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Abstract: The COVID-19 pandemic significantly impacted global development. Through bioaerosols
emitted by human respiration, respiratory infectious diseases, including COVID-19, are transmitted.
The bioaerosol concentrations can be affected by the urban climate and morphology. However, the
effects of urban green spaces on bioaerosol concentrations remain unclear. Focusing on the dormitory
area of Beijing Forestry University, this study first investigated the influence of different green
space ratios on the average bioaerosol concentrations using the ENVI-met software. Moreover, both
overall and local green space layouts were analyzed for their impact on bioaerosol concentrations.
The results indicated that ventilation conditions were the primary factor influencing bioaerosol
concentrations. During peak congestion, a 10% increase in the green space ratio resulted in a 2%
rise in the average bioaerosol concentration. Furthermore, a distributed layout resulted in a 1.3%
higher average bioaerosol concentration than a concentrated layout with an equivalent green space
ratio. Enacting strategies such as Roadside Green Spaces Retreat, Road Spaces Expansion, and
Intersection Green Spaces Chamfering led to reductions in local bioaerosol concentrations by up to
17.7%, 18.44%, and 12.69%, respectively. This study highlights the importance of adjusting green space
layouts in urban high-density areas after the pandemic, reducing the risk of population exposure to
bioaerosol concentrations.

Keywords: respiratory infections; bioaerosol concentrations; urban high-density areas; green space
ratio; green space layout; ENVI-met

1. Introduction

The global spread of the COVID-19 pandemic has significantly impeded the develop-
ment of nations worldwide. Several respiratory infectious diseases, including COVID-19,
can be transmitted through airborne bioaerosols. Bioaerosols are gaseous-dispersed systems
comprising solid or liquid particles within a gaseous medium [1]. Bioaerosols containing
microbial organisms or biologically active molecules are referred to as bioaerosols [2].
Bioaerosol particles with small diameters (≤5 µm) potentially lead to higher viral loads
and larger concentrations than larger particles, primarily coming from human respira-
tory activity [3]. These smaller droplets can remain suspended in the air for extended
periods, forming bioaerosols, and can be transported over considerable distances [4]. No-
tably, a previous study found detectable levels of COVID-19 in bioaerosols three hours
after nebulization [5], underscoring the significant risk posed by these bioaerosol droplets
in spreading infectious diseases, including several respiratory infectious diseases such
as COVID-19.

With the ongoing global urbanization trend, nearly two-thirds of the world’s pop-
ulation will reside in cities by 2050 [6]. Epidemics swiftly spread in densely populated
large cities due to a high population density and mobility, posing challenges to prevention
and control measures. In the post-epidemic era, acknowledging the reality of long-term
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coexistence with viruses and reducing the concentration of bioaerosols in urban air is
paramount for urban disease prevention and control and as well as the overall health of
urban residents [7–9].

In the post-pandemic era, there is a growing emphasis on urban health and safety.
Disease transmission within cities is a multifaceted interplay between urban climatic
factors and urban morphology. Urban climatic factors, particularly ventilation status,
significantly influence disease transmission dynamics [10]. Low wind speeds, leading to
heightened concentrations of air pollutants, can prolong the presence of viruses within
pollutants, elevating the risk of disease transmission [11,12]. Additionally, the mortality
rate among infected individuals closely correlates with the accumulation of air pollutants
resulting from inadequate air circulation in urban areas. Prolonged exposure to PM2.5
is associated with a notable rise in COVID-19 mortality [13]. Urban morphology, on
the other hand, predominantly affects disease transmission by affecting urban ventilation
conditions. Building morphology and layouts substantially influence local urban ventilation
conditions [14]. During low wind speeds, the risk of infection in building courtyards equals
that of indoor spaces. Properly designed courtyard areas can effectively mitigate this
risk [15]. Building density, public transportation, and urban sanitation can exacerbate
disease transmission risks [16]. At the community level, alterations in city morphology can
enhance ventilation, facilitating pollutant dispersion and reducing pollutant concentrations,
thereby minimizing infection risks [17].

As integral components of urban infrastructure, urban green spaces enhance urban
health and safety [18,19]. The historical practice of constructing urban parks in the 18th
century in the UK, aimed at improving urban hygiene and controlling disease spread,
is a testament to their importance. The rampant infectious diseases of the 19th century
prompted proactive urban environment management to address public health challenges.
Recent studies have indicated that urban green spaces play a crucial role in mitigating air
pollutant concentrations within cities [20–24]. Plants can absorb gaseous pollutants through
leaf stomata or surfaces [20,25], and they can also trap airborne particulate matter on leaves
and stems [26–30]. In densely populated urban areas, well-designed green spaces with
diverse plant species effectively combat air pollution [31]. Within street canyons, green
spaces along roadways act as barriers, limiting the spread of pollutants such as PM2.5,
PM10, and nitrogen dioxide emitted by vehicles, thus reducing pollutant concentrations
on sidewalks and adjacent neighborhoods [32,33]. However, these green spaces may also
diminish wind speeds in street canyons, reducing air circulation above rooftops and within
the canyons and exacerbating pollutant accumulation [34–38]. Furthermore, urban green
spaces’ size, shape, and layout significantly influence particulate pollutants [39,40]. Notably,
a negative correlation exists between the area of green space and PM2.5 levels [41]. For
urban green spaces within a 2 km radius, the total edge length has a more substantial impact
on PM2.5 than the green coverage area, which holds more significant influence within
3–5 km scales [42]. Additionally, enhancing the likelihood of green space interaction with
the air, achieved through intricate shapes, reduces urban PM2.5 concentrations in extensive
green space patches [43]. On the landscape level, a more uniform and decentralized
distribution of green spaces is advantageous in curbing particulate matter emissions [44].
Furthermore, urban green spaces play a pivotal role in disease transmission dynamics.
Plant leaves serve as adsorbents for bioaerosol droplets, and certain plants release chemicals
that neutralize pathogens within these droplets. Research by Zhao indicates that within
specific parameters, augmenting vertical greening coverage on buildings significantly
lowers bioaerosol concentrations in urban environments [45].

However, the specific impact of green space ratios and layouts on bioaerosol concen-
trations in neighborhood-scale urban green spaces within high-density built-up areas is still
under investigation. The goal of this study is to first investigate the correlation between
green space ratios and bioaerosol concentrations in high-density built-up areas. Subse-
quently, it explores the effects of varying green space layouts on bioaerosol concentrations
under consistent green space ratios. The primary task is to preliminarily simulate the im-
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pact of different green space ratios and typical layout patterns on bioaerosol concentrations,
laying the foundation for more in-depth, comprehensive research in the future. These
examinations seek to establish a theoretical foundation for constructing green spaces in
urban high-density built-up areas in the post-pandemic era.

2. Materials and Methods

In this study, we selected the dormitory area of Beijing Forestry University as our
research site, with major roads serving as the source of bioaerosol pollution. Through field
surveys, we obtained pedestrian flow data on these roads to calculate the bioaerosol release
rates. Finally, we utilized Envi-met software to simulate bioaerosol concentrations under
different green space ratios and layouts, followed by a comparative analysis.

2.1. ENVI-Met Software Introduction

ENVI-met is advanced simulation software widely used for analyzing urban microcli-
mates. Differing from conventional urban climate modeling software, ENVI-met places
a strong emphasis on the intricate interplay among structural surfaces, vegetation, and
the atmospheric environment. Employing the standard convection–diffusion equation
(Equation (1)), it conducts simulations for the diffusion of gases and particles [46]:
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where χ represents the component of a gas or particle in the atmosphere as simulated; Qx
and Sx denote the pollution source and deposition type, respectively. The pollution sources
(Qx) are classified into four categories: point sources, line sources, area sources, and volume
sources. Deposition types (Sx) encompass particles deposited from the top layer, particles
subject to gravity deposition, and the total loss of particles caused by deposition on leaf
surfaces. The effect of gravity on pollutants, the effect of plants on pollutants, and the
microclimate are all considered in ENVI-met [46].

Previous studies have consistently demonstrated the high precision of ENVI-met in
modeling urban microclimates [32,47–51]. It has found application in diverse settings, such
as urban settlements, street canyons, campuses, roads, and parks [52]. This study utilized
ENVI-met version 5.1.1 for simulations.

2.2. Study Site

The climate in Beijing, China, falls under the warm-temperate semi-humid continental
monsoon category, characterized by an average annual temperature of 14 ◦C and an average
annual precipitation of approximately 600 mm [53]. The study focused on Beijing Forestry
University in Haidian District, Beijing, China. Beijing Forestry University encompasses an
area of approximately 46.4 hectares, with a built-up green space ratio of around 42.2%. The
campus accommodates nearly 20,000 students and faculty members. Because a significant
portion of students reside on campus, the main roads within the dormitory area, located in
the southwestern part of the campus, witness high population density during commuting
hours, representing a characteristic scenario of high-density built-up areas in Beijing.
Therefore, the rectangular-shaped dormitory area, measuring about 250 m in length and
140 m in width, with predominantly student dormitories, was chosen as the study site. The
specific layout of the roads, buildings, green spaces, and other elements within this area
formed the fundamental parameters for the ENVI-met simulation (Figure 1).

2.3. Study Date and Time

Previous studies have indicated that the spread of new coronaviruses intensifies in
densely populated areas [10]. Moreover, a brief environmental exposure has been identi-
fied as a potential pathway for infection. This emphasizes the importance of bioaerosol
concentrations during pedestrian peak hours in densely populated regions, which greatly
influence the transmission dynamics of respiratory infectious diseases. As a result, the



Sustainability 2024, 16, 3688 4 of 20

study focused on weekdays between 11:00 and 13:00, coinciding with the peak pedestrian
hours in the study area. Students frequently travel between dormitories and academic
buildings before and after classes during this time. Field studies were conducted from
Monday, 8 May 2023, to Friday, 12 May 2023, between 11:00 and 13:00 each day to capture
the peak pedestrian flow in the study site.
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Figure 1. Study site: dormitory area in Beijing Forestry University, Haidian District, Beijing, China.
Source: http://guihuayun.com (accessed on 10 June 2023).

2.4. Pollution Source Identification

On campuses, bioaerosols containing pathogens stem from human respiratory activi-
ties, with roads constituting the principal source of bioaerosol pollution. For simulations
utilizing the ENVI-met model in this study, bioaerosols were designated as particle pol-
lution sources [17,45]. The particles were characterized by a diameter of 5 µm [3,4] and a
density of 1 × 103 kg/m³ [54]. The bioaerosol concentration experiences notable variations
at the campus scale due to the combined influence of background concentration and foot
traffic. Therefore, the software’s source model was configured to include background pol-
lutants and linear-traffic-related sources in this study. The background concentration was
0.1 µg/m³ [45]. The production rate of the linear source depended on both the pedestrian
flow on the roadway and the rate of bioaerosol generation resulting from pedestrians’
respiratory activities.

http://guihuayun.com
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2.4.1. Current Roads and Pedestrian Flow Statistics

Given the substantial variations in pedestrian traffic along different roads within the
study site, conducting time- and location-specific pedestrian flow counts was imperative. In
this context, the current road network and pedestrian flow conditions were amalgamated,
dividing the study area into 14 major road sections (Figure 2). Pedestrian flow statistics
were aggregated over five days for each time slot and location, providing the foundational
statistics for determining the pollution release rate of the ENVI-met-modeled pollutant
sources (Table 1).
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Figure 2. Major roads and their numbers in the study site.

Table 1. Pedestrian flow on major roads during 11:00–11:59 AM and 12:00–12:59 AM, from 8 May–12
May 2023.

Road
Numbers

Road Pedestrian Flow (People/min)
11:00–11:59 AM

Road Pedestrian Flow (People/min)
12:00–12:59 AM

5.5 5.8 5.9 5.10 5.11 5-Day
Average 5.5 5.8 5.9 5.10 5.11 5-Day

Average

1 14 17 17 12 13 15 13 9 6 13 16 11
2 6 11 22 9 7 11 10 9 10 11 12 10
3 13 10 9 9 13 11 12 9 10 14 10 11
4 2 1 2 1 2 2 1 2 1 4 2 2
5 3 3 3 3 4 3 3 3 6 3 2 3
6 16 34 24 21 29 25 22 17 25 21 16 20
7 12 7 10 8 10 9 10 7 4 7 12 8
8 13 16 17 13 19 16 8 11 17 14 16 13
9 9 16 13 12 20 14 11 10 14 11 13 12

10 11 13 15 11 14 13 8 9 11 10 14 10
11 9 8 10 6 5 8 9 5 5 4 8 6
12 14 9 12 9 13 11 10 9 12 12 9 10
13 6 6 9 5 4 6 5 5 7 4 10 6
14 3 2 1 3 4 3 0 1 1 2 2 1
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2.4.2. Calculation of Bioaerosol Release Rates

Research indicates that an adult can expel nearly 2 million droplets when sneezing,
comparable to those produced during conversations [55]. A single cough can also generate
about 1 million droplets [56]. Nasal and oral breathing produces approximately 1/20 and
1/3 as many droplets (with a diameter >1 µm) as coughing, respectively [55]. This study
considered a compromise of 1/10, assuming a droplet diameter of 5 µm [3,4]. Then, the
mass of individual bioaerosol particles (Equation (2)) and the total mass of bioaerosols pro-
duced by a single breath from an adult was calculated (Equation (3)). Adults typically walk
at a speed of about 1.5 m/s and breathe at a rate of 12–20 breaths/min. During the study
period, pedestrians were observed to walk faster; thus, the upper limit of 20 breaths/min
was used. Within a 3 s timeframe of a single breath, pedestrians cover a distance of 4.5 m
(Equation (4)). It was approximated that the bioaerosols produced by a single breath were
uniformly distributed over this distance. Consequently, an adult’s bioaerosol pollution
release rate was calculated to be 0.485 µg/m·s·person (Equation (5)). The study calculated
the bioaerosols’ linear source pollution release rate by utilizing the average pedestrian flow
data for each roadway during each time slot (Equation (6)) (Table 2).

m = ρ × 4
3

πr3 (2)

M = n × m × k (3)

l = v × t (4)

V0 =
M

l × t
(5)

V = V0 ×
N
60

(6)

Table 2. Bioaerosol release rates for linear pollutant sources on major roads during 11:00–11:59 AM
and 12:00–12:59 AM.

Road Numbers Bioaerosol Release Rate for Linear Pollutant
Source, 11:00–11:59 AM (µg/m·s)

Bioaerosol Release Rate for Linear Pollutant
Source, 12:00–12:59 AM (µg/m·s)

1 0.118 0.092
2 0.089 0.084
3 0.087 0.089
4 0.013 0.016
5 0.026 0.027
6 0.200 0.163
7 0.076 0.065
8 0.126 0.107
9 0.113 0.095
10 0.103 0.084
11 0.061 0.050
12 0.092 0.084
13 0.049 0.050
14 0.021 0.010

2.5. Simulation Plan Development
2.5.1. Configuration of ENVI-Met Main Parameters

The fundamental model of ENVI-met adopts a grid structure encompassing the
x-axis, y-axis, and z-axis. Considering the scale of the study area, a grid measuring
50 × 50 × 40 was employed, with each grid unit measuring 5 m × 5 m × 4 m. Since
pedestrians are only exposed to high concentrations of bioaerosols containing viruses for
a brief duration sufficient to cause infection, the simulation was concentrated on the two-
hour period from 11:00 to 13:00 on 10 May 2023, when the pedestrian flow reaches its peak
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during the day. Other vital parameters were configured based on relevant meteorological
data from Haidian District, Beijing (Table 3).

Table 3. Main parameter settings for ENVI-met.

Parameter Category Parameter Name Input Value

Geographic location Latitude and longitude Beijing, China (39.96◦ N, 116.30◦ E)

Time zone Time zone China Standard Time/GMT + 8

Simulation time
Start time 10 May 2023, 11:00 AM
End time 10 May 2023, 1:00 PM
Duration 2 h

Meteorological conditions
(Sourse: The real-time data from

http://hz.hjhj-e.com/,
accessed on 15 May 2023)

Wind direction (0:N, 90:E, 180:S, 270:W) 135
Wind speed 2 m/s

Initial temperature 24 ◦C
Relative humidity 24%

Plant parameters Grass 25 mm height, 2D grass
Trees 10 m height, 2D trees

Pollution source settings

Pollution source type Linear (line)
Pollution source category Particle

Background pollution concentration 0.1 µg/m3

Linear pollutant source release rate Refer to Table 2

2.5.2. Model Construction: Impact of Green Space Ratios on Bioaerosol Concentrations

The current green space ratio in the study area is approximately 36%, while the ratio
of existing buildings and main roads totals about 53%. Consequently, the green space ratio
can be increased to approximately 47%. While preserving the existing building and main
road configurations, all green areas were transformed into a plantation pattern comprising
trees + grass. The woodland closeness was maintained at nearly 100% (Figure 3). To explore
the influence of green area ratio on bioaerosol concentration and wind speed, six models
were constructed with green area ratios of 0%, 10%, 20%, 30%, 40%, and 47% (Figure 4).
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2.5.3. Model Construction: Impact of Green Space Layouts on Bioaerosol Concentrations

In order to maintain the existing green space ratio (approximately 36%), all green
areas utilized trees + grass planting patterns. Within 11:00–11:59, four groups of 17 mod-
els were constructed to explore the effect of overall and local green space layouts on
bioaerosol concentrations.

For the overall layout, models in Group 1 explored the impact of distributed and con-
centrated green space layouts on the average bioaerosol concentrations. For the local layout,
the influence of green space arrangements on bioaerosol concentrations was investigated at
specific locations, such as busy roads and intersections, where the pollutant release rate
was high. Models in Group 2 and Group 3 explored the influence of the green space layout

http://hz.hjhj-e.com/
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on bioaerosol concentrations along roads. Furthermore, the models in Group 4 explored
the impact of the green space layout on bioaerosol concentrations at intersections.
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Overall Layouts

• Group 1: Distributed and Concentrated Layouts

In Group 1, four models were developed. Layouts 1 and 2 employed distributed
layouts, distributing green spaces evenly across the study area. Layouts 3 and 4, on
the other hand, adopted concentrated layouts, positioning green spaces more centrally.
Specifically, Layouts 1 to 3 arranged green spaces in the west open space, while Layout
4 preserved the west open space to the maximum extent possible (Figure 5). Fragstats v4.2
software was employed to calculate two landscape pattern indices, the Number of Patches
and the Split Index, for the four models. Both indices respond to the degree of green space
dispersion under consistent green space area conditions, with higher values indicating
more excellent dispersion [57]. The results revealed significant differences in the Number
of Patches and the Split Index among models with distributed and concentrated layouts
(Table 4), indicating marked disparities in the degree of green space layout dispersion.
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Table 4. Number of Patches and the Split Index for the layouts in Group 1.

Layouts Number of Patches (NP) Landscape Split Index (LSI)

Layout 1 60 42.0525
Layout 2 70 44.7683
Layout 3 38 25.1016
Layout 4 39 23.9367

Local Layouts

• Group 2: Roadside Green Spaces Retreat

In Group 2, three strategies—Roadside Green Spaces No Retreat, Roadside Green
Spaces Retreat by Half, and Roadside Green Spaces Full Retreat—were employed to inves-
tigate the impact of Roadside Green Spaces Retreat on bioaerosol concentrations. Layouts 1
and 2 from Group 1 served as control models. For the green spaces on both sides of the
five major roads in the east (the dashed lines in Figure 6), the control models (Layout 1 and
Layout 2) maintained Roadside Green Spaces No Retreat, situating the green spaces close
to the road. Layouts 5 and 7 adopted Roadside Green Spaces Retreat by Half, with half of
the roadside green spaces placed near the building side and the other half retained close to
the roadside. Layouts 6 and 8 utilized Roadside Green Spaces Full Retreat, situating all
green spaces near the building sides (Figure 6).
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• Group 3: Road Spaces Expansion

In Group 3, three strategies—Road Space Unexpanded, Road Spaces Doubled, and
Road Spaces Tripled—were employed to investigate the influence of road space width
on bioaerosol concentrations. All layouts were based on Layout 3. Layout 9 maintained
Road Space Unexpanded and concentrated green space on both sides of the roads, with a
high pedestrian flow in the east (the dashed lines in Figure 7) serving as a control model.
Subsequently, green space on both sides of the roads was gradually reduced to widen
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the road space. Layout 10 adopted Road Spaces Doubled, while Layout 11 utilized Road
Spaces Tripled (Figure 7). Additional green spaces were introduced to the west of the study
site to maintain a consistent green space ratio.
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• Group 4: Intersection Green Spaces Chamfering

In Group 4, four strategies—No Chamfering, Diagonal Chamfering, Quadrilateral
Chamfering, and Diagonal Double Chamfering—were employed in the green spaces at
the intersections to assess the effect of chamfering on bioaerosol concentrations at the
intersections (the dashed box in Figure 8). Layouts 3 and 4 served as control models
with No Chamfering, featuring uniformly arranged green spaces at the intersection’s
four corners. Subsequent models were designed to decrease green spaces at the eastern
intersections, expand the intersection spaces to form a ventilated area and increase green
spaces in the western location where crowds were relatively sparse, ensuring an unchanged
overall green space ratio. Layouts 12 and 15 employed Diagonal Chamfering, where
the wind direction (southeast wind) was considered, and chamfering was applied to the
southwest and northeast corners of the green space, creating a triangular green space with
a width equal to the road’s width. Layouts 13 and 16 adopted Quadrilateral Chamfering for
all four corners of the green space, reducing the green space by an equal amount. Layouts
14 and 17 implemented Diagonal Double Chamfering for the green space in the southwest
and northeast corners only, with the area of diagonal chamfering doubled compared to
Layout 12 (Figure 8).

2.6. Data Processing

Data regarding the average height of adults (approximately 1.5 m) above the ground
level were extracted from the simulation results obtained through ENVI-met. The average
bioaerosol concentrations and average wind speeds within the study site were computed
and tabulated after excluding data from building locations and areas outside the study site.

For the simulation outcomes related to the impact of the green space ratio on bioaerosol
concentrations, a Spearman correlation analysis was applied to explore the correlation of
variables, considering their adherence to a normal distribution. A regression analysis was
conducted for scenarios displaying significant data variations.

Regarding the simulation outcomes concerning the influence of the green space layout
on bioaerosols, the results of scenarios in Group 1 were visualized as a bioaerosol concen-
tration and wind speed distribution figure. The simulation outcomes from Groups 2, 3,
and 4 were overlaid onto the differences observed in their corresponding control models to
generate a relative difference in the bioaerosol concentration figure. In this representation,
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the positive region indicates that the former model’s data concentration is higher than the
latter model’s, while the negative region signifies the opposite scenario.
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3. Results
3.1. Impact of Green Space Ratios on Bioaerosol Concentrations

Between 11:00 and 11:59, the average bioaerosol concentration and wind speed in the
study area exhibited significant correlations with the green space ratio (r = 0.994, p < 0.01
and r = −0.993, p < 0.01, Table 5). With an increase in the green space ratio from 0% to 47%,
the average bioaerosol concentration increased by approximately 9.6%, while the average
wind speed decreased by about 53.5% (Table 6). Regression analysis revealed a 2% rise
in the average bioaerosol concentration for every 10% increment in the green space ratio.
Although the green space ratio had a marginal effect on reducing the average wind speed,
the change remained significant until the maximum green space ratio of 47% was reached
(Figure 9). The pattern of the average bioaerosol concentration with the green space ratio
and wind speed in the study area persisted consistently throughout 12:00–12:59. However,
the fluctuations in bioaerosol concentration were relatively subdued during the specific
period of 11:00–11:59 (Figure 10).
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Table 5. Spearman correlation analysis.

11:00–11:59 AM
Average Bioaerosol Concentration

12:00–12:59 AM
Average Bioaerosol Concentration

Green space ratio 0.994 ** 0.986 **
11:00–11:59 AM

Average wind speed −0.993 **

12:00–12:59 AM
Average wind speed −0.997 **

Note: ** denotes p < 0.01 (two-tailed), highly significant correlation.

Table 6. Average bioaerosol concentration and average wind speed at various green space ratio in
different time periods.

Green Space Ratio (%)

11:00–11:59 AM
Average Bioaerosol

Concentration
(µg/m3)

11:00−11:59 AM
Average Wind Speed

(m/s)

12:00−12:59 AM
Average Bioaerosol

Concentration
(µg/m3)

12:00–12:59 AM
Average Wind Speed

(m/s)

0 0.1176 1.3474 0.1029 1.3487
10 0.1207 1.0641 0.1033 1.0632
20 0.1232 0.9425 0.1036 0.9416
30 0.1260 0.7997 0.1039 0.7973
40 0.1276 0.6824 0.1040 0.6809
47 0.1289 0.6260 0.1042 0.6234

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 
Figure 9. Regression analysis of average bioaerosol concentration and average wind speed with 
green space ratio in 11:00–11:59. 

 
Figure 10. Variations of average bioaerosol concentration and average wind speed with changing 
green space ratios in two time intervals. 

3.2. Impact of Green Space Layouts on Bioaerosol Concentrations 
3.2.1. Overall Layouts 
• Group 1: Distributed and Concentrated Layouts 

In Group 1, models featuring concentrated green space layouts demonstrated lower 
average bioaerosol concentrations and higher average wind speeds (Figure 11). The 
contrast between Layout 2 and Layout 4 was especially noticeable, with Layout 4 
exhibiting a lower average bioaerosol concentration of approximately 1.2% and a higher 
average wind speed of about 15.6% compared to Layout 2 (Table 7). 

Figure 10. Variations of average bioaerosol concentration and average wind speed with changing
green space ratios in two time intervals.

3.2. Impact of Green Space Layouts on Bioaerosol Concentrations
3.2.1. Overall Layouts

• Group 1: Distributed and Concentrated Layouts

In Group 1, models featuring concentrated green space layouts demonstrated lower
average bioaerosol concentrations and higher average wind speeds (Figure 11). The contrast
between Layout 2 and Layout 4 was especially noticeable, with Layout 4 exhibiting a lower
average bioaerosol concentration of approximately 1.2% and a higher average wind speed
of about 15.6% compared to Layout 2 (Table 7).

Table 7. Average bioaerosol concentration and average wind speed for Group 1.

Simulation Plan Number Average Bioaerosol Concentration (µg/m³) Average Wind Speed (m/s)

Layout 1 0.1271 0.7062
Layout 2 0.1272 0.6946
Layout 3 0.1256 0.8145
Layout 4 0.1256 0.8228
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3.2.2. Local Layouts

• Group 2: Roadside Green Spaces Retreat

The retreat of local green spaces led to significant decreases in bioaerosol concen-
trations in the adjacent road areas. However, certain regions in the west experienced a
slight increase in bioaerosol concentrations. Compared to the control models (Layout 1 and
Layout 2), Roadside Green Spaces Retreat by Half (Layout 5 and Layout 6) resulted in a
maximum reduction of 6.8% in bioaerosol concentrations on the main eastern roads. Mean-
while, Roadside Green Spaces Full Retreat (Layout 7 and Layout 8) achieved a maximum
reduction of 17.7% (Figure 12).
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• Group 3: Road Spaces Expansion

Road Spaces Expansion generally led to a slight decrease in the average bioaerosol
concentration in the study site. Compared to the control model, Road Spaces Tripled
resulted in an approximately 1.5% reduction in the average bioaerosol concentration, with
negligible changes in the average wind speed (Table 8).

At local levels, areas near reduced green spaces experienced significantly lower
bioaerosol concentrations, while locations with increased green spaces showed slight
elevations. Compared to the control model (Layout 9), Road Spaces Doubled and Road
Spaces Tripled locally reduced bioaerosol concentrations by up to 14.44% and 18.44%,
respectively (Figure 13).
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Table 8. Average bioaerosol concentration and average wind speed for Group 3.

Simulation Plan Number Average Bioaerosol Concentration (µg/m3) Average Wind Speed (m/s)

Layout 9 0.1273 0.8283
Layout 10 0.1261 0.8391
Layout 11 0.1243 0.8314
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• Group 4: Intersection Green Spaces Chamfering

Intersection Green Spaces Chamfering had a minimal impact on the overall average
bioaerosol concentrations and average wind speeds at the study site. On a local scale,
Diagonal Chamfering, Quadrilateral Chamfering, and Diagonal Double Chamfering exhib-
ited maximum reductions in local bioaerosol concentrations, approximately 8.56%, 12.04%,
and 12.69%, respectively, compared to the control models (Layout 3 and Layout 4). While
Diagonal Chamfering and Quadrilateral Chamfering resulted in slight increases in local
bioaerosol concentrations, Diagonal Double Chamfering displayed a weaker bioaerosol
abatement capacity at the intersection than Quadrilateral Chamfering. Additionally, it led
to bioaerosol aggregation around the intersections (Figure 14).
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4. Discussion

1. Plants exhibited an absorptive effect on bioaerosols; however, an increase in the
green space ratio resulted in a significant decrease in the average wind speed at the site
and a notable increase in the average bioaerosol concentrations. In contrast, previous
studies conducted on the urban scale have shown a negative correlation between the size of
urban green spaces and the concentration of air pollutants. A positive correlation has been
observed in their effectiveness in mitigating pollutants such as PM2.5 [40,41]. The difference
between these findings could be attributed to the limited capacity of small-scale urban green
spaces to rapidly reduce pollutant concentrations through plant absorption, especially
when facing a substantial quantity of bioaerosol pollutants. During short timeframes,
compromised ventilation leads to the aggregation of bioaerosols that exceeds the capacity
of plant uptake of bioaerosols. On the other hand, urban green spaces serve multiple
ecological functions, including climate change mitigation [58], mitigation of urban heat
islands [17,59], reduction in noise pollution [17,23], and enhancement of public health [60].
Therefore, reducing the size of green spaces to control bioaerosol concentrations is not
advisable. When planning urban green spaces within densely built city areas, emphasis
should be placed on enhancing ventilation in densely populated areas to prevent the
aggregation of bioaerosols through a rational layout while ensuring the green space scale.

2. Compared to distributed layouts, concentrated layouts exhibited a slight reduction
in the average bioaerosol concentrations. According to the linear regression results of
the average bioaerosol concentration concerning the green space rate at 11:00–11:59, this
reduction amounted to a minimum effect equivalent to a 6.5% decrease in the green space
rate, representing approximately one-sixth of the current green space scale (current green
space ratio: 36%). Conversely, previous studies investigating the impact of green space
layouts on air pollutants at the urban scale have suggested that a more homogeneous and
decentralized distribution of green space might be more effective in mitigating emissions
of particulate matter [44]. The disparity in these findings could be attributed to the vary-
ing influence of plants on air pollutant concentrations at different scales of green spaces.
Plants dominate in direct pollutant absorption at larger scales, whereas at more minor
scales, pollutant aggregation is mainly influenced by modified ventilation. In the case of
neighborhood-scale green spaces, the limited number of plants results in weak pollutant
absorption over short periods. Therefore, utilizing concentrated green spaces could facil-
itate broader ventilation corridors, improving overall area ventilation and reducing the
aggregation of bioaerosols.

3. Roadside Green Spaces Retreat effectively diminished bioaerosol accumulation
on roads without causing substantial increases in adjacent areas. Roadside Green Spaces
Full Retreat particularly established extensive ventilation corridors near pollution sources,
showcasing significant efficacy in bioaerosol abatement. In the case of major roads with
high pedestrian traffic, adopting partial or complete Roadside Green Spaces Full Retreat
alongside building setbacks significantly enhanced bioaerosol abatement.

4. Road Spaces Expansion enhanced ventilation on major roads and significantly
reduced local and regional bioaerosol concentrations. This aligns with previous studies
on the effects of plants in road canyons, where trees hinder street ventilation, leading to
pollutant accumulation [37,38]. Therefore, on congested roads, appropriately narrowing
green spaces on both sides improves ventilation, achieving superior bioaerosol abatement
while ensuring basic greenery. Additionally, when adjusting green space scales, attention
must be paid to the impact of newly added green spaces on surrounding ventilation to
prevent the gathering of bioaerosols.

5. Intersection Green Spaces Chamfering proved to be effective in reducing bioaerosol
concentrations. Quadrilateral Chamfering, which involves expanding intersection spaces
judiciously, demonstrated superior outcomes. However, the effectiveness of Diagonal
Chamfering was not solely dependent on its size; Diagonal Double Chamfering showed
insignificant changes in bioaerosol concentrations at intersection locations but significantly
reduced bioaerosols around intersecting roads. Excessive chamfering may increase wind
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speed on upwind roads, causing bioaerosols to accumulate near downwind buildings.
This observation aligns with prior studies on pollutant dispersion in street canyons [61].
Utilizing Quadrilateral Chamfering, controlling the chamfering area, and considering
green spaces in remaining positions for environmental ventilation offers the most effective
strategies for reducing local and general population exposure to bioaerosols.

5. Conclusions

This study utilized ENVI-met software to simulate bioaerosol concentrations within
the dormitory area of the Beijing Forestry University campus, exploring the impact of
diverse green space ratios and layouts on bioaerosol concentrations in high-density urban
areas. The findings illuminate crucial insights. In compact urban environments with
limited small-scale green spaces, plant uptake of bioaerosols over brief periods remains
constrained. Ventilation conditions emerge as pivotal, significantly influencing bioaerosol
concentrations. While introducing more plants, a higher green space ratio could impede
ventilation, exacerbating bioaerosol concentration and disease transmission risk. Opting
for relatively concentrated green space layouts, even at similar ratios, effectively lowers
the site’s bioaerosol concentrations to a certain extent. Moreover, strategic interventions
such as Roadside Green Spaces Retreat, Road Spaces Expansion, and Intersection Green
Spaces Chamfering markedly reduce bioaerosol concentrations in local spots over short
durations. These strategies mitigate the risk of substantial bioaerosol exposure during peak
commuting hours, positively influencing a local bioaerosol concentration reduction. The
results of this study offer insights into the fundamental layout patterns of urban green
space construction in the post-pandemic era. Nonetheless, recognizing the variability
in population density and microclimates across urban zones, it is imperative to integrate
overall and local layouts according to local conditions to diminish bioaerosol concentrations
and minimize population exposure to elevated bioaerosol levels.

This study represents a preliminary investigation into the effects of green space ratios
and layout patterns on bioaerosol concentrations. In future research, it is advisable to
consider combining multiple layout patterns to explore the comprehensive impact of
overall green space layouts on bioaerosol concentrations in urban, high-density built-up
areas. This would provide specific recommendations for green space layouts while taking
into account the current site conditions, allowing for tailored optimal layout solutions.
Additionally, due to the significant computational requirements of software simulations,
this study exclusively focused on the busiest two hours of pedestrian traffic in early May.
However, the actual accumulation of bioaerosol pollutants occurs over extended periods.
Future research could extend simulation periods and cover different seasons to investigate
the impact of green spaces on bioaerosol concentrations throughout the year, yielding more
comprehensive and persuasive results. Furthermore, due to the diverse sources of aerosols
in the air and their mixing, the direct measurement of bioaerosol concentrations generated
by pedestrian respiration is challenging. In future research, advanced methodologies,
including field surveys employing interdisciplinary approaches and specific technical
tools to identify and quantify bioaerosols generated by pedestrians, alongside simulation
models, could provide empirical validation. This would offer a comprehensive theoretical
foundation for post-epidemic urban green space construction.
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Nomenclature

r radius of bioaerosol droplets, 2.5 × 10−6 m;
ρ density of bioaerosol droplets, 1 × 1015 µg/m3;
m mass of a single biological bioaerosol droplet, µg;
n the number of bioaerosol droplets produced by a single cough, 1 × 106;
k ratio of bioaerosol droplets produced by breathing to coughing, 1/10;
M mass of bioaerosol produced in a single breath, µg;
v walking speed of an adult, 1.5 m/s;
t duration of a single adult breath, 3 s;
l distance covered by an adult during a single breath, m;
V0 bioaerosol pollution release rate from an adult, µg/m·s·person;
N pedestrian flow on the road, person/min (Table 1);
V release rate of the linear pollution source, µg/m·s;
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