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Abstract: Understanding microclimate spatial variability is crucial for sustainable and optimised
grape production within vineyard plots. By employing a combination of a microclimate model
(NicheMapR) and multiple climate data sources, this study aimed to achieve microclimatic analysis
in two vineyard plots, Quinta do Bomfim (northern Portugal) and Herdade do Esporão (south-
ern Portugal). This approach provides an innovative 10 m spatial resolution for climate variables.
This study incorporated local station hourly data with quantile mapping bias correction on the
ERA5-land data. The microclimate model output was employed to perform bias correction on a
EURO-CORDEX model ensemble. Climate extreme and bioclimatic indices specifically targeted to
viticulture were calculated for each vineyard plot. The 10 m scale was analysed to identify potential
shifts in temperature extremes, precipitation patterns, and other crucial climatic variables for grape
cultivation within each specific plot. The significance of microclimate analyses was higher in areas
with intricate topography, while in areas with smooth slopes, the variation of climatic variables was de-
termined to be negligible. There was a projected increase in the median temperature of approximately
3.5 ◦C and 3.6 ◦C and a decrease in precipitation of approximately 98 mm and 105 mm in Quinta
do Bomfim and Herdade do Esporão, respectively, when comparing a future scenario for the period
2071–2100 against the historical period (1981–2010). Hence, this study offers a comprehensive and
future-oriented method for analysing microclimates in vineyard plots. By incorporating geospatial
data, ERA5-land data, and the microclimate NicheMapR model, this research aimed to enhance the
understanding of current microclimates and future climate scenarios for viticulturists.

Keywords: microclimate; vineyards; NicheMapR; bioclimatic indices; agroclimatic indices

1. Introduction

Over the past several decades, climate change has been attributed to anthropogenic
forces acting on the climate system, with the increasing atmospheric concentrations of
greenhouse gases and land use development caused by deforestation, desertification, and
urbanisation being the two major drivers [1,2].

Climate change has a significant impact on all crops, and its effects are particularly
pronounced for crops like grapevines [2]. Warmer temperatures are the most obvious
consequence of this situation [3]. As a result of this shift, the entire cycle of wine grape
growth is occurring earlier than usual. This includes the stages of budding, flowering,
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fruit-set, veraison, and harvest, all of which are currently occurring approximately ten
days to two weeks earlier than their typical timing [4]. The ongoing increase in temper-
ature implies that the alcohol levels tend to be higher, the acidity levels lower, and the
tannins, which often ripen later, are found to be less refined [5]. Once the air temperatures
surpass 35 ◦C, vines experience heat stress, which consequently leads to a decline in the
production of secondary metabolites, a decrease in photosynthetic rates, and a reduction in
vegetative growth [6]. This presents a problem for winegrowers who struggle to reach a
balance between production and wine quality [7]. Furthermore, winters are also becoming
significantly milder, causing grapevines to come out of dormancy earlier and making them
more vulnerable to frost [8,9].

In xeric areas, where winters are moist and cool and summers are dry and warm,
such as the Mediterranean region, vineyard soils are often the focus of attention to reduce
competition between grapevines and the surrounding flora for essential resources such
as water and nutrients [10,11]. Commonly used agricultural practices, such as herbicides’
application and intensive tillage [12], have the potential to affect soil quality and erosion
and the overall sustainability of wine production [13], by affecting heat transfer and water
storage, thus playing an important role in wine typicity [14].

While climate and soil are commonly considered the primary drivers of terroir on a
regional level, many studies have emphasised the influence of topographical features such
as elevation, slope, and aspect in the specific characteristics of wine at a local scale [15–18].
These topographical features have a significant impact on temperature profiles within a
specific vineyard and are essential in the transition from macroclimate (i.e., larger region)
to mesoclimate (i.e., specific vineyards) and to microclimate (i.e., individual rows of vines
within the vineyard). The study of meteorological variables at the microscale can be a
relevant tool for winegrowers to make well-informed decisions in the definition of their
management strategies [19–21], and it becomes fundamental when it comes to adapting to
the effects of climate change [2,22,23]. Innovative approaches are crucial for managing vine-
yards due to the complex relationship between microclimates and viticulture, especially in
the face of climate change. Advanced microclimate models [24], sensor technology [25], and
drone-based monitoring systems [26] can transform how viticulturists comprehend and ad-
just to changing environmental conditions in vineyards. Using microclimatic zoning allows
the identification of environmental variations in vineyards, yielding valuable information
on the climatic factors that impact the growth of grapevines [27,28]. However, we also
recognise the potential of sensor technologies and drones to augment our understanding
of microclimatic variations [29–33]. Despite the higher costs associated with sensors, their
ability to collect real-time data provides invaluable insights into local environmental con-
ditions. Similarly, the use of drones with specialised sensors allows for aerial monitoring,
providing a complete understanding of vineyard microclimate. Nonetheless, these tools
are not always available and can only be used in real-time monitoring of microclimates
(not in forecasting or climate change projections).

The present study applied a microclimate model, NicheMapR [34], which combines
physical elements, meteorological station data, and reanalysis of climate data to reproduce
hourly temperature and precipitation data at a 10 m spatial resolution, within illustrative
vineyard plots of two different terroirs in Portugal. With these data, we assessed potential
climate change impacts by using two distinct representative concentration pathway sce-
narios. Additionally, the calculation of climatic and bioclimatic indices was performed to
evaluate the spatial and temporal variability within each vineyard plot. This serves as a
support system tool for decision-making, specifically concerning climate change and its
effects on vineyards. Its purpose is to enhance the understanding of climate change among
viticulturists, policymakers, and other relevant stakeholders, ultimately assisting them in
their adaptation planning and eventually promoting sustainable viticultural practices.
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2. Materials and Methods
2.1. Study Area Characterisation

Two vineyard plots located in two different terroirs in Portugal were the target of
this study (Figure 1). The first plot features a vertical distance of around 70 m and is part
of “Quinta do Bomfim” (QB, herein) which is located in the Douro region (Figure 1b,d),
a region known for its intricate topography. This plot covers an area of 0.02 km2 and is
characterised by variations in direct sunlight due to mountains casting shadows throughout
the day. The other plot belongs to “Herdade do Esporão” (HE, herein), located in the
Alentejo region, southern Portugal (Figure 1c,e), and exhibits a predominantly flat terrain
with a vertical distance of approximately 7 m. Consequently, the daily climatic conditions
throughout the entire plot, covering an area of approximately 0.05 km2, remain nearly
unchanged. In the QB and HE plots, the grown grapevine cultivar is “Touriga Franca” and
“Touriga Nacional”, respectively.
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Figure 1. (a) Hypsometric map of Portugal’s mainland with its major rivers showing the geographical
location of both study areas (Quinta do Bomfim, QB, and Herdade do Esporão, HE); (b) Quinta do
Bomfim (blue line) with the studied plot of cv. Touriga Franca highlighted in red; (c) Herdade do
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contour lines of the Quinta do Bomfim study plot and (e) hypsometric contour lines of the Herdade
do Esporão study plot.
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In terms of irrigation for the QB plot, it is important to note that currently no irrigation
is being utilised, despite the presence of an installed irrigation system. The conduction
system utilised in this particular setup is Royat, which involves a unilateral cordon and
a density of 2900 plants per hectare, with a loam soil texture. In order to meet the plants’
needs, the HE plot utilises irrigation. The conduction system employed is a bilateral cordon
with a density of 2222 plants per hectare. There is a distance of 3 m between lines and
1.5 m between plants. The plot is characterised by a sandy loam soil texture.

2.2. Microclimate Model

Microscale climate conditions depend on relevant processes, such as heat and mass
exchange, air temperature, wind speed, humidity, short- and long-wavelength radiation, as
well as soil moisture [35]. Noteworthy habitat features, including canopy shade, terrain,
hill shade, and vegetation, are essential in effectively replicating microclimate conditions
with precision. For microclimate modelling and calculating hourly air temperature in the
vineyard plots, the NicheMapR package of the R programming environment was used [34].
One of the key features of the NicheMapR package is the inclusion of different model
categories, such as plant models, endotherm models [36], ectotherm models [37], and
dynamic energy budget models [38]. Its primary application is to provide hour-by-hour
predictions of various climate variables, including air temperature, relative humidity, wind
speed, soil moisture, and temperature. Solar radiation is among the routines used in this
calculation and considers shading effects as hill shade, aspect, and slope. The NicheMapR
package relies on the presence of various libraries, which are required for it to run prop-
erly. Data collection for microclimate modelling with high-resolution climate-forcing data
implied the use of MCERA5 [39], a library from the R programming language. The com-
bination of MCERA5 with the NicheMapR package, using ERA5-Land data, allows the
computation of predictions for a local microclimate [40]. In addition to the installation
of MCERA5, we also installed the complementary package ECMWFR [41]. This package
allows access to climate datasets from Copernicus’s Climate Data Store, which can be
found at https://cds.climate.copernicus.eu (accessed on 12 June 2023) [40]. The package
LUBRIDATE [42] was used to work with and properly format dates and times from the
climate datasets. Additionally, the use of DPLYR [43] significantly enhanced computation
time in data manipulation, while TIDYNC [44] was a useful tool for manipulating binary
data, specifically NetCDF files [45]. The function ‘get_dem’ from the microclima R pack-
age, which uses the R package ELEVATR [46], produces a digital elevation model (DEM)
for a defined area. In this study, the DEM was retrieved for both vineyard plots. This
enabled the incorporation of local orographic features, such as latitude, slope, and aspect,
which combined with climatic factors, such as surface radiation, wind components, dew-
point temperature, and cloud cover (Figure 2a), allowing the downscaling of ERA5-Land
hourly 2 m air temperature data from a 10 km spatial resolution to a spatial resolution of
approximately 10 m.

One of the key features of the R package NicheMapR is its incorporation of a gener-
alised version of one of the earliest mechanistic models [47]. Extensive testing has been
conducted in a wide array of settings to validate its relevance and efficiency [48–56], which
ultimately led to its inclusion in this study. All parameters were set by coupling the vine-
yard plots’ spatial coordinates with a 10 m spatial resolution DEM, which was then used to
calculate the topographical features for the downscaling of the climate data.

https://cds.climate.copernicus.eu
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2.3. Climate Data

For this study, three periods were carefully selected: 1981–2010, which serves as a
historical reference, and two future periods, namely 2041–2070 and 2071–2100 under two
different scenarios, the Representative Concentration Pathways (RCP), namely RCP4.5 and
RCP8.5 [57], thus representing a moderate and a severe climate scenario, respectively.

With the NicheMapR package, historical climate data from ERA5-Land (European
Climate Rea-Analysis version 5) was retrieved for each vineyard plot from the Copernicus
Climate Change Service, which provides a spatial resolution of approximately 10 km [58].
For each vineyard plot, we also collected the observed hourly precipitation and temperature
station data from each partner (QB and HE) from 2000 to 2019. These data were used to
bias correct the ERA5-Land data. This was conducted by applying quantile mapping,
resorting to an R package named ‘qmap’ (Section 2.4). The future climate data used in
this study were obtained from a series of experiments conducted by the EURO-CORDEX
project. To mitigate uncertainty arising from different models, we employed an ensemble
approach by using three distinct Regional Climate Models (RCMs), forced by three separate
General Circulation Models (GCMs). Daily mean (TG), minimum (TN), and maximum (TX)
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air temperatures (in ◦C) and precipitation (RR) (in mm) time series were retrieved from
the three chain experiment model datasets for both plots over the historical and future
periods. The following chain experiments were considered: SMHIRCA4 driven by MPI-M-
MPI-ESM-LR, DMI-HIRHAM5 driven by ICHEC-EC-EARTH, and CLMcom-CCLM4-8-17
driven by CNRM-CERFACS-CNRM-CM5 (under both RCP4.5 and RCP8.5) (Table S1). The
same quantile mapping technique was applied between the output of the microclimate
model and the series of experiments conducted by the EURO-CORDEX models to obtain
bias-corrected data series of daily precipitation and temperature for the future periods
(2041–2070 and 2071–2100) under both RCPs (Figure 2b).

2.4. Quantile Mapping

To perform the bias correction of the climate data (ERA5-Land vs. observed station
data and EURO-CORDEX models vs. microclimate data output) the qmap R package was
used [59]. It performs statistical transformations for processing climate model outputs
using quantile mapping. The primary functions are ‘fitQmap’ and ‘doQmap’. The first
identifies the parameters of different quantile mapping methods, while the second performs
quantile mapping using the parameters identified previously. Four different quantile map-
ping methods were tested: (1) using parametric transformations (fitQmapPTF), (2) using
smoothing spline (fitQmapSSPLIN), (3) non-parametric using robust empirical quantiles
(fitQmapRQUANT) and (4) non-parametric using empirical quantiles (fitQmapQUANT).

The ‘fitQmapPTF’ function fits parametric transformations into the quantile-quantile
relation. Subsequently, the ‘doQmapPTF’ function applies this transformation to adjust the
distribution of the modelled data to match that of the observations. The ‘fitQmapSSPLIN’
function is used to fit a smoothing spline to the quantile-quantile plot of the observed and
modelled time series. On the other hand, the ‘doQmapSSPLIN’ function applies the spline
function to adjust the distribution of the modelled data so that it aligns with the distribution
of the observations. To estimate the quantile-quantile relation values between observed
and modelled time series for regularly spaced quantiles, the ‘fitQmapRQUANT’ function
employs a local linear least square regression. Conversely, the ‘doQmapRQUANT’ function
performs quantile mapping by interpolating the empirical quantiles. The ‘fitQmapQUANT’
function estimates the values of the empirical cumulative distribution function for both the
observed and modelled time series. These estimates are calculated for regularly spaced
quantiles. The ‘doQmapQUANT’ function uses these estimates to perform quantile map-
ping. Lastly, we chose the smoothing spline method based on the obtained performance
metrics (Figure S1).

2.5. Agroclimatic Zoning

Climate data operators (CDOs) [60] allow the analysis and manipulation of climate
data to calculate climatic indices, which are crucial tools for analysing and understanding
climate patterns. Climatic indices play a major role in characterising different aspects of
climate spatial and temporal variability. They provide quantitative measures that help in
assessing the frequency, intensity, and duration of specific climate events. Understanding
these indices is essential for climate policymakers and researchers to identify climate change
impacts and develop effective mitigation and adaptation strategies. This approach enables
a comprehensive analysis of temperature and precipitation, and their effects on vineyards,
contributing to a better perception of climate variability and its implications for the wine
sector. In this study, several climatic and bioclimatic indices were calculated: (1) the
dryness index, (2) the hydrothermal index of Branas, Bernon and Levandoux, and (3) the
Huglin Heliothermal index, as bioclimatic indices (Table S2), and (4) growing season length,
(5) extreme summer days, and (6) tropical nights, as relevant climate extreme indices. Other
temperature and precipitation indices are shown in Figures S2–S4 and their definitions are
described in Table S3, in the Supplementary Material.
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2.5.1. Growing Season Length

The Growing Season Length (GSL) is a climatic index that plays a major role in
understanding favourable conditions for plant growth and development. In this study, it
was defined as the period where, for 6 consecutive days, the minimum temperature was
above 10 ◦C, which, for vineyards, is within the favourable range of plant growth [22]. GSL
is also an essential indicator of agroforestry, providing insights into the duration of days
for crops to complete their life cycles, and helping farmers determine suitable planting and
harvesting times. It provides insight into the choice of grape cultivars or different crops
that can be grown in a specific region and contributes to optimising agricultural practices
for higher yields.

2.5.2. Extreme Summer Days

The summer days index measures the number of days with maximum temperatures
exceeding a predefined threshold, typically 25 ◦C. In this study, we calculated extreme
summer days (temperature above 35 ◦C) since it has a greater impact on vineyards [61],
identifying trends in temperature changes during summer, and providing insights into
heatwave occurrences.

2.5.3. Tropical Nights

The tropical night index quantifies the number of nights with minimum temperatures
above a specified threshold, commonly 20 ◦C. It offers insights into night time temperature
variations, crucial for assessing heat stress on plants.

2.5.4. Huglin Heliothermic Index

The Huglin Heliothermic Index (HI) [62] is a bioclimatic heat index specifically de-
signed for viticulture regions. It considers the heliothermic potential and calculates the
temperature sum above 10 ◦C during specific periods, depending on the hemisphere.
For the Northern hemisphere, the index considers the temperature sum from April until
September, while for the Southern hemisphere, it considers the period from October until
March. This index is particularly relevant when related to the phenological timings of
grapevines, especially the maturation stage.

2.5.5. Hydrothermal Index of Branas, Bernon and Levandoux

The Hydrothermal Index of Branas, Bernon, and Levandoux (HIBBL) [63] considers
the combined impact of temperature and precipitation on grape yield and the overall
quality of the resulting wine. The index value is calculated by summing the products of the
monthly mean temperature (◦C) and the monthly accumulated precipitation amount (mm),
over the period from April to September in the Northern Hemisphere or from October to
February in the Southern Hemisphere. This index is known to be related to the potential
risk of grapevine fungal diseases, such as downy mildew.

2.5.6. Dryness Index

The Dryness Index (DI) [64] was determined by using a modified version of Riou’s
potential water balance of the soil index [65], specifically for vineyards. This method allows
for the characterisation of the water component of the climate in a grape-growing region
by considering factors such as evaporation and precipitation without deduction for surface
runoff or drainage. This index provides a lower and upper threshold in defining the water
requirements for grapevines.

3. Results
3.1. Microclimatic Characteristics

The ombrothermic diagram and the annual mean temperature and precipitation for the
historical period for both vineyard plots at a 10 m spatial resolution are shown in Figure 3.
As expected, the QB plot shows a more moderate climate in the summer than the HE plot,
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which is much dryer (Figure 3a,b). Although the temperature profile is very similar, QB
shows more precipitation throughout the year when compared to HE. Further, the spatial
variation in annual mean temperature modelled in QB (0.6 ◦C, Figure 3c) is greater than the
one observed in HE (less than 0.1 ◦C, Figure 3d). On the other hand, precipitation variation
in such small plots is negligible, with fluctuations between 1 and 2 mm (Figure 3e,f).
Noteworthy, higher precipitation values co-occur with higher temperatures, highlighting
the relevance of topographic features in determining the spatial correlation between these
two critical variables.
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Figure 3. Ombrothermic diagram, yellow area dry season and blue are rain season (a,b) and spa-
tialized mean annual temperature (c,d) and spatialized mean annual precipitation (e,f) of Quinta
Bomfim (QB) and Herdade do Esporão (HE) vineyard plots, respectively.

Figure 4 shows the boxplots of the mean annual temperature and mean annual pre-
cipitation for both QB and HE for both future periods (2041–2070 and 2071–2100) and
scenarios (RCP4.5 and RCP8.5). Maximum and minimum annual temperatures are shown
in Figure S5. As expected, in line with the ongoing trend of climate change, we have
observed an increase in temperature and a simultaneous decrease in precipitation in both
vineyard parcels. There is a projected increase in the median temperature of approximately
3.5 ◦C and 3.6 ◦C and a decrease in precipitation of approximately 98 mm and 105 mm in
QB and HE, respectively, when comparing the RCP8.5 scenario for the period 2071–2100
against the historical period. Topographic information (i.e., slope and aspect, can be found
in Figure S6 in the Supplementary Material).
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itation (b,d) for the historical and future periods for (a,b) Quinta do Bomfim (QB) and (c,d) Herdade
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An ANOVA test to assess the overall variance among the datasets developed in this
paper was conducted (Table S4). Subsequently, to identify specific differences between
individual groups, we employed a post hoc Tukey–Kramer test (Table S5). Based on the
results of the ANOVA (F-test = 5731) and Tukey–Kramer tests conducted, we found that all
p-values were below 0.01, showing highly significant differences among the groups. Fur-
thermore, examination of the means revealed each group exhibited statistically significant
variations from one another. It can be inferred that the differences observed in the datasets
developed in our study reflect meaningful distinctions in their characteristics.

3.2. Climatic Indices

The spatial variation shown in Figures 5 and 6 is relative to the mean values of the
entire historical period, while the boxplots show the yearly variation for all scenarios and
future periods. The GSL index in QB (Figure 5a) varies between 284 and 302 days, mainly
due to the topographic features observed in the Douro region (deep valleys and mountain
shades). This leads to a strong temperature variation within the vineyard plot, where the
northernmost part of the plot is subject to more hours per day of solar radiation than the
southernmost part, which receives mountain shade. The median projected variation of
the GSL (Figure 5b) is expected to increase between 320 days (RCP4.5; 2041–2070) and
330 days (RC8.5; 2071–2100), due to the increasing temperature projected by the climate
change models. The increase in temperature also brings other challenges, such as extreme
temperature events, which were analysed by calculating the extreme temperature index
and the tropical night index. The extreme temperature index (Figure 5c) followed a similar
spatial pattern to the GSL, with the northwestern area of the plot having summer days
more often with TX higher than 35 ◦C than the southeastern area. For the historical period,
this index varied between 18 and 21 days, with median values ranging between 38 days
under RCP4.5 and 65 days under RCP8.5, and a maximum value of 115 days for RCP8.5
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considering the 2071–2100 period. At night, the spatial variation of TN (tropical night index,
Figure 5e) was similar to the one observed for the extreme temperature index, meaning that
during the night, the warmer areas occurred more often in the north and northwesternmost
part of the vineyard plot (Figure 4e), with values varying between 15 and 21 days for the
historical period and an expected increase to 38 and 62 days for future scenarios (RCP4.5
and RCP8.5, respectively). Figures S2 and S3 in the Supplementary Material show other
climatic indices, with their spatial and temporal distribution, for the QB plot.
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Concerning the spatial variation of these indices for the HE, albeit minimal (Figure 6a,c,e),
higher values are observed in the southwestern most part of the plot with values for the
historical period varying between 305 and 306 days, 24 and 25 days, and 21 and 22 days for
the GSL, extreme summer index, and tropical nights, respectively. This can be explained
by the homogeneous topography observed in HE. Also, since HE is usually warmer than
QB, these values are higher than QB for both historical and future scenarios. In the HE
plot, the GSL is expected to increase to 326 and 332 days (Figure 6b), the extreme summer
index to 40 and 71 days (Figure 6d), and the number of tropical nights to 38 and 73 days
(Figure 6f) under RCP4.5 (2041–2070) and RCP8.5 (2071–2100), respectively. Figure S3 in the
Supplementary Material shows other climatic indices and their temporal distribution for
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the HE plot not mentioned here (it is worth mentioning that the HE plot has no significant
spatial variation).
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As mentioned previously, the spatial variation of precipitation at such a high resolution
and for such small areas does not reveal major changes; therefore, the spatial variation of
the precipitation indices is almost null, particularly in HE. Still, the temporal variation for
both plots is presented (Figures S3 and S4) and the median values are shown in Table 1.

In both vineyard plots, QB and HE, precipitation in the favourable period (April
to September) is expected to decrease, while temperature is expected to increase under
both RCPs. The frequency of extreme precipitation events is likely to increase, as shown
by the increment in the number of days with precipitation above 30 mm for both plots
and climate scenarios. As for the severity of extreme precipitation events, the maximum
precipitation occurring in one day is expected to slightly increase in HE, while remaining
virtually unchanged in QB. All boxplots provide a visual representation that effectively
shows the level of uncertainty surrounding the median (notch) for all of the indices. The
fact that the notches of all of the precipitation indices (except precipitation April–September,
between the historical and future periods,Figures S3c and S4e) overlap shows that there is
not enough evidence to support a significant difference in the medians.
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Table 1. Historical precipitation indices and expected precipitation indices under different future
(2071–2100) climate scenarios (RCP4.5 and RCP8.5) in the QB and HE vineyard plots (bold values
show statistical significance).

Index
QB HE

Historical RCP4.5 RCP8.5 Historical RCP4.5 RCP8.5

Precipitation (April–September) (mm) 255 169 160 150 103 81
Simple daily intensity index (mm) 7 7 8 6 6 7

Precipitation days above 20 mm (days) 7 7 7 3 3 4
Precipitation days above 30 mm (days) 1 2 2 0 1 1

Highest one-day precipitation (mm) 40 39 39 30 35 35

3.3. Bioclimatic Indices

In the current conditions, both plots fall within the moderately dry category accord-
ing to the DI (Table S2), although the HE plot exhibits slightly higher levels of dryness
(Figures 7 and 8). While the variability of DI in the HE plot is negligible, there is a slight
variation in the QB plot where the drier areas have a similar disposition to the highest
values of the previously presented climatic indexes. Looking ahead, under future scenarios,
both plots are projected to experience heightened dryness, which is particularly clear in
the RCP8.5 scenario where the DI escalates from the moderately dry to the excessively dry
class. This emphasises the need for irrigation to maintain grapevine suitability.
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Regarding the risk of fungal diseases, such as downy mildew, under historic conditions,
the HIBBL shows a moderate risk in the QB plot, where there is some spatial variation,
and a low risk in the HE plot, where HIBBL is practically constant. Of note, the higher
risk areas for fungal diseases in the QB plot occur in the northwestern part of the plot,
coinciding with higher drier index values, although with increased precipitation, thus
higher values of HIBBL. Under future climate conditions, the HIBBL values are expected
to decrease, showing a reduced risk of such diseases. These shifts are attributed to the
expected decreases in precipitation and humidity under future climate scenarios.

The results show that for both plots, the HI currently falls within the warm category.
The spatial variability of HI occurring in the QB and HE plots is enough to present some
management challenges, especially in the planning of phenology-dependent activities.
However, with projected future climate change, both plots should transition towards the
“too hot” classification, potentially posing additional threats and challenges.

Despite the enhanced resolution, the spatial variability of bioclimatic indices within
each plot is not enough for class differentiation. Consequently, the plots are grouped into
the same classes for HI, HIBBL, and DI, primarily due to the limited study area.

4. Discussion
4.1. Microclimate

NicheMapR was demonstrated to be a powerful tool for perceiving microclimate
changes in small areas, such as vineyards. Its integration with historical weather data,
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geospatial data, global aerosol data, and site properties provides insights into under-
standing the vineyard environment. The results obtained using NicheMapR show that
topography plays a major role in temperature variation, depicting the effect of radiation
and mountain shade (not disregarding wind profiles). Thus, the microclimate model can
depict differences in temperature in relatively small areas. It can help vineyard managers
anticipate and adapt to these changes by identifying different microclimates for future
planting or implementing adaptation measures for long-term sustainability [66,67]. Overall,
NicheMapR can be a useful decision tool that provides insights for crop management,
enhancing decision-making processes, and ultimately improving vineyard sustainability.

4.2. Extreme Climatic Indices
4.2.1. Growing Season Length

The GSL plays a crucial role in determining grape ripening and lifecycle. Shorter
growing seasons may lead to incomplete grape ripening and increased acidity, affecting the
flavour and thus affecting the quality of the wine [22]. Conversely, longer growing seasons
may provide enough time for grapes to reach optimal ripeness, potentially enhancing wine
quality, though over-ripeness can lead to elevated sugar levels and thus higher alcohol
content [68]. An expansion of this season may lead to earlier germination or budbreak (and
consequently other phenological stages). Earlier germination or sprouting can increase the
likelihood of frost damage, even if the frequency of late frosts does not increase and there
is no change in the period in which they occur. Conversely, at the end of the vegetative
cycle, the temperatures may not drop enough to start the dormancy period. The year 2023
at HE was marked by an interesting observation, where the vines began a new vegetative
cycle in the post-harvest period. However, this growth was cut short due to the absence
of suitable conditions for further development. This index helps viticulturists to make
informed decisions on adaptation strategies for a particular region, such as planting and
harvesting dates or the selection of different cultivars [23]. GSL also gives insights into
determining the chilling requirement for the dormancy period, affecting the timing of
budburst [69]. In the future, GSL is expected to increase in both QB and HE, challenging
the adequate grape maturation but decreased dormancy period.

4.2.2. Extreme Summer Days

Excessive heat can lead to increased sugar accumulation in grapes, potentially leading
to higher alcohol levels [70], but it can also cause stress to the grapevines [71], resulting
in maturation stoppages [72]. Vineyard management strategies, such as canopy manage-
ment [73] and irrigation [74], may need to be adjusted to mitigate the effects of extreme
heat to achieve the wine characteristics of the region. Shading nets and kaolin applications
are two common practices that offer distinct benefits, ranging from protection from extreme
weather to pest management [75]. Despite the projected increase of days with very high
temperatures, cv. “Touriga Nacional” and cv. “Touriga Franca” are known for their ability
to adapt to environmental stresses, particularly due to their capacity to withstand high
light intensities. This characteristic enables them to better adjust to warm conditions, as
long as sufficient water is provided [76], though they are still subject to yield losses. With
temperatures expected to rise, pests are also expected to develop more quickly, produc-
ing more generations per year, increasing the intensity of their attacks and, consequently,
increasing the damage to vineyards. The challenges in vineyard management are further
compounded by the anticipation of pests “arriving” and the subsequent rise in the intensity
of attacks.

4.2.3. Tropical Nights

Tropical nights (high minimum temperatures) influence grapevine respiration and
metabolic processes, causing a decrease in the overall carbohydrate contents of the leaves [77]
and an alteration in the balance between sugar accumulation and acid degradation [78],
as well as aromatic profiles [79]. Future climate data shows that the minimum values of
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tropical nights coincide with the maximum values of the historical period. While in HE
the spatial variation in the plot is minimal, in the northernmost area of the plot in QB,
tropical nights are expected to become more prevalent due to climate change. Vineyard
practices may need to be adapted to maintain the desired balance in grape composition
when compared to the rest of the plot.

4.2.4. Precipitation Indices

In both plots, an overall decrease in precipitation is expected, although days with
higher precipitation are expected to increase, which may lead to more erosion events [80].
Noteworthy, the median values of the boxplots for all periods and scenarios against his-
torical periods show no statistical difference, except for the precipitation in the favourable
periods (April to September) (Figures S3c and S4e), which are predicted to decrease consid-
erably. The combined effect of drier and warmer conditions exacerbates plant stress even
further, since evapotranspiration decreases, resulting in a higher temperature at the plant
level (reduced latent heat) [81,82].

4.3. Bioclimatic Indices

Under future climate scenarios, these two vineyard plots are expected to undergo sig-
nificant changes in climatic conditions, which may affect grape yields and quality attributes,
ultimately affecting wine production. These variations include a projected increase in HI, a
decreased HIBBL, and higher dryness. HI is likely to shift to the “too-warm class”, showing
that the warmer temperatures may have profound effects on the grapevine phenological
stages, potentially leading to earlier onset of bud break or accelerated ripening [83]. These
aspects, combined with the impacts from the extreme temperatures (maturation stoppages,
cf. Section 4.2.2), may have profound negative impacts on viticulture and winemaking. Fur-
thermore, higher temperatures may bring changes to grape flavour profiles, influencing the
typicity of wines produced by the plots [84,85]. The projected decrease in HIBBL, according
to the index definition, shows lower risks of fungal pathogens and diseases, such as downy
mildew. Both vineyard plots are projected to face increased dryness, driven by changes in
precipitation patterns and rising temperatures. This heightened aridity, according to the
index classification, may exacerbate water scarcity concerns, requiring irrigation and sus-
tainable water management strategies to maintain typicity, yields and quality [86]. Hence,
the future climatic conditions for plots QB and HE require proactive adaptation measures
that will be essential for vineyard management in these plots to improve sustainability and
produce high-quality wines amidst adverse climatic conditions.

4.4. Climate Change Scenarios

In the context of climate change scenarios like RCP4.5 and RCP8.5, these agroclimatic
indices can serve as valuable tools for predicting future conditions. Although future
scenarios suggest potential shifts in temperature and precipitation patterns, in smaller
areas, such as the vineyard plots addressed here, the spatial climate change signal remains
the same due to the spatial resolution of the future climate data. The increased temperature,
reduced precipitation and a heightened occurrence of extreme weather events may lead to
shifts in all of these indices, which can significantly affect viticulture in the future [87,88].
The occurrence of extreme heat events has the potential to cause sunburn on grape clusters,
while extreme precipitation events represent an increasing risk of physical damage to
grape clusters and of erosion potentially affecting the integrity of vertical vineyards due to
landslides. An increase in temperature and decrease in precipitation may cause reduced
soil moisture levels, altering the availability of nutrients and water stress in vineyards. This
can intensify the flavours of the grapes, but it can also result in the formation of smaller
berries and a reduction in the overall yield of grapes [89].

The agroclimatic indices mentioned here are highly valuable as they offer insights into
a range of climatic parameters that have a direct impact on the growth of grapevines, the
ripening of grapes, and ultimately, the overall quality of wine [90,91]. Adapting to these
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changes may involve implementing innovative viticultural practices, selecting suitable
grape cultivars, and potentially exploring new terroirs [87]. Climate-smart viticulture,
associated with a thorough understanding of agroclimatic indices, warrants the sustain-
ability and resilience of vineyards in the face of climate change [7,78]. As a direct result of
these changing climate conditions, it becomes important to continue to re-evaluate these
agroclimatic indices and act accordingly to maintain the climate features that contribute to
a specific terroir. If other strategies fail, these climatic scenarios may have the potential to
restrict the growth of vineyards and require their relocation to higher altitudes [2].

4.5. Advantages and Disadvantages of Microclimate Models

Microclimate models offer advantages and disadvantages when compared to sen-
sors or drones [25] for tracking small-scale temperature and precipitation fluctuations.
By considering different environmental factors and inputs (heat and mass exchange, air
temperature, wind speed, humidity, short- and long-wavelength radiation, soil moisture,
canopy shade, terrain, hill shade, and vegetation), microclimate models can simulate and
predict variations in temperature and precipitation. Once microclimate models are de-
veloped, they can offer a cost-effective alternative to continuously deploying sensors or
drones [28,34,92]. These models can provide valuable insights over a larger geographical
area, provided they undergo proper calibration and validation. Conversely, the develop-
ment of microclimate models requires specialised knowledge in fields such as meteorology,
climatology, and computational modelling, combined with the use of robust computational
processing capabilities. For models to perform effectively, it is crucial to have accurate input
data. However, this can be a challenge, particularly in remote or less-studied areas, where
it may not always be available. When deciding between microclimate models, sensors, or
drones, several factors come into play, including specific research or monitoring objectives,
budget constraints, spatial scale, topography complexity, and data accuracy requirements.
The most effective strategy for comprehensive environmental monitoring may often involve
a combination of these approaches [93].

Despite the differences in approaches, both methods enable a thorough characterisa-
tion of microclimate conditions found within vineyard landscapes. This, in turn, aids in
the identification of mesoclimatic variations, the exploration of potential climate change
impacts, the evaluation of adaptation strategies, and the optimisation of vineyard man-
agement decisions, all of which contribute to enhancing the expression of terroir. These
tools serve as invaluable tools for vineyard management, offering valuable insights into
various aspects such as ideal planting locations, vineyard design, canopy management
techniques, irrigation scheduling, and even determining the perfect time for harvest. Wine-
growers obtain the ability to maximise grape quality and wine typicity by integrating
terroir-specific information into their decision-making processes, which in turn contributes
to the sustainability and resilience of the winegrowing industry.

5. Conclusions

The importance of microclimate modelling cannot be overstated, especially when it
comes to determining agroclimatic indices for vineyards, particularly at a spatial resolution
that aligns with the intricacies of vineyard landscapes, as shown in this study. In the
HE vineyard plot, the spatial results are not very relevant because the terrain is mostly
flat, with slight spatial gradients and the relevance of this modelling is not as valuable.
However, in the QB vineyard plot, the significance merit of this type of modelling is clear,
denoting important variations at such a small spatial resolution. The relationship between
different climatic elements within a specific area may have a significant influence on the
growth and development of grapevines, particularly in areas with complex topography,
ultimately shaping the quality of the wine produced. To preserve the typicity of wines and
terroirs, it is crucial to comprehend and adjust to the spatial variation of these agroclimatic
indices when facing the ongoing climate. This can be achieved through a combination of
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sustainable viticultural practices and, in certain cases, a re-evaluation of grape cultivars
and vineyard locations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16083477/s1, Figure S1: Scatterplots of precipitation (RR),
maximum temperature (TX), mean temperature (TG) and minimum temperature (TN) of observed
data and smoothing splines derived from quantile mapping for Quinta do Bomfim (a–d) and Herdade
do Esporão (e–h), respectively; Figure S2: Spatial variation for the historical (a,c,e) and boxplots (b,d,f)
for the historical and future periods of consecutive summer days (TX > 35 ◦C) (a,b), summer index
(c,d), and consecutive summer days (TX > 25 ◦C) (e, f) of Quinta do Bomfim vineyard plot; Figure S3:
Boxplots for the historical and future periods of (a) mean temperature (April—September), (b) simple
daily intensity index, (c) precipitation (April—September), (d) highest one-day precipitation and
(e) precipitation days above 30 mm in Quinta do Bomfim vineyard plot; Figure S4: Boxplots for
the historical and future periods of (a) summer days (TX > 35 ◦C), (b) consecutive summer days
(TX > 35 ◦C), (c) consecutive summer days (TX > 25 ◦C), (d) mean temperature (April—September),
(e) precipitation (April—September), (f) simple daily intensity index, (g) highest one-day precipitation
and (h) precipitation days above 30 mm in Herdade do Esporão vineyard plot; Figure S5: Boxplots
of maximum annual temperature (a,c) and minimum annual precipitation (b,d) for the historical
and future periods for (a,b) Quinta do Bomfim (QB) and (c,d) Herdade do Esporão (HE) vineyard
plots; Figure S6: Spatialized slope (a,c) and aspect (b,d) of Quinta Bomfim (QB) (a,b) and Herdade do
Esporão (HE) (c,d) vineyard plots, respectively; Table S1: Description of global climate models and
regional climate models used in this study; Table S2: List of the bioclimatic indices computed for this
study, their corresponding mathematical definitions, units and classes; Table S3: List of the climatic
indices computed for this study and their definition; Table S4: ANOVA results for all temperature
variables (maximum, mean and minimum) for both Quinta do Bomfim (QB) and Herdade do Esporão
(HE); Table S5: Tukey–Kramer test for multiple comparisons.
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