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Abstract: In order to solve the problems of wind power output volatility and wind power participation
in frequency regulation, a method for optimizing the capacity allocation of wind farm storage
batteries based on the dual grouping strategy and considering the simultaneous execution of the
dual conditions of energy storage in fluctuation smoothing and primary frequency regulation is
proposed. Firstly, a two-layer model is established to optimize the capacity allocation under dual
operating conditions, i.e., the planning layer takes into account the lifetime, cost, and benefit, and
the operation layer considers the wind turbine reserve backup and storage control to participate in
the primary frequency regulation in a cooperative manner. Then, the dual battery pack operation
strategy is embedded with the variational modal decomposition method to determine the charging
and discharging operation strategy of energy storage after considering the grid-optimized reference
power. An improved particle swarm algorithm with inverse learning pre-optimization combined
with variational crossover post-optimization is embedded in the GUROBI computation to obtain the
optimal battery storage capacity allocation scheme. Finally, the superiority of the model proposed
in this paper in terms of improving energy storage utilization, service life, and economic efficiency
as well as reducing wind power load shedding is verified by comparing it with a single execution
working condition scenario and traditional battery control strategy.

Keywords: wind farm; battery storage; frequency modulation; particle swarm optimization; capacity
configuration; dual battery pack

1. Introduction

As a clean and renewable energy source, the wind power industry is of great signifi-
cance in reducing greenhouse gas emissions and protecting the ecological environment.
Sustainable development is the key to the long-term and stable development of the wind
power industry. However, the current challenges facing wind power hinder the sustain-
able and rapid development of wind power. Among them, the instability of wind energy
resources is the most prominent problem, which may lead to unstable power supply and af-
fect grid security [1]. In order to achieve sustainable development, the wind power industry
also needs to focus on technological innovation. The latest Chinese standard requires wind
power grid-connected technology to change from “passive adaptation” to “active support”
and “autonomous operation”, and wind farms should have the ability to quickly adjust
their active power according to the system frequency deviation. Energy storage, as a strong
scheduling technology, can not only effectively smooth the power output fluctuations of
wind farms, but also assist wind farms to carry out primary frequency regulation [2]. It can
reduce the grid’s dependence on thermal power regulation while enhancing the safety and
stability of grid operation. Therefore, studying the function and configuration of energy
storage at wind farm stations is conducive to promoting the sustainability of the wind
power industry.
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Many scholars have studied the configuration of the battery energy storage system
(BESS) for smoothing the fluctuation of wind power [3], and optimized the storage capacity
using wavelet packet transform [4], Kalman filter [5], etc. In addition, the combination
of energy storage control and wind turbine power backup control can also assist wind
farms in primary frequency regulation. This can alleviate the problems of high cost and
wind abandonment caused by the traditional method of reserving standby frequency
regulation for wind farms, thus improving the economic efficiency [6]. Zhang et al. [7]
proposes a proactive support method for grid frequency maintenance based on wind
storage systems, and the results show that increasing the storage capacity to a certain
extent will bring more benefits. However, the optimal energy storage capacity was not
determined. Jiang et al. [8] used the wind storage system for frequency control, and
wind speed segmentation to determine the frequency control capacity of wind turbines
and energy storage, but only to improve the system efficiency, and did not take into
account the cost of energy storage investment operation and maintenance. Li et al. [9]
optimized the storage capacity allocation based on the allocation of wind turbine and
storage frequency regulation output strategies, but only considered the short-term dynamic
process of frequency regulation, and did not take into account the impact of storage lifetime
factors and the optimization of long-term economic benefits. Maluenda et al. [10] used
the BESS-electrolyzer system to regulate the frequency and improve the profit by 10.2%.
In the above study, when using the flexible and rapid power response characteristics of
energy storage, the allocation method of wind farm station and energy storage frequency
regulation capacity is not fully considered. However, the level of wind turbine load-
shedding rate directly affects the economic efficiency, energy utilization and sustainable
development of the wind power industry. How to coordinate and optimize the wind farm’s
own load-shedding capacity and storage-assisted frequency regulation capacity in order to
reduce the comprehensive frequency regulation cost needs to be studied.

In addition, in the current study, the BESS capacity allocation method only involves
a single working condition scenario that is only applied to the fluctuation suppression
of wind power or the primary frequency regulation of the grid, and few studies have
considered the capacity allocation method of the BESS that is simultaneously involved in
the fluctuation suppression and the primary frequency regulation working conditions. In
this way, the role of the BESS has not been fully utilized, and it is difficult to adapt to the
engineering needs of the BESS to cope with multiple application scenarios under complex
working conditions.

In the existing studies involving other application scenarios, the configuration of
energy storage needs to take into account the assessment requirements of different working
conditions, the continuous and reliable operation capability of the BESS, and the investment
costs and benefits of the BESS during the whole life cycle. Sun et al. [11] studied the “peak
shaving and valley filling” and “fluctuation calming” of energy storage for wind power,
and put forward the concept of “dual-application”. Sewnet et al. [12] established an
optimization operation model considering the BESS for reducing wind abandonment and
participating in secondary frequency regulation. Yi et al. [13] proposed a state of charge
(SOC) control strategy in which energy storage simultaneously tracks the output schedule
and participates in secondary frequency regulation. However, in the above studies, the
BESS adopted the traditional overall single battery control strategy. When the battery
packs with this operation strategy are used in scenarios that require frequent charging
and discharging, such as wave suppression or frequency regulation, the charging and
discharging switching frequency of the batteries will be increased, which will in turn
damage the battery life. In addition, the penetration rate of wind power is increasing
year by year, and the new national technology requires that new energy stations must be
equipped with a frequency regulation function before they can be connected to the grid.
However, the above multi-scenario study did not consider the scenario of wind storage
cooperative participation in the primary frequency regulation.
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Regarding optimization algorithms for calculating energy storage capacity allocation,
Ankar et al. [14] used non-dominated sorting genetic algorithm III; Hartel et al. [15] used
reinforcement learning (RL) for optimization; Floris et al. [16] computed by genetic algo-
rithm (GA); Rostamnezhad et al. [17] made use of the particle swarm optimization (PSO)
algorithm; Yurter et al. [18] used Python’s DOcplex module to optimize the computation.
Among them, the PSO is simple in programming, intuitive, and easy to implement, which is
widely used in engineering. Scholars, such as Jain [19] and Basu [20], have proposed some
improvements to its local optimization problem and achieved more satisfactory results, but
the algorithm’s performance in terms of optimization accuracy and stability still needs to be
improved, especially the algorithm’s tendency to fall into the problem of local optimization
in the later stage of the search, which is yet to be solved.

Therefore, this paper considers the dual working condition scenarios of the energy
storage system in the combined wind storage system, which is simultaneously involved in
smoothing the wind power fluctuation and primary frequency regulation, and establishes
a double-layer energy storage capacity optimization allocation model based on the dual
battery pack operation strategy. An improved particle swarm optimization (IPSO) algo-
rithm nested with GUROBI is used to solve the optimal energy storage allocation scheme
for maximizing the annual net return.

The main contributions of this study are as follows: (1) A two-layer capacity optimiza-
tion allocation model that considers the dual working condition demand of smoothing
power fluctuation and primary frequency regulation is established. The energy storage is
controlled to realize the fluctuation smoothing demand while utilizing the remaining power
of the storage for primary frequency regulation to improve the energy storage efficiency.
(2) A BESS operation strategy based on the dual battery pack operation method is proposed
to mitigate energy storage lifetime loss. The strategy is also optimized by embedding it
in a cost–benefit outer layer model that considers the battery lifetime. (3) The synergistic
frequency regulation of wind farm stations and energy storage is considered, which helps
to reduce the load-shedding capacity of wind farms and is of great significance for the
sustainable development of the wind power industry. (4) Four scenarios based on different
operation strategies are set up, and a case study is conducted based on the historical data
of a wind farm in China. The superiority of the strategy in this paper in terms of improved
battery utilization, economic efficiency, and wind power sustainability is verified.

This paper is organized as follows. Section 2 discusses the dual-layer battery capacity
allocation model architecture. Section 3 establishes a model for optimal configuration of
the two-layer capacity for energy storage when considering the execution of dual operating
conditions. Section 4 compares and verifies the superiority of the energy storage configura-
tion method proposed in this paper for dual operating conditions with a dual battery pack
operation method in terms of profit improvement and battery life extension through an
arithmetic example analysis. Finally, Section 5 provides the conclusion.

2. Energy Storage Capacity Configuration Architecture with Embedded Dual
Battery Packs
2.1. Two-Layer Battery Capacity Configuration Model Architecture

The traditional simple configuration model can only optimize the planning of the ca-
pacity configuration scheme, but not the operation layer of the specific scenario. Therefore,
this paper establishes a two-layer optimization model for energy storage capacity allocation
for the capacity allocation problem of simultaneously suppressing wind power fluctuations
and participating in primary frequency regulation, as shown in Figure 1.

The outer model is the planning layer based on the battery grouping control strategy.
The decision variables are the rated capacity and rated power of the energy storage in the
combined wind storage system; the objective function is the average annual return of the
energy storage in the leveling and frequency regulation process; and the storage capacity,
charging and discharging power, SOC state, and grid-connected power of the wind power
are used as constraints.
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Figure 1. Structure of two-layer model. 
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Figure 1. Structure of two-layer model.

The inner layer is the operation layer that considers the synergistic frequency regu-
lation of wind turbines and energy storage. The decision variables are the upward and
downward frequency regulation power of the energy storage, the upward and downward
frequency regulation power of the wind farm, and the dynamic optimal load-shedding
rate of the wind power standby frequency regulation; the objective function is the compre-
hensive annual cost of a single frequency regulation; and the frequency regulation power,
load-shedding power, and grid frequency are used as constraints.

The optimization iteration process of the two-layer model that considers the partic-
ipation of energy storage in smoothing wind power fluctuations and primary frequency
regulation and coordinates the process is as follows:

(1) The Monte Carlo simulation method and clustering by fast search and find of
density peaks (CFSFDP) [21] are used to process the historical wind power data, and
generate a set of typical scenarios of wind power output considering the uncertainty factors
to be input into the outer layer of the model.

(2) The outer model uses variational mode decomposition (VMD) [22] to decompose
the wind power output to obtain the theoretical grid-connected initial reference power
Pgref(t), and then obtain the smoothing scope of the energy storage for smoothing the
high-frequency fluctuation of wind power.

(3) The outer layer model is based on IPSO screening to generate the storage capacity
power sequence, and taking into account the energy storage charging and discharging
capacity and the suppression of the role of the domain declared to participate in the
frequency regulation of the storage capacity, passed into the inner layer.

(4) The inner layer model calculates the total frequency regulation demand power of
wind farms and energy storage according to the real-time frequency of the power grid.

(5) The inner layer model establishes an objective function with the goal of minimizing
the integrated cost of primary frequency regulation of wind farms, and calculates the
frequency regulation allocated power of the BESS and wind turbine generator (WTG) and
the dynamic optimal load-shedding rate of wind farms with the constraint of the grid
frequency control objective using the GUROBI solver.
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(6) The inner layer model updates the energy storage frequency regulation domain
and returns the results to the outer layer.

(7) The outer layer model performs optimization based on the dual-battery grouping
operation control strategy to solve the optimal allocation scheme that maximizes the
average annual benefit of energy storage while tracking the leveling action domain and the
frequency regulation action domain.

2.2. Dual Battery Packs Control Strategy

In this paper, the battery charging and discharging in the wind storage system under
dual operating conditions adopts the double group control operation strategy, i.e., the
battery pack is divided into two groups of independently operated BESSs that are used
to smooth the wind power alternately. The main purpose of this study is to optimally
configure the rated capacity and power of the two groups of BESSs.

Let BESS1 and BESS2 output power at the moment t be Pb1(t) and Pb2(t), respectively,
through the DC/AC converter for power absorption or release. The expressions at the
initial moment and after exchanging the charging and discharging roles are as follows:{

Pb1(t) = −Pch(t)
Pb2(t) = Pdis(t)

(1)

{
Pb1(t) = Pdis(t)
Pb2(t) = −Pch(t)

(2)

where Pch(t) and Pdis(t) are the energy storage charging power and discharging power at
time t, respectively.

The energy storage system suppresses wind power fluctuation output as Pp1, and at the
same time provides primary frequency regulation power to the grid as Pp2. The integrated
actual output of the wind turbine into the grid after accepting the adjustment of energy
storage to suppress fluctuation and taking into account the frequency regulation function
of the wind turbine is PG. The total charging and discharging power Psum(t) tracked by the
energy storage includes the energy storage wave suppression power Pp1(t) as well as the
energy storage frequency regulation power Pp2(t), with the expression shown below:

Psum(t) = Pp1(t) + Pp2(t) (3)

Psum(t) > 0,
{

Pch(t) = 0
Pdis(t) = |Psum(t)|

Psum(t) < 0,
{

Pch(t) = |Psum(t)|
Pdis(t) = 0

(4)

3. The Two-Layer Model of Energy Storage Configuration Considering Dual
Operating Conditions
3.1. Outer Model

The outer layer model combines the full life-cycle cost model of energy storage and
constructs the cost–benefit model of energy storage participating in the dual scenarios of
wind power fluctuation smoothing and auxiliary frequency regulation based on the net
present value method.

3.1.1. Objective Function

The objective of maximizing the average annual net benefit f ou of energy storage
involves the net benefit Sflu of energy storage for wind power fluctuation smoothing, the
net benefit Bfre of energy storage for assisting frequency regulation, and the investment
cost Clife of energy storage of equal annual value, as shown below:

fou = Sflu + Bfre − Clife (5)
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where the expression for the net benefit of smoothing wind power fluctuations is as follows:

Sflu = S1 + S2 (6)

with S1 as the penalty reduction cost; S2 as the benefit of additional on-grid electricity.
The expression for the net benefit of frequency regulation is as follows:

Bfre = B1 − B2 − B3 (7)

where B1 is the frequency regulation service revenue; B2 storage power purchase cost; B3
storage frequency regulation charging and discharging loss cost.

(a) Penalty reduction cost

sc(t) =
{

cqf(PW(t)− PG(t)), PW(t) ≥ PG(t)
cqd(PG(t)− PW(t)), PW(t) < PG(t)

(8)

S1 =
T

∑
t=1

sc(t)∆t (9)

where PW(t) is the original wind turbine output at the moment of t; PG(t) is the actual
grid-connected power of the wind farm at the moment of t; cqf is the unit penalty cost for
wind abandonment; cqd is the unit penalty cost for lack of electricity; ∆t is the sampling
period; and T is the annual running time.

(b) Benefit of additional grid-connected power

S2 =
T

∑
t=1

cwPp1(t)∆t (10)

where cw is the unit feed-in tariff of the wind farm. When the configuration of energy
storage after the wind farms to increase the average annual power generation is positive,
this item is positive, that is, to obtain revenue; the opposite is negative, that is, to bear
the cost.

(c) Frequency regulation service revenue

B1 =
T

∑
t=1

ktp(Pbup(t)+Pbdown(t))∆t (11)

where ktp is the cost of frequency regulation service; Pbup(t) and Pbdown(t) are the upward
and downward frequency regulation power of energy storage.

(d) Energy storage power purchase cost

B2 =
T

∑
t=1

[abuyPbdown(t)− asellPbup(t)]∆t (12)

where abuy and asell are the unit price of energy storage power purchase and power
sale, respectively.

(e) Energy storage frequency regulation charging and discharging loss cost

B3 =
T

∑
t=1

[abuyPbdown(t)(1 − ηc) + asellPbup(t)(1/ηd − 1)]∆t (13)

where abuy and asell are the unit price of purchased and sold electricity, respectively; ηc and
ηd are the charging and discharging efficiency of energy storage, respectively.

(f) Energy storage equivalent annual value cost

Clife = (ceiEtotal + cpiPr)
b(b + 1)Y

(b + 1)Y − 1
+ (cemEtotal + cpmPr) (14)
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where Etotal is the maximum rated total capacity of the energy storage battery pack; Pr is
the maximum rated charging and discharging power of the energy storage battery pack;
cei and cpi are the unit price of battery and converter investment; cem and cpm are the unit
price for battery capacity and power maintenance; Y is the dynamic prediction of lifespan;
b is present value factor.

3.1.2. Constraints

(a) Energy storage capacity constraint

Smin ≤ S(t) ≤ Er (15)

where S(t) is the electricity storage; Smin is the lower limit of electricity; Er is the rated
capacity of the battery.

(b) Energy storage power constraints{
Pmin ≤ Pch(t) ≤ Pr
Pmin ≤ Pdis(t) ≤ Pr

(16)

where Pmin is the required leveling power to make the wind power fluctuation meet the
limiting standard in GB/T 19963.1-2021 [23]; Pr is the rated power of the energy storage
battery pack.

(c) Charge state constraint
ψSOC1(t) = ψSOC1(t − 1) + [(u1Pch(t)ηc

−u2Pdis(t)/ηd)∆t]/Er
ψSOC2(t) = ψSOC2(t − 1) + [(u2Pch(t)ηc

−u1Pdis(t)/ηd)∆t]/Er

(17)

where ΨSOC1(t) and ΨSOC2(t) are the charging states of BESS1 and BESS2 at time t; ∆t is
the sampling period; u1 and u2 are the charging and discharging state control variables
of BESS.

ψmin ≤ ψSOC(t) ≤ ψmax (18)

where Ψmax and Ψmin are the upper and lower limits of SOC.

(d) Wind power grid power fluctuation constraints

|PG(t)− PG(t − 1)|≤ abPWN (19)

where PWN is the installed capacity of the wind farm; ab is the grid-connected fluctuation
rate limiting value, which indicates that the power change rate of the wind farm output
should not exceed a certain proportion of its installed capacity in a fixed time interval.

3.2. Inner Model
3.2.1. Objective Function

The objective of the inner model is to minimize the comprehensive cost of frequency
regulation f in throughout the year, including wind power load-shedding standby cost W1,
wind power frequency regulation cost W2, storage frequency regulation power purchase
cost B2, storage frequency regulation charging and discharging loss cost B3, and frequency
regulation insufficient penalty cost B4, as shown below:

fin = W1 + W2 + B2 + B3 + B4 (20)

(a) Wind power load-shedding standby cost

The model sets different wind farm load-shedding modes according to the changes in
real-time conditions during each sampling period, and calculates the optimal load-shedding
active output Pde(t) of the wind farm:

Pde(t) = (1 − dopt(t))Pgref(t) (21)
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The expression for the cost of load-shedding W1 for wind farms participating in
frequency regulation is then as follows.

W1 =
T

∑
t=1

cw(Pgref(t)− Pde(t))∆t (22)

where cw is the wind farm unit feed-in tariff; Pgref(t) is the theoretical grid-connected
initial reference power of the wind farm at the t-th moment, and dopt(t) is the optimal
load-shedding rate of the wind farm.

(b) Wind power frequency regulation cost

W2 =
T

∑
t=1

cwPwdown(t)∆t (23)

where Pwdown(t) is the downward frequency regulation power of the wind turbine. Wind
farms in the upward frequency regulation can use load-shedding backup power; frequency
regulation cost is included in the wind farm load-shedding backup cost, no need to calculate
in addition.

(c) Frequency regulation deficiency cost

B4 =


0, Pact(t) ≥|Pins(t)|
T
∑

t=1
ape(

∣∣Pp2(t)
∣∣−Pact(t))∆t , Pact(t) < |Pins(t)|

(24)

where ape is the system frequency regulation under punishment unit price; Pact(t) is the
actual total frequency regulation power provided by the wind storage system; and Pins(t) is
the frequency regulation demand power of the wind farm, as shown below:

Pact(t) = Pwup(t)+Pwdown(t)+Pbup(t)+Pbdown(t) (25)

Pins(t) = Pgref(t)
fN − f (t)

Rt fN
(26)

where Pwup(t), Pwdown(t) are the turbine upward and downward modulation power; f (t)
is the actual sampling frequency of the system at time t; f N is the rated frequency of the
system; Rt is the modulation coefficient.

3.2.2. Constraints

(a) Energy storage frequency regulation power constraints{
0 ≤ Pbup(t) ≤ uup(t)Pup_max(t)
0 ≤ Pbdown(t) ≤ udown(t)Pdown_max(t)

(27)

{
uup(t)+udown(t) ≤ 1
uup(t), udown(t) ∈ {0, 1} (28)

where uup(t) and udown(t) are the state control variable of upward and downward frequency
regulation, which indicates that it participates in the system frequency regulation when it
is 1, and indicates that it does not participate in the system frequency regulation when it
is 0; Pup_max and Pdown_max are the declared upper limits that the upward and downward
frequency regulation power of the energy storage cannot exceed, which are related to the
rated power of the energy storage configuration and the charging and discharging power
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of the energy storage for fluctuation suppression with the expressions as shown in the
following expression:

Pup_max = δoutPomax =

 (1 − Ps(t)
Pr

)
Pr, Pr > Ps(t)

0, Pr ≤ Ps(t)

Pdown_max = δinPimax =

{
(1 + Ps(t)

Pr
)Pr, Pr > −Ps(t)

0, Pr ≤ −Ps(t)

(29)

where Pimax and Pomax are the set maximum total charging and discharging power of the
energy storage; δin and δout are the storage frequency regulation charging and discharging
power allocation coefficients; and Ps(t) is the domain of the wave suppression power
declaration, which is calculated as follows:

Ps(t) = Pgref(t)− PW(t) (30)

(b) Wind farm load-shedding power constraints{
Pde_max(t) ≤ Pde(t) ≤ Pgref(t)
Pde_max(t) = (1 − dmax(t))Pgref(t)

(31)

where dmax is the maximum load-shedding rate; Pde_max(t) is the maximum load-shedding
power of the wind farm.

(c) Wind turbine frequency regulation power constraint

Wind farm upward and downward frequency regulation power are constrained by
the upper limit, while the maximum upward and downward frequency regulation power
is related to the theoretical output of wind farm Pgref(t), the optimal load-shedding power
Pde(t) and the maximum load-shedding power Pde_max(t), and the specific expression is
shown below: {

0 ≤ Pwup(t) ≤ uup(t)(Pgref(t)− Pde(t))
0 ≤ Pwdown(t) ≤ udown(t)(Pde(t)− Pde_max(t))

(32)

(d) Frequency regulation capacity constraints

According to the theory of opportunity-constrained planning, due to the emergence
of stochastic variables, it is allowed to a certain extent that the decisions made may not
satisfy the constraints when unfavorable situations occur. The probability that the wind
storage system meets the frequency regulation demand is required to be greater than a
certain confidence level β1, and for the i-th frequency regulation, the 0–1 variable m(i) is set:

m(t) =
{

1, Pact(t) ≥ Pins(t)
0, Pact(t) ≥ Pins(t)

(33)

If the wind storage system satisfies the frequency regulation demand, then m(i) is
taken as 1; otherwise, it is taken as 0. Replacing the probability with the frequency, the
frequency regulation capability is constrained as follows:

P{Pact > Pins} =
1
T

T

∑
t=1

m(t) > β1 (34)

3.3. Solution Methods and Procedures
3.3.1. Algorithm Principle

The outer layer model adopts the IPSO [24]. It introduces the reverse learning strategy
for the pre-search, so that the algorithm can quickly approach the more optimal search re-
gion, thus improving the convergence speed, and introduces the variant crossover strategy
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of differential evolution for the post-optimization, which assists the algorithm in obtaining
the globally optimal solution. The particle update process in the IPSO is as follows:{

vk+1
i,d = wvk

i,d + c1r1(pk
i,d − xk

i,d) + c2r2(gk
d − xk

i,d)

xk+1
i,d = xk

i,d + vk+1
i,d

(35)

where w is the inertia weights; c1 and c2 are the learning factors; r1 and r2 are the random
numbers in the interval [0,1]; xk

i,d and vk
i,d are the position and velocity of the k-th iteration

of the i-th particle in the d-th dimension; pk
i,d and gk

d are the individual extremes and the
global extremes.

After completing the individual update and population optimal update, the reverse
learning is performed in the early stage, and both solutions in the current direction and the
opposite direction are considered to approximate the global optimum faster, as shown in
the following:

xnew
d = k(xmin

d + xmax
d )− gd (36)

If the particle is out of range, it is reinitialized:

xi,d = xmin
d + rand(xmax

d − xmin
d ) (37)

where xnew
d is the new solution obtained by the current population optimal individual by

the reverse learning strategy; xmax
d and xmin

d are the maximum boundary value and the
minimum boundary value; k is a random number in the interval [0,1].

Later, the variation and crossover strategy of differential evolution is used to improve
the optimization search, and the variation process is shown as follows:

zi,d = gd + F(pm1,d − pm2,d) (38)

The crossover operation is shown below:

ui,d =

{
zi,d, i f rand ⩽ C or d = ni
gd, otherwise

(39)

where zi,d is the variation vector; F is the scaling factor; m1, m2 are the random numbers in
the interval [1,N]; N is the total size of the population; ui,d is the d-th dimension of the trial
vector ui; C is the crossover probability; ni is a random integer in the interval [1,D]; and D
is the total dimension of the particle population [25].

The inner layer model is solved using the mathematical planning solver GUROBI, a
new generation of large-scale optimizer developed by GUROBI optimization, Inc. in the
U.S., which has faster optimization speed and accuracy.

All simulations were programmed using Matlab 2019b. The optimization model is
solved using GUROBI 9.5.1 software.

3.3.2. Solving Steps

The flowchart of the algorithm is shown in Figure 2.
The main solving steps are as follows:
Step 1: Initialize the particle swarm.
Step 2: Update the particle positions and velocities to obtain a randomized energy

storage power capacity.
Step 3: Pass the generated energy storage power capacity values into the inner layer

model. Solve the optimal allocation of WTG and storage frequency regulation capacity
based on the GUROBI model, and return the results to the outer layer model.

Step 4: Evaluate the fitness value of each particle.
Step 5: Use the feasibility rule to update the individual extreme value and global

extreme value.
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Step 6: Discriminate the pre-search and post-search according to the current number
of function evaluations VCFE, the maximum number of function evaluations VFFE, and
the segmentation point Q of the algorithm. If it is the pre-search period, implement the
generalized backward learning strategy for the current optimal individual; otherwise,
implement the mutation, crossover, and selection operations.

Step 7: Judge whether the termination condition is reached; if the termination condition
is reached, then the algorithm ends and outputs the optimal solution; otherwise, return to
step 2 to continue the iterative loop.
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4. Example Analysis

In this paper, a 450 MW wind farm is taken as an example, the above method is used
for simulation and analysis, and the parameters related to the wind farm, energy storage,
and economic indexes are shown in Table 1. In this paper, the algorithm parameters of the
population size are 100, the inertia weight w decreases linearly from 0.9 to 0.4 with the
number of iterations, the learning factor c1 and c2 are 1.49445, the scaling factor F is 0.9, the
crossover probability C is 0.9, and the split point Q is 0.9. The sampling period of wind
farm output power is 1 min, and there are 1440 samples in a day. Monte Carlo sampling
is used to generate a set of wind power scenarios considering the error and uncertainty.
The effect is shown in Figure 3. Then, three typical scenarios are clustered by the CFSFDP
method, as shown in Figure 4, where the number of types and the percentage of each type
are shown in Table 2.
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Table 1. Simulation parameters.

Parameters Value

DODr 1
cei CNY 1085/kWh
cpi CNY 3224/kW
cem CNY 50/kWh
cpm CNY 100/kW

b 0.05
ηc 0.95
ηd 0.95
ab 0.1
cqd CNY 500/MWh
cqf CNY 250/MWh

abuy CNY 0.60/kWh
asell CNY 0.52/kWh
cw CNY 0.52/kWh
ape CNY 0.13/kWh
Rt 0.03

dmax 20%
ktp CNY 1.0/kWh
β1 0.85
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Table 2. Scene clustering result graph.

Type Number Percentage (%)

1 61 16.7
2 185 50.7
3 119 32.6

4.1. Configuration Results Analysis

To fully illustrate the superiority of the energy storage configuration model in this
paper, the following four scenarios are set up using the same parameters:

Scenario 1, using the configuration method proposed in this paper: dual-scenario
coordinated operation of the BESS based on a dual-battery control strategy;

Scenario 2, using the traditional control strategy: dual-scenario coordinated operation
of the BESS based on the overall single-cell battery pack control strategy;

Scenario 3, using the dual-cell operation strategy of this paper, but the BESS partici-
pates in only one frequency regulation, but does not consider smoothing fluctuations;

Scenario 4, adopting the dual-battery operation strategy of this paper, but the BESS
only participates in smoothing fluctuations, but does not consider frequency regulation.

The optimal energy storage capacity for each scenario is calculated and the operation
results are displayed in Table 3, and the benefits and costs of each part are presented in
the form of waterfall diagrams in Figure 5. According to the results, the highest profit is
obtained based on the configuration method proposed in this paper.

Table 3. Comparison of configuration options for different scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Er/MWh 40.6 × 2 108.6 18.7 × 2 20.9 × 2
Pr/MW 32.9 22.9 15.3 16.7
Y/ year 16.0 12.5 14.8 13.2

f ou/CNY 104 5075.4 3933.7 3316.4 942.4
f in/CNY 104 119.4 282.9 441.8 2420.3

De/MWh 551.4 2101.6 1799.1 20,075.0

In the table, Er is the optimal configuration rated capacity of the battery; Pr is the
optimal configuration rated power of the battery; Y is the service life of the battery; f ou is
the average annual net income of energy storage; f in is the comprehensive cost of frequency
regulation; and De is the annual load-shedding capacity of the wind farm.

In Figure 5, Sflu is the net benefit of storage wave suppression, Bfre is the net benefit of
storage frequency regulation, Clife is the equivalent annual value investment cost of storage,
and f ou is the average annual net benefit of storage.

Based on the specific analysis of the chart, it can be seen that in Scenario 1, the optimal
configuration of the dual battery pack using the grouping strategy of this paper is two
battery packs with a capacity of 40.6 MWh, i.e., a total of 81.2 MWh. Compared to Scenario
2, which is configured to operate with a single battery pack with a capacity of 108.6 MWh,
the total capacity to be configured for the BESS and the cost of the investment are reduced,
which, in turn, increase in the average annual net benefit of the BESS by 22.5%. In addition,
the battery life is extended by 3.5 years in Scenario 1 compared to Scenario 2, and provides
more opportunities to participate in the fluctuation and frequency regulation service and
gain more profit. It can be seen that the battery operating based on group control strategy
can extend battery life to a certain extent and increase the comprehensive benefits of
energy storage.

Comparing Scenarios 1, 3, and 4, the average annual revenue for Scenario 1 increases
by USD 17.59 million compared to Scenario 3 (an improvement of about 34.7%); and by
USD 41.33 million compared to Scenario 4 (an improvement of about 81.4%). It can be
seen that the average annual revenue under Scenario 1 proposed in this paper is much
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larger than that of any of the single-application scenarios, and it is also 19.2% higher than
that of the two single-application scenarios 3 and 4 combined. The analysis shows that
although the storage energy in Scenario 1 needs to be configured with larger capacity and
larger investment cost when applied to multiple scenarios, the battery service life has been
extended by 1.2 and 2.8 years, respectively, and the storage energy has been more fully
utilized; the gains include two sources of leveling gains and frequency regulation gains,
and thus more profits can be obtained.
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In addition, turbine load shedding is one of the most important indicators for assessing
the operational efficiency of wind farms and turbine performance. High load shedding
indicates that there are operational problems in wind farms, which will lead to the stability
of the power grid being affected, and at the same time will affect the economic benefits of
the power station and the sustainable development of the industry. Therefore, reducing
the wind turbine load-shedding rate is a very important task in the wind power industry.
Considering that wind farms will incur load-shedding costs when participating in frequency
regulation, comparing De and f in in the four scenarios, it can be seen that under Scenario 4,
where the BESS is only applied to smooth out fluctuations, the frequency regulation function
of energy storage does not play a role in this single-application scenario, and wind farms
need to bear the demand for frequency regulation on their own. As a result, the wind farm
has the largest load-shedding reserve capacity throughout the year, and the comprehensive
cost of a single frequency regulation is 20.3 times, 8.6 times, and 5.5 times higher than that
of Scenarios 1, 2, and 3, respectively, resulting in a waste of resources. In Scenario 1, which
considers the participation of the BESS in frequency regulation, the frequent start–stop and
load-shedding capacity of WTGs participating in frequency regulation service is reduced,
and the integrated cost of frequency regulation is minimized. This greatly improves the
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online power of the wind farm and reduces the amount of wind abandonment, which is
conducive to the economic operation of the wind farm. And with frequency regulation of
wind farms and energy storage between the power interaction, when taking into account
the wind turbine frequency regulation power after the wind power excess power generation
and load-shedding operation loss of power deposited into the energy storage for upward
frequency regulation, we can make full use of the power generated by the wind turbine to
reduce the rate of wind abandonment, and at the same time to reduce the storage of power
with the power grid transaction cost of purchasing power to increase the net income.

In Figure 6, the initial moment BESS1 charges and BESS2 discharges can be found. At
the 330th minute, BESS2 discharges to reach the SOC lower limit, and the discharge margin
is exhausted, at which time the two battery packs immediately switch to continue to operate.
In Figure 7, the whole-group control of the single battery pack charging and discharging
state is completely determined by the wind power and system frequency fluctuations, so
it has been frequently switching between charging and discharging. The switching cycle
of the dual battery pack to complete a charge/discharge cycle is four to five hours, while
the single battery pack experiences countless charge/discharge in the meantime, and the
charging/discharging switching cycle is in the order of minutes. This indicates that the
battery charging and discharging strategy proposed in this paper effectively reduces the
battery charging and discharging switching frequency, which in turn reduces the degree of
battery loss and prolongs the battery service life.
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4.2. SOC Comparative Analysis

The operating states of the batteries configured under the two battery pack control
strategies are specifically analyzed. In the scenario 1 presented in this paper, i.e., when
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the BESS running with a dual battery pack strategy is applied to multiple scenarios, the
operating state is shown in Figure 6. And the operating state is shown in Figure 7 for
Scenario 2, which is operated with the traditional whole-group control strategy.

4.3. Application Effect Analysis

The energy storage configuration scheme obtained by the method in this paper can
smooth the wind power output fluctuations to within the national standard regulations,
i.e., the power fluctuations within 1 min and 10 min are reduced to less than 15 MW
and 50 MW, respectively [23], as shown in Figure 8. It also enables the system frequency
that exceeds the frequency regulation dead zone to be effectively regulated, as shown in
Figure 9.
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The wind farm grid-connected fluctuation coefficients after smoothing of the four scenarios
are 0.24%, 1.03%, 31.81%, and 2.64%, respectively. It can be seen that the wind farm grid-
connected fluctuation coefficient is the smallest under Scenario 1, which utilizes the residual
power of the dual BESS for primary frequency regulation, and the smoothing effect is the
best, with a reduction of 76.7%, 99.2%, and 90.9%, respectively, compared to the other
scenarios. Among them, the BESS in Scenario 3 does not participate in the smoothing,
so the wind farm output volatility is extremely large. Compared with Scenario 4, which
only considers the leveling condition, Scenarios 1 and 2, which consider dual conditions,
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are configured with a larger BESS capacity, which is able to completely track the leveling
domain, and thus the leveling effect is better. Scenario 1 with a dual BESS is less restricted
by the SOC state, and the fluctuation coefficient is further reduced compared to Scenario 2,
which maximizes the suppression of wind power fluctuations.

In summary, it can be verified that the dual-battery strategy can not only save energy
storage construction costs and maintenance costs to a greater extent, extend the battery
service life, and improve the net income, but also more effectively reduce the grid-connected
fluctuation coefficient, enhance the power of wind farms on the Internet, and reduce the
comprehensive cost of wind farms throughout the year frequency regulation, which is
conducive to the economic, safe, and stable operation of wind farms.

5. Conclusions

In this paper, considering the scenarios where the battery energy storage system is
simultaneously applied to dual operating conditions of wave suppression and primary
frequency regulation, a two-layer energy storage capacity allocation model based on the
dual BESS strategy is proposed. An IPSO nested with GUROBI is used to calculate the
optimal allocation of energy storage under four different scenarios. A comparison is made
to analyze the effect of the proposed strategy and model in reducing wind power load-
shedding cost, improving economic efficiency, and reducing battery operation loss. The
main conclusions are as follows:

(1) Comparative analysis of the four scenarios set up in this paper shows that the
average annual net benefit of Scenario 1 increases by 22.5%, 34.7%, and 81.4% compared
with Scenarios 2, 3, and 4, respectively, which verifies that the scenarios proposed in
this paper in which the dual BESS performs dual operating conditions can maximize the
economic benefits of the BESS.

(2) The switching cycle of the BESS operated under the dual-battery operation control
strategy is hourly, while the charging/discharging switching cycle of the traditional whole-
group control BESS is minute, which has too frequent switching frequency and high
operation loss. Therefore, the life of the battery operated with the dual-battery strategy is
extended by 3.5 years compared with that of the traditional whole-group control BESS. It
is verified that the dual BESS strategy proposed in this paper can effectively extend the
battery service life.

(3) Under Scenario 4, where the BESS is only involved in smoothing fluctuations but
does not consider frequency regulation, wind farms have the largest load-shedding capacity
throughout the year, and the combined cost of a single frequency regulation is 20.3, 8.6,
and 5.5 times higher than that of Scenarios 1, 2, and 3, respectively. This is because at this
time the frequency regulation function of energy storage does not play an advantage, the
wind farm needs to bear the frequency regulation demand alone, and the load-shedding
cost rises. Therefore, the use of wind turbine and energy storage joint frequency regulation
can reduce the wind power load-shedding capacity, improve the utilization rate of wind
power, and realize the sustainable development of the wind power industry.

(4) Comparing the flattening effect of wind farm output fluctuation under four scenar-
ios, under Scenario 1, which utilizes the residual power of the double BESS for one-time
frequency regulation, its wind farm grid-connected fluctuation coefficient is the smallest,
the flattening effect is the best, and it has been optimized by at least 76.7% compared with
the other scenarios.

In summary, the energy storage configuration method proposed in this study can be
applied to the wind farm side to achieve the purpose of output fluctuation smoothing and
helping primary frequency regulation, and to ensure high economic benefits. However,
there are some limitations worth noting. The new national technology stipulates that newly
commissioned renewable energy stations must have primary frequency regulation, and the
energy storage configuration capacity in this study is affected by the scenarios on the power
generation side. Therefore, in future work, the applicability of this study’s methodology
and the characteristics of energy storage configuration in scenarios other than wind farms,
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such as photovoltaic farms, will be specifically investigated according to the characteristics
of different renewable energy stations.
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