When CII is defined as β, it is calculated by Equation (1).

β = X − Y = ∑reduced CPC − ∑improved CPC (1)

It is easier to find the control mode according to the influence of CPC by using β than
by identifying the control mode in Figure 1. Table 5 shows the control mode according to
the β.

Table 5. Relations between the context influence index and the control mode.

Context Influence Index Control Mode

−7 to −4 Strategic
−3 to 1 Tactical
2 to 5 Opportunistic
6 to 9 Scrambled

If the value of β is 0, it means that the number of CPCs with negative effects and the
number of CPCs with positive effects are the same. A higher β implies a predominance
of CPCs with negative effects, while a lower β means there are more CPCs with positive
effects. In addition, changes in the reliability of human interactions can be explained by a
logarithmic function with changes in external conditions [40]. Therefore, the relationship
between CFP and β can be expressed by Equation (2).

log (CFP/CFP0) = kβ (2)

In Equation (2), k is a constant and can be calculated through Equations (3)–(5). By
rearranging Equation (3) for CFP, Equation (6) can be obtained.

log (CFPmax/CFP0) = kβmax (3)

log (CFPmin/CFP0) = kβmin (4)

k = log (CFPmax/CFPmin)/(βmax − βmin) (5)

CFP0 = CFPmax/10kβmax (6)

There are 9 CPCs with negative effects and 7 CPCs with positive effects, so βmax = 9,
βmin = −7. To calculate k, the values of CFPmax and CFPmin are required. It is reasonable in
HRA to assume that CFPmax = 1.0, and CFPmin = 0.0001. Therefore, k = 0.25 is calculated,
and by substituting this into Equation (6), CFP0 = 0.000562 can be obtained. The final CFP
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is as in Equation (7). This is a calculation method based on the assumption that performance
reliability is affected by the number of CPCs with negative or positive effects.

CFP = CFP0 × 10kβ = 0.00562 × 100.25β (7)

2.1.2. Extended CREAM

The primary goal of the basic CREAM method is to identify a reliable indicator for
the probability of an interaction rather than pinpoint an exact failure probability. However,
the breadth of the ranges in Table 4 limits their utility for preliminary assessments, as
they lack the precise differentiation needed at this initial stage. Furthermore, the CFP in
Basic CREAM is influenced solely by the count of positive or negative CPCs, which masks
the specific impact of each CPC. To enable a more precise assessment of human error, it
is suggested to assign weights to the various levels of CPCs and compute the CFP by
summing these weighted factors.

The extended version of CREAM is designed for a more comprehensive analysis of
human interactions that follow the initial assessment. The insights gained from the basic
application of CREAM serve as a crucial foundation for this extended analysis. Human
actions that are identified as sensitive and potentially significant through the HRA screening
process can then be examined more closely with the extended method to achieve more
accurate outcomes for those actions. In extended CREAM, the performance influence index
(PII) is weighted according to the level of CPC [39]. When PII is ρ, β is calculated using
Equation (8). The value of ρi are provided in Table 6.

β =
9

∑
i=1

ρi (8)

Table 6. Performance influence index for CPCs.

CPC Level PII

Fatigue
Appropriate −1.1
Acceptable 0

Inappropriate 1.9

Adequacy of training and experience

Adequate, high experience −1.4
Adequate, low experience 0

A little inadequate 1
Inadequate 1.8

Crew collaboration quality

Very efficient −1.4
Efficient 0

Inefficient 0.4
Deficient 1.4

Availability of procedures/plans
Appropriate −1.2
Acceptable 0

Inappropriate 1.4

Number of simultaneous goals
Fewer than capacity 0

Matching current capacity 0
More than capacity 1.2

Available time

Adequate −1.4
Normal 0

Temporarily inadequate 1
Continuously inadequate 2.4

Technical condition
Advantageous −0.8

Compatible 0
Incompatible 0.7

Environmental condition
Advantageous −1.1

Compatible 0
Incompatible 1.7

Time of day (circadian rhythm) Very efficient 0
Deficient 0.6
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In Table 6, the values of PII were determined based on expert opinions. Specifically,
for PII values related to fatigue, technical condition, and environmental condition, which
are CPCs that were not in the original CREAM, they were set based on surveyed data.
The survey was conducted on fishermen with more than 20 years of experience, and they
were asked to give a score between 0 and 10 regarding the positive and negative impact of
each CPC. For the results obtained through the survey, the average value, excluding the
maximum and minimum values, was adjusted to match the scale of PII. Table 7 shows the
survey results and the calculated PII.

Table 7. PII for added CPCs.

CPC Five Middle Averages PII

Negative
Fatigue 8 1.9

Technical condition 2.8 0.7
Environmental condition 7.2 1.7

Positive
Fatigue 8 −1.1

Technical condition 6 −0.8
Environmental condition 7.6 −1.1

In Extended CREAM, CFP remains consistent with Equation (7) but is calculated by
substituting the nominal value in Table 8 into CFP0. Therefore, CFP can be calculated by
determining which generic failure type each accident belongs to and calculating β using
PII. Utilizing Extended CREAM allows for the consideration of each CPC’s effect when
evaluating human error in a task or accident, enabling a more quantitative assessment
compared to Basic CREAM, which solely accounts for the count of CPCs.

Table 8. Nominal values for 13 generic cognitive failure types.

Cognitive Function Generic Failure Type Nominal Value

Observation
Wrong object observed 0.001

Wrong identification 0.007
Observation not made 0.007

Interpretation
Faulty diagnosis 0.02

Decision error 0.01
Delayed Interpretation 0.01

Planning Priority error 0.01
Inadequate plan 0.01

Execution

Action of the wrong type 0.003
Action at the wrong time 0.003

Action on the wrong object 0.0005
Action out of sequence 0.003

Missed action 0.003

2.2. Fuzzy Set Theory

Introduced by Zadeh [41], fuzzy logic offers a logical framework that describes am-
biguous and unclear states with multiple values, departing from the binary approach of
true or false. This is particularly relevant in industries where determining the precise status
of CPC for each task is challenging for workers. CPC data, often qualitative and gathered
through surveys, encompasses uncertainties and typically falls between the categories of
appropriate, neutral, or inappropriate, rather than fitting neatly into one. Choosing a single
category might lead to biases or errors in the HRA process. Given the lack of statistical
data on vital parameters and the subjective complexity of seafarers’ operations, fuzzy
logic becomes essential for overcoming the limitations of imprecise data collection. The
application of fuzzy logic involves three steps: fuzzification, which transforms inputs into
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a fuzzy set; fuzzy sets and fuzzy inference, which use membership functions to produce
fuzzy output; and defuzzification, which translates the fuzzy output back into a CV.

2.2.1. Fuzzification

Fuzzification entails generating multiple fuzzy perceptions by decomposing input
values into one or more fuzzy sets. Fuzzy numbers have a membership degree between 0
and 1, and the most commonly used fuzzy numbers are triangular and trapezoidal fuzzy
numbers. We applied that fuzzy number, and when performing the fuzzification process,
we set all nine CPCs to have three levels: appropriate, neutral, and inappropriate. Given
that the value of each CPC is between 0 and 100, the universes of discourse of the fuzzy sets
for CPC can be defined as [0, 50], [10, 90], and [50, 100]. CPCs with values falling within
this range are converted to values between 0 and 1 through the membership function. A
converted CPC value of 1 indicates complete membership in the fuzzy set, while a value
of 0 implies exclusion from the fuzzy set. The universes of discourse for the fuzzy sets
concerning control mode are detailed in Table 9. This value can be obtained by taking the
base 10 logarithm of the probability interval of action failure value provided in Table 4.

Table 9. The universes of discourse of the fuzzy sets for the control modes.

Control Mode Fuzzy Sets

Strategic [−5.3, −2]
Tactical [−3, −1]

Opportunistic [−2, −0.2]
Scrambled [−1, 0]

2.2.2. Fuzzy Sets and Fuzzy Inference

After the input is decomposed into fuzzy sets, a set of fuzzy if-then-else rules is used
for fuzzy output. Each membership function determines the condition of the input value,
sets a function for that condition, and returns a fuzzy output value for the input value.

f1(x) =


1 x ≤ 10

(50 − x)/40 10 ≤ x ≤ 50
0 x ≥ 50

(9)

f2(x) =


0 x ≤ 10, x ≥ 90

(x − 10)/40 10 ≤ x ≤ 50
(90 − x)/40 50 ≤ x ≤ 90

(10)

f3(x) =


0 50 ≤ x

(x − 50)/40 50 ≤ x ≤ 90
1 x ≥ 90

(11)

Membership function f1(x), f2(x), f3(x) represent three CPC levels, respectively. f1(x)
is inappropriate, f2(x) is neutral, and f3(x) is appropriate. Figure 3 shows the degree of
membership in the CPC. Based on 50, the left and right solid lines represent functions f1(x)
and f3(x), respectively, and the dotted line represents function f2(x). By substituting the
results of a survey of CPC into f1(x), f2(x), and f3(x), a fuzzified value of the effect of CPC
on human reliability can be obtained, and this value will be used as an input value for BN.

Based on the probability interval of action failure in Table 4, it becomes evident that
each control mode also has an overlapping section in failure probability. Consequently, a
membership function that applies the range of the probability interval of action failure can
be obtained, and the graph for this is shown in Figure 4. Each range of the membership
function corresponds to a value calculated in Table 9, and when the middle value of the
range is substituted, the result of the function is 1. Equations (12)–(15) are the membership
function for each control mode.
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fStr(x) =


(x + 5.3)/1.65 −5.3 ≤ x ≤ −3.65
(−x − 2)/1.65 −3.65 ≤ x ≤ −2

0 x ≤ −5.3, x ≥ −2
(12)

fTac(x) =


x + 3 −3 ≤ x ≤ −2
−x − 1 −2 ≤ x ≤ −1

0 x ≤ −3, x ≥ −1
(13)

fOpp(x) =


(x + 2)/0.85 −2 ≤ x ≤ −1.15

(−x − 0.3)/0.85 −1.15 ≤ x ≤ −0.3
0 x ≤ −2, x ≥ −0.3

(14)

fScr(x) =


2x + 2 −1 ≤ x ≤ 0.5
−2x −0.5 ≤ x ≤ 0

0 x ≤ −1, x ≥ 0
(15)
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2.2.3. Defuzzification

Defuzzification is the process of converting fuzzy conclusions into CVs. Since the
CV is a value calculated using the probability of the control mode, which is a change
due to external conditions, CV and HEP have a logarithmic relationship. There are many
defuzzification methods, but in this study, center of the area (COA) [42], which has relatively
high accuracy, was used. According to the COA method, the center of the area of the
membership function is determined using Equation (16).

CV =

∫
x f (x)dx∫
f (x)dx

(16)

In Equation (16), CV is the crisp value, and f (x) represents the sum of the membership
functions of the control modes as in Equation (17). Each membership function is as shown
in Equations (12)–(15). Since CV and HEP are logarithmic functions, HEP can be obtained
through Equation (18).

f (x) = fStr(x) + fTac(x) + fOpp(x) + fScr(x) (17)

HEP = 10CV (18)

2.3. Bayesian Network

A Bayesian network, a probabilistic graphical model, utilizes a directed acyclic graph
(DAG) to illustrate the conditional dependencies among a set of variables, where uncon-
nected nodes represent conditionally independent variables and connected nodes incor-
porate parent node variables as inputs. BN excels at managing probabilistic information
within events characterized by complex causal relationships to forecast event outcomes
under specific conditions. While the original CREAM method offers only a range for action
failure and control modes for assessing HEP, it faces challenges in quantitatively measuring
HEP due to its inability to account for the uncertainty surrounding CPC and control modes.

To address these limitations and enhance the precision of HEP assessment, BN has
been integrated into CREAM to mitigate its uncertainties, establishing connections between
CPC and HEP. This integration allows for the determination of the probability distribu-
tion of control modes by treating each CPC as a parent node and computing conditional
probabilities at the child node for each input from the parent node. This approach not only
facilitates a quantitative understanding of each control mode’s probability but also enables
accurate HEP calculations through the application of the COA method and defuzzification
analysis of the control mode values obtained. Consequently, this augmented methodology,
combining the strengths of fuzzy logic theory and BN techniques within CREAM’s ana-
lytical framework, provides a robust solution for quantifying HEP in the fishing industry,
thereby improving the evaluation of seafarers’ human reliability by capturing the nuanced
relationships between numerous variables.

When modeling BN, conditional probability tables (CPT) must be defined to quantify
the relationships of each node [43]. However, if all 9 CPCs are connected to the control
mode node, the number of conditional probabilities that need to be defined becomes very
large. Since each CPC has three levels: appropriate, neutral, and inappropriate, there are
39 = 19,683 conditions. It is very difficult to define conditional probabilities for all these
conditions, so three nodes were added to the BN. Nine CPCs, including the CPC added
in this study, were divided into three categories according to type. The added nodes are
the human reliability condition, which varies depending on the human condition, the job
condition, which is related to work conditions, and the dynamic condition, which changes
conditions every time the ship sets sail. By adding nodes, the number of items that experts
need to evaluate and the amount of computation inside the network are reduced.

To calculate the conditional probability of newly added nodes, the weighted sum algo-
rithm developed by Das was used [44]. This method calculates the conditional probability
by assigning a weight to each parent node and evaluating the probability of the child node
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according to the status of the three parent nodes. In this paper, to obtain the value of CPT,
the opinions of four experts, including professors and inspectors with more than 10 years
of experience, were collected by asking the following questions:

(1) What is the weight of each CPC for a given condition?
(2) What is the probability distribution over the states of the child node given the parental

configuration?

When an expert fills out the table for the above question, the conditional probability is
calculated using Equation (19).

P
(
ym

∣∣x1
k1, . . . , xi

ki, . . . , xn
kn

)
=

[
w1·

{
Comp

(
x1

k1

)}]
+ . . . +

[
w1·

{
Comp

(
xi

ki
)}]

+ . . .
+
[
w1·

{
Comp

(
xn

kn
)}] (19)

ym is the state of the child node, wn is the weight of each parent node, and xn
kn is the

state of the parent node. This process was equally applied to the relationship between each
condition node and the control mode node. The BN modeled based on this is shown in
Figure 5.
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The node in the first layer is a CPC node and utilizes the fuzzified value of the survey
results as an input value. The node in the second layer is a condition node set to reduce
calculations. The node of the third layer is the control mode, which is the output node.
Through this structure, the probability distribution of the control mode can be calculated
according to the level of each CPC.
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2.4. Data Collection

To obtain data for applying the method introduced above, a survey was conducted
with seven fishermen with more than 20 years of experience. The main area of activity for
fishermen is the southern coast of Korea, and they operate small fishing boats of less than
10 tons. The details of the investigation are as follows;

• Top 5 accidents that occur most frequently on fishing boats
• CPC impact level for each accident
• Effectiveness score of CPC for operations on fishing boats

Despite the limited number of survey respondents in this study, fishermen with over
20 years of experience are deemed adequate for evaluating the proposed model. Their
extensive knowledge and firsthand insights into fishing risks and operational challenges
render them expert informants. Their prolonged exposure to the fishing environment
equips them to offer responses that are likely to yield a reliable and detailed understanding
of accidents, CPC impact levels, and the efficacy of operational practices. Nonetheless, the
small sample size presents a limitation that necessitates future enhancement, a point that
will be further addressed in Section 5.

3. Results

In this section, we applied the survey responses to each method introduced in Section 2
and analyzed the outcomes when the proposed model was implemented in actual cases.
Initially, basic CREAM and extended CREAM were applied to the survey results to calculate
CFP for each accident. Subsequently, FST was applied using CPC scores for work on fishing
boats, and HEP for each crew member was calculated through BN modeling.

3.1. CFP of Basic CREAM

Fishermen identified the following five accidents as the most common occurrences on
fishing boats: collision while sailing, getting caught in equipment, slipping on the deck,
falling inside the boat, and getting caught in fishing nets. Table 10 shows the results of a
survey investigating the effect of each CPC on accidents. After combining the opinions of
all seven people, the level with the highest frequency was used. The complete results of the
survey are provided in the Supplementary File.

Dynamic conditions were omitted from the results as they vary with each sailing.
Instead, we utilized the human reliability condition and job condition from the survey
results. Dynamic conditions were categorized into all inappropriate states/all neutral
states/all appropriate states, and HEP was calculated to find out how much influence
changing conditions have on work on a fishing boat.

From the results presented in Table 10, β values can be obtained for CPC numbers 1
to 6 by applying basic CREAM to ‘collision’: β = 0 − 1 + 0 + 0 + 1 + 1 = 1. Additionally,
β values were determined for all dynamic conditions to be inappropriate, neutral, and
appropriate, resulting in βi = 4, βn = 1, βa = −1. By substituting this value into
Equation (7), CFP according to dynamic conditions can be calculated. Table 11 shows the
results of repeating this process for all accident types.

Due to the CFP of basic CREAM being solely influenced by the number of CPCs,
the CFP was calculated the same for accidents with the same β regardless of the type of
CPC. As a result of the calculation, the probability of human error occurring was highest
in falling, and the probability was lowest in collision. The reason is that in the case of
falling, the effect of adequacy of training and experience and crew collaboration quality
was negative compared to other accidents. In the case of a collision, the impact of fatigue
was more positive than in other accidents. The reason the above result occurred is because
falling caused by the shaking of the ship during sailing is difficult to solve with training,
experience, or the help of other sailors. In addition, fishermen perceived that physical
fatigue had a low impact on the probability of collisions occurring. For the remaining
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accidents, the HEP was calculated to be the same, which can be seen as the fishermen’s
perception that the probability of the accident occurring is similar.

Table 10. Results of a survey on the effect of CPC on each accident.

No. Condition CPC Level PII
Collision

While
Sailing

Getting
Caught in
Equipment

Slipping
on the
Deck

Falling
Inside the

Boat

Getting
Caught in

Fishing Nets

1

Human
reliability
condition

Fatigue
Appropriate −1.1
Acceptable 0 o

Inappropriate 1.9 o o o o

2
Adequacy of
training and
experience

Adequate, High experience −1.4 o o o o
Adequate, Low experience 0

A little inadequate 1 o
Inadequate 1.8

3
Crew

collaboration
quality

Very efficient −1.4
Efficient 0 o o o o

Inefficient 0.4
Deficient 1.4 o

4

Job
condition

Availability of
procedures/

plans

Appropriate −1.2
Acceptable 0 o o o o o

Inappropriate 1.4

5
Number of

simultaneous
goals

Fewer than capacity 0
Matching current capacity 0

More than capacity 1.2 o o o o o

6 Available
time

Adequate −1.4
Normal 0

Temporarily inadequate 1
Continuously inadequate 2.4 o o o o o

7

Dynamic
condition

Technical
condition

Advantageous −0.8
Compatible 0

Incompatible 0.7

8 Environmental
condition

Advantageous −1.1
Compatible 0

Incompatible 1.7

9 Time of day
(circadian rhythm)

Very efficient 0
Deficient 0.6

Table 11. CFP results using basic CREAM.

Accident β (Worst) CFP β (Neutral) CFP β (Best) CFP

Collision while sailing 4 0.0562 1 0.0100 −1 0.0032
getting caught in equipment 5 0.1000 2 0.0178 0 0.0056

Slipping on the deck 5 0.1000 2 0.0178 0 0.0056
Falling inside the boat 8 0.5623 5 0.1000 3 0.0316

Getting caught in fishing nets 5 0.1000 2 0.0178 0 0.0056

Analyzing the results based on dynamic conditions, based on the best conditions, the
CFP was 3.1 times higher when the conditions were neutral and 17.8 times higher when
the conditions were the worst. These findings highlight that bad weather, poor equipment
conditions, and untimely sailing times significantly increase the probability of human error.
In particular, because time of day has only two levels, neutral and negative, the difference
between neutral and worst appears larger than the difference between best and neutral.

3.2. CFP of Extended CREAM

From the results presented in Table 10, β values can be obtained for CPC numbers
1 to 6 by applying extended CREAM to ‘collision’: β = 0 − 1.4 + 0 + 0 + 1.2 + 2.4 = 2.2.
Similar to the calculation method of basic CREAM, calculating all β according to dynamic
conditions is as follows: βi = 5.2, βn = 2.2, βa = 0.3. To define CFP0, each accident was
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classified into an appropriate generic failure type. Collisions while sailing most often occur
due to poor forward observation, and getting caught in equipment occurs due to contact
with the body at an inappropriate time during equipment operation. Slipping on the deck
occurs when a human does not recognize a deck with stagnant water, and falling inside the
boat is likely to occur due to incorrect actions while sailing. Accidents involving fishing
nets occur due to incorrect actions while working with fishing nets. Table 12 shows the
classified failure types, the corresponding CFP0, and the calculated CFP.

Table 12. CFP results using extended CREAM.

Accident Failure Type CFP0 β (Worst) CFP β (Neutral) CFP β (Best) CFP

Collision while sailing Observation not made 0.007 5.2 0.1397 2.2 0.0248 0.3 0.0083
getting caught in equipment Action at the wrong time 0.003 7.1 0.1787 4.1 0.0318 2.2 0.0106

slipping on the deck Wrong identification 0.007 7.1 0.4170 4.1 0.0741 2.2 0.0248
falling inside the boat Action of the wrong type 0.003 10.9 1.5927 7.9 0.2832 6 0.0949

getting caught in fishing nets Action on the wrong object 0.0005 7.1 0.0298 4.1 0.0053 2.2 0.0018

In Extended CREAM, the calculated CFP for all accidents differed from basic CREAM
due to the influence of CFP0. Upon examining the overall probability, the CFP was highest
in the order of falling accidents, followed by slipping, getting caught, collisions, and getting
caught in fishing nets. This means that even for accidents with the same β, the CFP varies
depending on which failure type it belongs to.

The results concerning dynamic conditions were similar to basic CREAM, based on
the best conditions, the CFP was three times higher when the conditions were neutral
and 16.7 times higher when the conditions were the worst. In the worst case of dynamic
conditions, the CFP of falling is calculated as a number exceeding 1. In extended CREAM,
if the CFP exceeds 1, the probability of occurrence of the incident is calculated as 1 [39].
This means that as the dynamic condition worsens, the probability of falling increases
significantly.

Table 13 shows the comparison results of CFP between basic and extended CREAM.
Except for getting caught in fishing nets, the extended method calculated a higher CFP
than the basic method, and this is a result of the fact that unlike the basic, which simply
considers only the level of CPC, the extended method considers the quantitative impact
of each CPC. Additionally, in extended CREAM, the probability of getting caught in a
fishing net was relatively low due to the influence of CFP0 depending on the failure type.
Therefore, for accurate quantitative analysis, the precise setting of the accident’s failure
type is crucial.

Table 13. Comparison of CFP results using basic CREAM and extended CREAM.

Dynamic Condition Worst Neutral Best
Accident Type Basic Extended Basic Extended Basic Extended

Collision while sailing 0.0562 0.1397 0.0100 0.0248 0.0032 0.0083
getting caught in equipment 0.1000 0.1787 0.0178 0.0318 0.0056 0.0106

Slipping on the deck 0.1000 0.4170 0.0178 0.0741 0.0056 0.0248
Falling inside the boat 0.5623 1.5927 0.1000 0.2832 0.0316 0.0949

getting caught in fishing nets 0.1000 0.0298 0.0178 0.0053 0.0056 0.0018

3.3. HEP of Bayesian Network

To calculate CPT, the average value of the results received from one university profes-
sor and three Korea Maritime Transportation Safety Authority (KOMSA) inspectors was
utilized. Table 14 shows experts’ opinions on the impact on human reliability conditions
according to the level of the fatigue node. This process was carried out for all CPCs, and
the impact on human reliability conditions, job conditions, and dynamic conditions was
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investigated according to the level of each CPC. The weight value of each CPC surveyed by
experts is presented in Table 15.

Table 14. Probabilities gained from experts for calculating the CPT of the human reliability condi-
tion node.

CPC Name
(Parents Node) Level

Condition

Supportive Neutral Unsupportive

Fatigue
Appropriate 0.85 0.0875 0.0625
Acceptable 0.6125 0.2875 0.1

Inappropriate 0.0625 0.15 0.7875

Table 15. Weight value for each CPC.

Condition No. Weight Value CPC

Human reliability
condition

CPC1 0.35 Fatigue
CPC2 0.225 Adequacy of training and experience
CPC3 0.425 Crew collaboration quality

Job condition
CPC4 0.1625 Availability of procedures/plans
CPC5 0.3125 Number of simultaneous goals
CPC6 0.525 Available time

Dynamic condition
CPC7 0.3825 Technical condition
CPC8 0.3975 Environmental condition
CPC9 0.22 Time of day (circadian rhythm)

All conditional probabilities can be calculated by substituting the probabilities accord-
ing to the level in Table 14 and the weight values in Table 15 into Equation (19). Equation
(20) is the probability of having a supportive influence on the fatigue condition when the
level of fatigue is appropriate, the level of adequacy of training and experience is acceptable,
and the level of crew collaboration quality is inappropriate.

P = 0.35 × 0.85 + 0.225 ∗ 0.6 + 0.425 ∗ 0.0275 = 0.444 (20)

By repeating this process for all nodes, the required conditional probability can be
calculated at the condition node of the BN. Table 16 shows the CPT of the human reliability
condition node.

Table 16. Conditional probability table of the human reliability condition node computed using the
weighted sum algorithm.

Fatigue Appropriate

Adequacy of training and experience Appropriate Acceptable Inappropriate
Crew collaboration quality Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate

Supportive 0.872 0.776 0.512 0.804 0.709 0.444 0.681 0.585 0.320
Neutral 0.080 0.129 0.080 0.123 0.172 0.123 0.106 0.155 0.106

Unsupportive 0.048 0.095 0.409 0.073 0.119 0.433 0.213 0.260 0.573

Fatigue Acceptable

Adequacy of training and experience Appropriate Acceptable Inappropriate
Crew collaboration quality Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate

Supportive 0.789 0.693 0.429 0.721 0.626 0.361 0.598 0.502 0.237
Neutral 0.150 0.199 0.150 0.193 0.242 0.193 0.176 0.225 0.176

Unsupportive 0.062 0.108 0.422 0.086 0.133 0.446 0.226 0.273 0.587

Fatigue Inappropriate

Adequacy of training and experience Appropriate Acceptable Inappropriate
Crew collaboration quality Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate Appropriate Acceptable Inappropriate

Supportive 0.596 0.501 0.236 0.529 0.433 0.169 0.405 0.309 0.045
Neutral 0.102 0.150 0.102 0.145 0.194 0.145 0.128 0.177 0.128

Unsupportive 0.302 0.349 0.662 0.326 0.373 0.687 0.467 0.514 0.827
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The fuzzified survey results were employed as input for BN. Table 17 presents the
results of the survey regarding the fisherman’s career and their work on the fishing boat,
rated on a scale from 0 to 100. Each CPC number is the same as in Table 15. The closer the
score is to 100, the more effective the CPC is. Table 18 shows the fuzzified input values.

Table 17. Survey results of seven fishermen.

Career CPC1 CPC2 CPC3 CPC4 CPC5 CPC6 CPC7 CPC8 CPC9

Fisherman 1 30 20 80 90 30 70 60 10 100 50
Fisherman 2 20 100 10 100 50 50 70 20 40 50
Fisherman 3 30 20 50 80 20 20 20 20 80 50
Fisherman 4 40 80 100 50 50 40 40 90 40 30
Fisherman 5 52 100 10 80 80 100 100 10 100 70
Fisherman 6 50 100 100 10 50 50 50 10 10 50
Fisherman 7 41 100 50 80 50 50 90 80 100 80

Table 18. Input values for a Bayesian network.

Effects CPC1 CPC2 CPC3 CPC4 CPC5 CPC6 CPC7 CPC8 CPC9

Fisherman 1
Increase 0 0.75 1 0 0.5 0.25 0 1 0
Neutral 0.25 0.25 0 0.5 0.5 0.75 0 0 1

Decrease 0.75 0 0 0.5 0 0 1 0 0

Fisherman 2
Increase 1 0 1 0 0 0.5 0 0 0
Neutral 0 0 0 1 1 0.5 0.25 0.75 1

Decrease 0 1 0 0 0 0 0.75 0.25 0

Fisherman 3
Increase 0 0 0.75 0 0 0 0 0.75 0
Neutral 0.25 1 0.25 0.25 0.25 0.25 0.25 0.25 1

Decrease 0.75 0 0 0.75 0.75 0.75 0.75 0 0

Fisherman 4
Increase 0.75 1 0 0 0 0 1 0 0
Neutral 0.25 0 1 1 0.75 0.75 0 0.75 0.5

Decrease 0 0 0 0 0.25 0.25 0 0.25 0.5

Fisherman 5
Increase 1 0 0.75 0.75 1 1 0 1 0.5
Neutral 0 0 0.25 0.25 0 0 0 0 0.5

Decrease 0 1 0 0 0 0 1 0 0

Fisherman 6
Increase 1 1 0 0 0 0 0 0 0
Neutral 0 0 0 1 1 1 0 0 1

Decrease 0 0 1 0 0 0 1 1 0

Fisherman 7
Increase 1 0 0.75 0 0 1 0.75 1 0.75
Neutral 0 1 0.25 1 1 0 0.25 0 0.25

Decrease 0 0 0 0 0 0 0 0 0

The results of inputting the data of fisherman No. 1 into the BN network in Figure 5
are shown in Figure 6. The process of calculating the control mode for each fisherman re-
mains consistent. CV can be obtained by applying the COA method of Equation (16) to the
probability of the control mode, which is the output value of BN, and going through the de-
fuzzification process. Finally, HEP can be calculated by substituting CV into Equation (18).
This process was iterated for all fishermen, and Table 19 presents the probability, CV, and
HEP of the control mode.
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Table 19. Results of the probability distribution for the control modes and HEP.

Career Strategic Tactical Opportunistic Scrambled Dominant Control Model Crisp Value HEP

Fisherman 1 30 0.57 0.11 0.09 0.23 Strategic −2.9352 0.00116
Fisherman 2 20 0.58 0.11 0.08 0.22 Strategic −2.9646 0.00108
Fisherman 3 30 0.47 0.10 0.10 0.34 Strategic −2.7644 0.00172
Fisherman 4 40 0.61 0.11 0.08 0.20 Strategic −2.9987 0.00100
Fisherman 5 52 0.61 0.11 0.08 0.20 Strategic −2.9987 0.00100
Fisherman 6 50 0.46 0.11 0.09 0.34 Strategic −2.7620 0.00173
Fisherman 7 41 0.70 0.11 0.07 0.11 Strategic −3.1438 0.00072

Comparing with Table 15, the HEP of fisherman 7, who rated all CPCs with scores
of 50 or higher and perceived them to positively impact human reliability, was estimated
to be the lowest. Conversely, the HEP of fisherman 6, who gave scores of 50 or less on all
but two CPCs and evaluated that CPC had a generally negative effect on human reliability,
was estimated to be the highest. The most dominant control mode among the fishermen
surveyed is the strategic mode. This indicates that all fishermen are well aware of the
situation and how work is progressing and are able to plan actions when problems arise.
In addition, since the dominant control mode and the calculated HEP are the same as
the failure probability range according to the control mode in Table 4, they match the
probability interval of the original CREAM and can provide a more accurate HEP. In these
results, it was difficult to find a correlation between experience and HEP, which is presumed
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to be because the survey subjects were all veterans with more than 20 years of experience.
This is the same reason why all control modes are strategic.

4. Discussion

In this paper, we introduce a model aimed at enhancing the accuracy of HEP inference
by integrating existing HRA methods. This effort was designed to deepen our understand-
ing of risks in the fishing industry by incorporating dynamic conditions into the original
CREAM framework’s CPC and utilizing FST and BN. The effectiveness of the model was
validated through its application in a real-world survey. Consequently, this study presented
five novel contributions to the understanding of human errors in fishing vessels, which
have the potential to mitigate human errors in a variety of industries.

4.1. Approaches for Comprehensive Understanding of Human Error

The basic CREAM method calculates CFP based solely on the number of CPCs, making
the calculation insensitive to the specific impacts of each CPC. This lack of differentiation
could obscure the distinct risks associated with different accidents. Conversely, extended
CREAM reflects the severity of conditions through PII, with inappropriate CPC levels
correlating with higher CFP. If the type of failure related to work or accidents is accurately
classified, it becomes possible to calculate the CFP with higher accuracy than with basic
CREAM. However, the method’s reliance on a predefined set of failure types, limited to 13
categories, may not encompass all accident or work types.

Our combined FST and BN approach for calculating HEP took into account all fisher-
men’s ratings of dynamic conditions, revealing a predominance of strategic control modes
among seasoned fishermen. This suggests that experienced fishermen possess adequate
skills to manage tasks and respond to accidents effectively. This model provided a clearer
understanding of the CPC-HEP relationship, offered quantitative HEP calculations, and
reduced uncertainties in survey results compared to using basic or extended CREAM alone.

4.2. Identification of the Most Critical CPC for Fishing Vessels

CREAM was originally developed for the nuclear power industry. In the nuclear indus-
try, human errors are mostly analyzed, assuming a controlled and static state. However, in
industries and activities that take place in dynamic and uncontrolled environments, such as
aviation, construction, and maritime, it is necessary to analyze human error by considering
dynamic conditions. Therefore, we identified factors that affect humans engaging in fishing
activities.

The study conducted by Abaei et al. [45] demonstrates that the reliability of human
performance decreases over time in harsh conditions, highlighting the need to consider
environmental data and ship motions to assess human performance accurately. The study
concludes that this model can significantly aid in planning and decision-making pro-
cesses to improve the safety of human life during marine operations in various weather
conditions. According to Antão et al. [28], adverse weather conditions can increase the
probability of human error on fishing boats. His research utilized Bayesian Belief Networks
to examine the impact of wave height on maritime accidents, concluding that weather
conditions significantly influence the probability of specific types of accidents occurring.
Rezaee et al. [46,47] underscored the importance of incorporating specific weather condi-
tions into safety regulations and practices to mitigate risks associated with severe weather.
Previous research on human reliability in the fishing industry has concluded that weather
conditions increase the probability of human error. This finding supports the effective-
ness of our approach in calculating human error probability by incorporating dynamic
conditions into the CPC.

4.3. New CPCs for Labor-Intensive Human Activities

We modified the CPC of the original CREAM to be more suitable for the fishing
sector, following the suggestions of Konstandinidou et al. [38]. Given the absence of
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large organizations within fishing operations, ‘Adequacy of Organization’ was removed.
Additionally, recognizing the greater importance of the condition of equipment over its
interface, ‘Adequacy of MMI and Operational Support’ was replaced with ‘Technical
Condition’. ‘Working Condition’ was subdivided into ‘Environmental Condition’ and
‘Fatigue’, reflecting the harshness of the marine environment. The nine revised CPCs were
thus categorized into human reliability conditions, job conditions, and dynamic conditions.
While human reliability and job conditions can be enhanced through human efforts, factors
such as adverse weather, sudden equipment failure due to seawater exposure, and fishing
times dictated by target fish species are less controllable. We observed that these dynamic
conditions, which vary with each fishing expedition, significantly impact the CFP for
prevalent accidents on fishing boats. The revised CPC proposed in this study is expected to
be applicable not only to fishing activities but also to small-scale labor-intensive activities
or industries.

4.4. Dynamic Aspects of Human Errors

We categorized the newly added CPCs, technical conditions and environmental Con-
ditions, and the existing CPC, time of day, by grouping them into dynamic conditions.
This CPC is an item to consider the impact of human error due to sudden equipment
failure, wave height or wind factors, and fishing time, depending on the target fish species.
These three items have something in common: they are factors that humans cannot control.
To check the impact of the newly classified dynamic conditions, CFP was calculated by
dividing the conditions into worst, neutral, and best conditions.

The findings underscored a marked disparity in CFP under varying dynamic condi-
tions. For all accident types, the average CFP was calculated to be 0.4716 when conditions
were the worst and 0.0281 when conditions were the best. This means that when dynamic
conditions are the worst, the risk of human error is approximately 16.7 times higher. Espe-
cially according to the results of Extended CREAM, when the dynamic condition is at its
worst, the CFP value for the accident of “falling inside the boat” is calculated to be 1.5927.
This indicates that such accidents are almost certain to occur. Therefore, it is recommended
to avoid fishing under these conditions. Wu et al. [48] determined that the probability of
accidents related to fishing activities escalates during specific periods, in certain areas, and
under particular weather conditions, based on an analysis of accident data. This finding
aligns with the conclusion of this paper, which posits that the worse the dynamic CPC, the
higher the probability of human error occurring. Even if other conditions are optimal, a
poor dynamic CPC significantly increases the probability of human error, necessitating the
implementation of countermeasures. And the dynamic aspect we have added is a factor
worth considering when analyzing human error in various industries/activities that are
dynamic and uncontrolled.

4.5. Extended Application of the Proposed Method

Although the study was based on Korean fishermen, the identified accident categories
and CPCs are broadly applicable to global fishing activities. The method proposed in
this study did not include elements limited to specific regions, except for the survey. The
proposed model is versatile and could be adapted for fishermen in other regions with
minor modifications to survey questions, dynamic CPC, or accident classifications.

The modified CPCs can also be used in other industries. If the accident category is
changed to suit each industrial field, HEP can be calculated using the method proposed in
this study, targeting marine facility repairs, construction, agriculture, and port workers,
which are jobs affected by the external environment. Since these occupations have a high
probability of making mistakes due to weather, equipment condition, and worker fatigue,
it is reasonable to apply modified CPC.

Nevertheless, the model’s complexity limits its immediate usability by fishermen
and officials. Lazakis et al. [49] and Antão et al. [50] find that human factors significantly
contribute to fishing vessel incidents, with issues such as inadequate training and poor
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communication being prevalent. These papers emphasize the importance of addressing
these human factors through improved safety training and protocols to reduce the risk of
accidents. Our goal, therefore, is not direct application by these stakeholders but rather to
utilize the insights gained from the model’s analysis to develop and disseminate a safety
checklist tailored for fishermen. This checklist, designed to be used before, during, and
after sailing, will include critical items that need monitoring to enhance safety at sea. By
focusing on these key areas, the checklist is expected to play a crucial role in accident
prevention, helping fishermen remain vigilant about potential hazards.

Furthermore, the application of our model facilitates the identification of conditions
under which human errors are most likely to occur and the types of accidents that are most
common. Such insights are invaluable for pinpointing specific areas where crew training
and safety measures onboard fishing vessels require reinforcement. By addressing these
focal points, we anticipate a significant reduction in accidents attributable to human error,
fostering a culture of increased caution, especially under adverse dynamic conditions. This
approach aligns with our overarching goal of improving safety in the fishing industry
through strategic analysis and intervention.

5. Limitations and Future Works

There are two disadvantages to the model constructed in this study. Firstly, the
accuracy of the survey results presents a challenge. Given that fishermen may not possess
the same level of education as more highly trained sailors or engineers, conveying the
survey’s intricacies and ensuring comprehension can be problematic. This difficulty is
compounded by instances where fishermen might select identical levels for all accident-
related CPCs, thereby complicating the differentiation of responses. Although the CPT
relies on subjective expert opinions, which inherently carry a risk of bias, the expertise
of our survey respondents—comprising professors and engineers with over a decade of
experience—lends a degree of reliability to the data collected.

Secondly, our survey exclusively involved fishermen with more than 20 years of
experience, limiting our ability to draw comparisons between the HEP of these veterans
and that of less experienced fishermen. This homogeneity among respondents restricts the
generalizability of our findings across the broader fishing community.

In future research, addressing the challenges encountered in survey-based assess-
ments of accident risks and human error probabilities among fishermen will be crucial.
To enhance the reliability and validity of such studies, we propose two methodological
improvements: increasing the sample size and precisely defining the target subgroup
within the fishing community.

An increased sample size is vital for achieving more representative and generalizable
findings across the diverse fishing industry. A larger pool of participants will allow for
a finer analysis of human error probabilities, leading to more accurate and nuanced risk
assessments. This approach also promises to increase the statistical power of the research,
yielding results with higher precision and less vulnerability to random variations.

Simultaneously, focusing on a well-defined subgroup of fishermen—selected based on
specific criteria such as the type of fishing, geographic area, or particular risk factors faced—will
enable a more detailed exploration of the unique challenges and safety issues pertinent to that
group. This targeted approach will not only ensure that the survey questions are highly
relevant to the respondents’ experiences, thereby reducing recall and response biases, but
also facilitate the collection of in-depth data on the nuanced aspects of fishing operations
that influence safety and accident rates.

Future studies should consider these methodological strategies to mitigate common
survey research challenges, such as sampling bias and the imprecision of data collection.
Implementing these approaches will contribute to the development of a more robust
and comprehensive understanding of the factors affecting human error and safety in
the fishing industry. This, in turn, will inform the creation of targeted interventions
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and policies designed to enhance safety practices and reduce the incidence of accidents
among fishermen.

6. Conclusions

In this paper, an HRA on work on fishing boats was conducted based on a survey of
fishermen operating small fishing boats of less than 10 tons. CREAM was employed for
HRA, and improved CREAM was utilized to address the uncertainties and non-quantitative
disadvantages of the original CREAM. CFP, according to the accident, was calculated
using Basic CREAM and Extended CREAM. The HEP of each fisherman was calculated
using CREAM, a combination of FST and BN. The conclusions obtained through HRA are
as follows:

(1) When comparing the results using basic CREAM and extended CREAM, it was found
that more detailed calculations were possible when using extended CREAM, and the
difference in probability depending on the accident was clearly revealed. However,
due to the significant impact of the failure type on the results, it is crucial to accurately
identify the specific failure type associated with each accident or operation. Among
accidents involving collision while sailing, getting caught in equipment, slipping on
the deck, falling inside the boat, and getting caught in fishing nets, the category with
the lowest risk of error was collision while sailing, and the category with the highest
was falling inside the boat. In particular, when the dynamic CPC was the worst, the
CFP of falling exceeded 1. Therefore, in small fishing boats, it is necessary to prevent
falling by reinforcing railings or handles, and it is recommended not to fish in bad
weather or when the equipment is in poor condition. The analysis shows that changes
in dynamic conditions have a significant effect on the probability of human error in
fishing boats.

(2) FST was applied to reduce uncertainty in the survey results, and the fuzzified survey
results were then used as input to BN. To quantify the conditional probability of BN,
we collected expert opinions and calculated CPT using a weighted sum algorithm.
As a result of BN, we obtained the probability distribution of each control mode
rather than one control mode. CV and HEP were calculated through a defuzzification
process applying the COA method to this probability distribution. As a result of the
calculation, the dominant control mode of all surveyed fishermen was strategic, and
each HEP range was identical to the probability intervals of the original CREAM.
All HEPs were lower than 0.002, which shows that skilled fishermen have sufficient
ability to perform tasks and respond to accidents. Through this process, it was verified
that the model presented in this paper has appropriate performance for calculating
the HEP.

In this study, we illustrated how CFP and HEP vary depending on the status of
dynamic CPC in the ocean, where the working environment is harsh, especially for small
fishing boats that are greatly affected by weather and working hours. The accuracy of HEP
inference was improved by creating a quantitative HRA model combining FST, COA, BN,
and CREAM, and the accuracy of the model can be further augmented by securing data
through additional surveys and improving CPT.
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//www.mdpi.com/article/10.3390/su16093780/s1. Results of a survey on the effect of CPC on
each accident.
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