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Abstract: This study investigated the spatiotemporal characteristics and influencing factors of PM2.5
concentrations at the provincial scale in China. The findings indicate significant spatial autocorre-
lation, with notable high–high agglomerations in East and North China and mixed patterns in the
northwest. The spatial Durbin model (SDM) with fixed effects, validated through comprehensive
tests, was utilized to analyze data on 31 provincial scale regions from 2000 to 2020, addressing spatial
autocorrelation and ensuring model reliability. The research delved into the effects of 21 variables on
PM2.5 concentrations, identifying synergistic and trade-off effects among environmental and socioe-
conomic indicators. Environmental measures like vegetation protection and sulfur dioxide emission
reduction correlate with lower PM2.5 levels, whereas economic growth and transport volume often
align with increased pollution. The analysis reveals regional variances in these effects, suggesting the
need for region-specific policies. The study underscores the intricate relationship between environ-
mental policies, economic development, and air quality, advocating for an integrated approach to air
quality improvement. It highlights the necessity of balancing industrial growth with environmental
sustainability and suggests targeted, region-specific strategies to combat PM2.5 pollution effectively.
This study offers crucial insights for policymakers, emphasizing that enhancing air quality requires
comprehensive strategies that encompass environmental, economic, and technological dimensions to
foster sustainable development.

Keywords: particulate matter 2.5 (PM2.5); SDG11.6.2; Sustainable Development Goals (SDGs);
inverse distance matrix; spatial Durbin model

1. Introduction

Particulate matter 2.5 (PM2.5) constitutes a form of inhalable particulate matter perva-
sive in the atmospheric milieu, exerting a pronounced impact on human health through its
association with respiratory, cardiovascular, and even dementia diseases [1–3]. Beyond its
health ramifications, PM2.5 adversely affects vegetation growth and soil and water quality,
thereby disrupting ecological balance, biodiversity, and contributing to climate change [4],
impacting the economic and social development [5]. Consequently, the United Nations
has officially designated PM2.5 as a key indicator within the framework of Sustainable
Development Goals, specifically identified as SDG 11.6.2 [6].

Over the years, research has primarily focused on the meteorological factors respon-
sible for the formation of PM2.5 [7,8] and its health impacts [3]. However, in recent
years, there has been an increasing attention on the influence of socioeconomic factors [9].
Amid ongoing urbanization and industrialization, a combination of socioeconomic fac-
tors including industry, transportation, energy consumption, agriculture, combustion,
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and vegetation collectively influences localized PM2.5 levels [10,11]. Studies show that
PM2.5 concentrations, characterized by its spatial attributes, exhibit a distinct degree of
spatial heterogeneity [12]. For example, some research findings underscore the exacer-
bating impact of urbanization on air pollution, with economic urbanization exhibiting a
particularly heightened influence on PM2.5 compared to land-based and population-based
urbanization [13]. The correlation between China’s PM2.5 levels and economic develop-
ment aligns with the environmental Kuznets curve (EKC) hypothesis, depicting an inverted
U-shaped relationship with per capita GDP [14,15]. Furthermore, scholarly investiga-
tions reveal that green technological innovation, foreign investment, and expanded green
vegetation areas are crucial in reducing PM2.5 concentration in both local and adjacent
areas [16,17]. In China, a provincial-scale study indicates that economic activity is still
the main factor to promote the increase of PM2.5 emissions, but its effect decreases [18].
Moreover, PM2.5 is influenced not only by various local factors but also by meteorolog-
ical conditions such as air diffusion, leading to inter-regional air quality impacts and
demonstrating a pronounced spatial correlation [19].

Many models have been used to analysis these factors of PM2.5 concentrations,
such as the correlation analysis method [12], machine learning method [20], geographical
detector [21–23], spatial econometric model (SEM) [24], geographically weighted regression
model [25–27], spatial regression model [28], land-use regression model [29], and other
models [30]. This study focuses on the spatiotemporal differentiation characteristics of
PM2.5 at provincial scale in China and investigates the spatial spillover effect intensity of
potential socioeconomic factors affecting PM2.5 concentrations across different provincial
units. Among the above models, SEMs are highlighted as key in addressing issues of spatial
heterogeneity, spillover effects, and their influencing factors. Scholars have employed the
spatial error model (SEM) to study the heterogeneous impact of the secondary industry
on PM2.5 [31], and the spatial Durbin model(SDM) to calculate the effect of urbaniza-
tion on PM2.5 concentrations [32]. Furthermore, SEMs have been utilized to discover
that the deployment and usage of natural gas pipelines can effectively mitigate PM2.5
concentrations [33]. Current research primarily employs traditional spatial weight matrices
such as contiguity, economic, inverse distance, and nested matrices [34], focusing on the
overall calculation of the spatial spillover effect of independent variables on dependent
variables, yet lacking a quantitative analysis within regions. Therefore, to quantitatively
calculate the spatial spillover effects of PM2.5 and its potential influencing factors among
multiple factors and across several provinces in China, this study iteratively reduces the
traditional inverse distance matrix, retaining the spatial distance weights between a sin-
gle region and other regions [35]. Based on the new inverse distance matrix, the study
calculates the spatial spillover effect values of multiple indicators between provinces on
PM2.5 and conducts an analysis. This refined approach enables a detailed analysis of
the spatial spillover effects of PM2.5 and its influencing factors at the provincial scale in
China, providing robust support for the governance of air pollution and the promotion of
sustainable development practices.

This manuscript is structured as follows. Section 2 details the data and methodology,
covering data collection, preprocessing, and the steps to construct the spatial inverse dis-
tance matrix, as well as the implementation of Moran’s I test and the SDM. Section 3 delves
into the empirical findings regarding the spatial spillover effects of PM2.5, and analyses
conducted from the perspectives of indicators and provinces. It identifies the directions
of the spillover effects of various provinces and influencing factors on PM2.5. We also
tried to analyze the reasons for the occurrence of trade-off effects by focusing on the most
significant influencing factors and provinces with apparent spillover effects. In Section 4,
we summarize the experimental results and discuss their limitations. Additionally, some
policy recommendations are proposed.
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2. Data and Methods
2.1. Data Selection and Preprocessing

This study utilized statistical panel data from 2000 to 2020, covering 31 provincial-
scale administrative regions in China (excluding Hong Kong, Macao, and Taiwan). The
data originate from several authoritative sources, including the National Statistical Yearbook,
China Environmental Statistical Yearbook, China Energy Statistical Yearbook, and information
from the Ministry of Civil Affairs of the People’s Republic of China. In this study, the
concentration of PM2.5 (SDG 11.6.2) was selected as the dependent variable. To identify the
factors influencing PM2.5 levels, we meticulously selected a suite of explanatory variables
based on their potential impact. This selection process was informed by a thorough review
of relevant literature and the invaluable insights of experts in the field. Our methodical
approach ensured the inclusion of the most pertinent factors affecting PM2.5 concentrations,
establishing a robust foundation for further analysis. Due to the accessibility of the data, the
variables we have selected, while not fully aligned with the specific nuances of the official
United Nations SDG indicators, can to a certain extent represent the corresponding SDG
indicators or targets. Consequently, we annotated each variable with the SDG indicators
it supports. We ultimately selected 21 explanatory variables, with Table 1 presenting a
detailed list of these indicators. In this table, a positive designation in the Direction column
signifies advancement towards a more sustainable world, while a negative designation
implies a trajectory that is antithetical to the attainment of sustainable development goals.
For example, an increased “industrial water reuse rate” denotes a positive shift towards
sustainability, thus the direction for this indicator is deemed positive. In contrast, a higher
concentration of PM2.5 is detrimental to progressing towards a sustainable world; hence,
the direction for this indicator is considered negative.

Table 1. Meaning of variables.

Variables Indicator/
Target Indicator/Target Short Name Indicator Construction Method Direction

Explained
variable SDG11.6.2 Concentration of PM2.5 Concentration of PM2.5 Negative

Explanatory
variables

SDG6.3 Water quality Industrial water reuse rate Positive

SDG6.4.1 Water-use efficiency (total GDP/total water consumption + industrial
GDP/industrial water consumption)/2 Positive

SDG6.4.2 Water stress Total water consumption/total water resources Negative
SDG6.6 Water-related ecosystems Nature reserve area Positive

SDG6.a Wastewater treatment, recycling
and reuse

Investment in wastewater
treatment project Positive

SDG7.1.2 Reliance on clean energy Gas penetration rate Positive
SDG7.3.1 Energy intensity Electricity consumption per 10,000 yuan of GDP Negative
SDG8.1.1 Real GDP per capita growth rate Per capita GDP growth rate Positive

SDG9.1.2 Passenger and freight volume Average freight volume and
passenger volume Positive

SDG9.2.1 Manufacturing value added Secondary industry value added/GDP Positive
SDG9.4 Sustainable and clean industries Carbon dioxide emissions Negative

SDG9.b.1 Medium and high-tech industry
value added Tertiary industry value added/GDP Positive

SDG11.2.1 Convenient access to public transport Number of buses per 10,000 people Positive

SDG11.3.1 Land consumption Urban built-up area growth rate/population
growth rate Negative

SDG11.6.1 Municipal solid waste Per capita solid waste generation Negative
SDG11.7.1 Open space for public use Per capita park green space area Positive
SDG12.2.1 Material footprint Per capita sulfur dioxide emissions Negative
SDG12.5.1 National recycling rate Comprehensive utilization rate of industrial solid

waste Positive
SDG15.1.1 Forest area Forest coverage rate Positive
SDG15.2 Sustainable forests management Artificial afforestation area Positive
SDG15.4 Conservation of mountain ecosystems Proportion of protected areas to jurisdiction area Positive

For the incomplete portions of the data, which do not exceed 5% for any given year,
linear interpolation was employed to fill in the gaps [36]. Furthermore, to mitigate the
effects of different dimensions of statistical data and outliers on the results, the original
data were subjected to min-max normalization after trimming the extreme values at the
2.5% level [37]. Additionally, the direction of the negative indicator was adjusted to
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facilitate the analysis of the experimental result, as detailed in Formulas (1) and (2). Table 2
presents the descriptive analysis results of the normalized data, including the number of
observations, mean, and standard deviation. Among the 22 variables, SDG 15.4 (protecting
mountain ecology) exhibits the largest standard deviation of 29.52, while SDG 11.3.1 (land
consumption) has the lowest standard deviation of 15.87. Generally, the normalized variable
data show minimal fluctuation.

Table 2. Descriptive analysis of variables and VIF of explanatory variables.

Variable Sample Size Mean Std VIF

SDG11.6.2 651 49.05 22.8 /
SDG6.3 651 71.31 29.5 2.25

SDG6.4.1 651 20.33 22.79 2.34
SDG6.4.2 651 88.2 20.13 2.49
SDG6.6 651 11.24 20.95 3.13
SDG6.a 651 26.34 23.98 2.04

SDG7.1.2 651 72.71 27.86 3.19
SDG7.3.1 651 75.28 22.6 2.67
SDG8.1.1 651 45.94 23.93 1.49
SDG9.1.2 651 38.79 25.16 2.45
SDG9.2.1 651 64.4 24.55 5.19
SDG9.4 651 66.99 26.95 3.42

SDG9.b.1 651 29.62 21.7 5.76
SDG11.2.1 651 34.69 20.37 2.6
SDG11.3.1 651 36.59 15.87 1.08
SDG11.6.1 651 81.57 21.68 2.59
SDG11.7.1 651 25.51 22.32 2.94
SDG12.2.1 651 71.38 22.62 3.2
SDG12.5.1 651 61.02 24.39 1.31
SDG15.1.1 651 13.53 18.53 2.15
SDG15.2 651 27.93 25.56 1.64
SDG15.4 651 44.08 29.52 2.54

The forward normalization formula used was:

X′ =
(X − Xmin)

(Xmax − Xmin)
× 100 (1)

The inverse normalization formula used was:

X′ =
(Xmax − X)

(Xmax − Xmin)
× 100 (2)

In (1) and (2), X is original data of any given variable, Xmax and Xmin represent the
2.5% maximum and 2.5% minimum value of the variable. X′ is the normalized result of X.

To assess whether there is a multicollinearity problem between variable data, which
would interfere with the experimental results, this study calculated the variance inflation
factor (VIF) for each variable.

VIF =
1

(1 − R2)
(3)

In Formula (3), R2 represents the correlation coefficient between this variable and other
independent variables [38]. VIF can quantify how much the variance of an independent
variable is inflated due to its correlation with other independent variables [38]. A VIF value
of 10 or greater typically indicates significant multicollinearity among variables [38,39].
Table 2 presents the VIF of each variable studied in the last column, with the maximum
value recorded at 5.76. This suggests that there is no significant multicollinearity among
the variables selected for this experiment.



Sustainability 2024, 16, 3394 5 of 18

2.2. Method
2.2.1. Spatial Moran Index

The multi-year local Moran index can be used to assess the presence of spatial auto-
correlation and to detect changes in its autocorrelation state over time [40,41]. For the i-th
region, the local Moran index Ii is defined as follows:

Ii =
xi − x

S2

n

∑
j=1

wij
(
xj − x

)
, and i ̸= j (4)

S2 =
1
n

n

∑
i=1

(xi − x)2 (5)

In Formulas (4) and (5), n represents the total number of spatial regions of the research
variable, xi represents the variable value of the i-th region, xj represents the variable value
of the j-th region, x represents the average value of all variable values, wij is the spatial
weight matrix, and S2 represents the sample variance.

When Ii > 0, it indicates the presence of positive spatial correlation, typically mani-
fested as either a high–high agglomeration (areas with high values surrounded by areas
with high values) or a low–low agglomeration (areas with low values surrounded by areas
with low values); conversely, when Ii < 0, it indicates negative spatial correlation, which is
manifested as either a low–high agglomeration (areas with low values are surrounded by ar-
eas with high values) or a high–low agglomeration (areas with high values are surrounded
by areas with low values).

2.2.2. Spatial Econometric Models (SEMs)

This study used SEMs to study spatial spillover effects. The currently popular SEMs
include the spatial Durbin model (SDM), spatial lag model (SLM), and spatial error model
(SEM), et al. The SDM studies the variable relationship between adjacent observation areas
by processing spatially weighted spatial panel data. The formula of the SDM model is as
follows [42,43]:

y = λWy + Xβ+ WXδ+ ε (6)

In (6), y is the explained variable, X represents the explanatory variable, W is the
spatial weight matrix, and λ is the spatial regression coefficient for the dependent variable,
quantifying the influence of neighboring values of (y). β represents the regression coefficient
of the independent variable within the region, reflecting how changes in (X) influence (y)
locally. δ is the spatial regression coefficient of the independent variable, capturing the
impact of neighboring values of (X) on (y). ε represents the error term; λWy represents
the influence of dependent variables from adjacent areas. Xβ represents the influence of
independent variables in this area, WXδ represents the influence of independent variables
from adjacent areas. When λ ̸= 0,β ̸= 0, δ = 0, the model is identified as SLM; when
λ = 0,β ̸= 0, δ ̸= 0, it is classified as SEM [43].

The spatial weight matrix plays an important role in spatial econometric models,
particularly in studying spatial spillover effects. Typical spatial weight matrices include
proximity matrix, inverse distance matrix, economic matrix, and nested (economic, distance)
matrix. Due to the significant distance-related characteristics of PM2.5 spatial overflow,
this study adopted an inverse distance weight matrix. Additionally, to capture the differen-
tiated spatial distribution characteristics of PM2.5 across various provincial scale regions,
31 inverse distance weight matrices were constructed for the 31 provincial administrative
units in the study. Each matrix was uniquely modified to focus solely on the spatial rela-
tionships between a given area (i) and other areas, ensuring that weights between non-focal
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areas were zero [35]. This modification was crucial for accurately calculating the spatial
overflow relationships between area (i) and other areas, as detailed in Formula (7).

Wij =


0 · · · w1i · · · 0
· · · · · · · · ·
wi1 · · · 0 · · · win
· · · · · · · · ·
0 · · · wni · · · 0

 (7)

2.3. Model Validity Test
2.3.1. Lagrange Multiplier Test

The Lagrange multiplier test (LM test) is used to determine the presence of spatial
autocorrelation in the data, which informs the applicability of spatial econometric models.
The test operates under the null hypothesis that there is no serial correlation in the data
residual, versus the alternative hypothesis of p-order autocorrelation [44]. When the
significance level value of the statistic is less than 0.05, the null hypothesis should be
rejected. indicating autocorrelation and the suitability of SEMs. Conversely, acceptance of
the null hypothesis suggests an absence of autocorrelation, and SEMs are not recommended.
Formula (8) calculates the LM test statistic, where T represents the time period, R2

u is the
goodness of fit for the model with explanatory variables, and R2

ur includes both explanatory
variables and individual random effects. The LM test was used in this study to preliminarily
determine the suitability of the data for spatial econometric modeling.

LM = T ×
(

R2
u − R2

ur

)
(8)

2.3.2. Hausman Test

The Hausman test is employed to evaluate and compare the estimation results of
two distinct models, characterized by either fixed or random parameters. The foundational
null hypothesis posits that both the random effects model and the fixed effects model
yield consistent estimates concerning the systematic error term, indicating an absence of
systematic difference in their parameter estimates [45]. When the significance level attains
a value of p < 0.05 or p < 0 [46], the null hypothesis is consequently rejected, prompting
the adoption of fixed effects in the model. Otherwise, the null hypothesis is accepted and
random effects are used. The Hausman statistic, calculated as Formula (9), where β̂RE and
β̂FE represent the estimated outcomes of the random effects model and the fixed effects
model, respectively, guides the decision on whether to adopt fixed or random effects in the
model. This methodology was integral to this study’s approach to model selection between
fixed and random effects.

H =
(
β̂RE − β̂FE

)′ [Var
(
β̂RE − β̂FE

)]
− 1

(
β̂RE − β̂FE

)
(9)

2.3.3. Likelihood Ratio Test

The likelihood ratio test (LR test) is a statistical test method commonly used to compare
the adequacy of two models under different constraints. The null hypothesis asserts
estimated likelihood function values from the unconstrained and constrained models are
substantially equivalent [47]. When the significance value of p < 0.05 is achieved, preference
is given to the constrained model; otherwise the unconstrained model is favored. In this
study, the LR test was applied to assess the efficacy of model selection involving individual,
time, and dual fixed effects, as well as to determine whether SDM would reduce to SLM
and SEM.
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3. Results and Analysis
3.1. PM2.5 Spatial Aggregation Characteristics

Figure 1 presents the local Moran indicators of spatial association index (LISA) for
PM2.5 concentrations in the years 2005, 2010, 2015, and 2020, demonstrating significant
spatial autocorrelation. Notably, regions of high–high agglomeration are predominantly
observed in East and North China, whereas both low–low and high–low agglomerations
are prevalent in the northwest. These observations highlight the persistent nature of PM2.5
spatial agglomeration throughout the specified period, emphasizing the stable spatial
relationships of PM2.5 concentrations across different regions.
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3.2. Determination of Spatial Econometric Model

Table 3 presents the detailed model validity test results obtained using 31 spatial
inverse distance matrices. The significance levels (P values) are provided in parentheses.
Notably, the LM test or robust LM test rejected the null hypothesis at the 5% significance
level, indicating that there was spatial autocorrelation between variables [48], so the spatial
econometric model could be used for preliminary judgment. The results of the Hausman
test all rejected the null hypothesis at the 5% significance level, proving that the model had
better results when using fixed effects, so the spatial econometric model used fixed effects.
The LR test also rejected the null hypothesis at the 5% significance level, confirming that
SDM would not degenerate into SLM and SEM, so SDM was selected in this study.

The panel data constructed for this study had a temporal dimension of 20 years
and a cross-sectional dimension covering 31 provincial scale regions, which was a short
panel [49]. Therefore, it was challenging to ascertain the presence of autocorrelation within
the random disturbance terms associated with reaction time effects. Consequently, these
terms were assumed to be independent and identically distributed, and the SDM was
employed using individual effects to achieve better results [50]. To confirm the validity
of this assumption, the LR test was utilized to compare the model fit of individual fixed
effects against dual fixed effects (individual and time). The results indicated that the
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model employing individual fixed effects demonstrated superior performance compared
to the dual fixed effects (Table 4). Accordingly, this study adopted SDM with individual
fixed effects.

Table 3. Model validity test results.

Province

Test LM Spatial
Error

Robust LM
Spatial Error

LM Spatial
Lag

Robust LM
Spatial Lag Hausman LR Test

SDM SLM
LR Test

SDM SEM

Anhui 35.59 2.97 53.78 21.16 −20.33 108.95 119.55
(0) (0.085) (0) (0) (<0) (0) (0)

Beijing 130.1 5.19 129.1 4.153 −38.99 179.32 185.72
(0) (0.023) (0) (0.042) (<0) (0) (0)

Fujian 30.84 28.55 16.61 14.31 −40.26 205.12 178.81
(0) (0) (0) (0) (<0) (0) (0)

Gansu 8.67 0.002 11.49 2.82 47.79 259.18 275.79
(0.003) (0.964) (0.001) (0.093) (0.0012) (0) (0)

Guangdong 17.58 13.39 41.21 37.01 −23.14 169.32 152.95
(0) (0) (0) (0) (<0) (0) (0)

Guangxi 26.7 5.556 44.99 23.85 −21.91 172.3 156.6
(0) (0.018) (0) (0) (<0) (0) (0)

Guizhou 30.56 0.434 32.59 2.466 −21.89 141.77 143.17
(0) (0.51) (0) (0.116) (<0) (0) (0)

Hainan 2.095 33.24 13.48 44.63 47.02 244.74 271.82
(0.148) (0) (0) (0) (0.0015) (0) (0)

Hebei 61.67 4.896 94.07 37.3 −12.15 75.54 73.04
(0) (0.027) (0) (0) (<0) (0) (0)

Henan 77.66 33.66 51.33 7.327 −31.44 152.49 153.59
(0) (0) (0) (0.007) (<0) (0) (0)

Heilong jiang 0.858 20.93 0.512 20.58 −10.06 348 347.89
(0.354) (0) (0) (0) (<0) (0) (0)

Hubei 49.29 0.002 58.2 8.912 −17.71 134.09 127.02
(0) (0.967) (0) (0.003) (<0) (0) (0)

Hunan 25.78 7.512 49.39 31.12 −23.9 147.37 137.21
(0) (0.006) (0) (0) (<0) (0) (0)

Jilin 1.135 46.77 25.01 70.65 −26.48 211.54 306.08
(0.287) (0) (0) (0) (<0) (0) (0)

Jiangsu 38.12 10.23 66.81 38.91 −18.8 134.71 158.67
(0) (0.001) (0) (0) (<0) (0) (0)

Jiangxi 13.9 56.81 45.23 88.14 −95.63 139.38 125.57
(0) (0) (0) (0) (<0) (0) (0)

Liaoning 6.818 22.33 30.57 46.08 −13.16 212.74 262.84
(0.009) (0) (0) (0) (<0) (0) (0)

Nei Mongol 3.34 32.43 2.261 31.35 −127 327.52 400.1
(0.068) (0) (0) (0) (<0) (0) (0)

Ningxia 3.412 9.97 10.93 17.48 139.2 348.65 354.94
(0.065) (0.002) (0.001) (0) (0) (0) (0)

Qinghai 0.253 5.656 1.233 6.635 −115.8 399.63 297.6
(0.615) (0.017) (0.267) (0.01) (<0) (0) (0)

Shandong 48.25 0.385 63.57 15.71 −14.32 181.13 185.45
(0) (0.535) (0) (0) (<0) (0) (0)

Shanxi 7.794 13.34 26.94 32.49 −25.56 266.21 241.61
(0.005) (0) (0) (0) (<0) (0) (0)

Shaanxi 3.262 6.538 13.11 16.38 −19.79 260.29 298.36
(0.071) (0.011) (0) (0) (<0) (0) (0)

Shanghai 61.19 2.269 59.81 0.889 −3.69 281.47 274.72
(0) (0.132) (0) (0.346) (<0) (0) (0)

Sichuan 3.166 5.585 11.24 13.66 −23.54 220.31 236.99
(0.075) (0.018) (0.001) (0) (<0) (0) (0)

Tianjing 22.55 5.728 47.96 31.14 −6.8 119.37 129.15
(0) (0.017) (0) (0) (<0) (0) (0)

Xizang 0.046 0.258 0.002 0.214 −229.9 461.58 403.97
(0.029) (0.611) (0.063) (0.644) (<0) (0) (0)

Xinjiang 2.289 23.06 0.891 21.66 41.68 357.28 337.12
(0.13) (0) (0) (0) (0.00680) (0) (0)

Yunnan 27.66 31.57 9.418 13.33 2.93 275.63 286.55
(0) (0) (0) (0) (1) (0) (0)

Zhejiang 47.91 0.194 49.53 1.812 −45.64 130.13 125.76
(0) (0.66) (0) (0.178) (<0) (0) (0)

Chongqing 28.18 9.984 53.19 34.99 −21.85 172.61 147.2
(0) (0.002) (0) (0) (<0) (0) (0)

Note: The p value is in parentheses.
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Table 4. Model goodness of fit for individual and dual fixed effects.

Province Ind Both

Anhui 0.6679 0.0068
Beijing 0.7036 \
Fujian 0.6849 0.0537
Gansu 0.6958 0.0276

Guangdong 0.6868 0.1608
Guangxi 0.6925 0.0071
Guizhou 0.6942 0.0508
Hainan 0.6209 0.1727
Hebei 0.6905 0.3943
Henan 0.6695 0.0162

Heilong jiang 0.6772 0.1642
Hubei 0.6819 0.3182
Hunan 0.6963 0.1046

Jilin 0.5696 0.021
Jiangsu 0.6918 0.0856
Jiangxi 0.685 0.0357

Liaoning 0.6835 0.3069
Nei Mongol 0.6836 0.0225

Ningxia 0.6991 0.1531
Qinghai 0.6991 0.0012

Shandong 0.6972 0.4073
Shanxi 0.6857 0.2835
Shaanxi 0.6974 0.1732

Shanghai 0.694 \
Sichuan 0.6966 0.03
Tianjing 0.6845 0.3102
Xizang 0.7141 \

Xinjiang 0.6944 0.2579
Yunnan 0.6987 0.0002
Zhejiang 0.6866 0.15

Chongqing 0.6944 0.0034
Note: \ indicates that the model has no goodness of fit.

3.3. Analysis of the Factors Influencing the Spatial Distribution of PM2.5

The direct, indirect, and total effects of 21 independent variable indicators on the de-
pendent variable SDG11.6.2 (concentration of PM2.5) across provincial scale administrative
regions in China are shown in Supplementary Figures S1–S21. In the subsequent section,
the analysis of the results from the perspectives of both indicators involved and provincial
scale regions will be detailed.

3.3.1. Analysis of the Results from the Perspectives of Relevant Indicators Involved

The majority of the results were consistent with the conclusions of previous studies or
traditional understanding. For example, the indicators SDG11.7.1 (open space for public
use, Figure S16a), SDG15.1.1 (forest area, Figure S19a) and SDG6.6 (water-related ecosys-
tems, Figure S4a) exhibited a synergistic relationship on the direct effect with SDG11.6.2
(concentration of PM2.5) in almost all the regions, suggesting that enhancing the vegetation
protection and afforestation can reduce the PM2.5 concentrations for the local areas. The
indicators SDG8.1.1 (real GDP per capita growth rate, Figure S8a) and SDG9.1.2 (passenger
and freight volume, Figure S9a) exhibited a trade-off relationship on the direct effect with
SDG11.6.2 (concentration of PM2.5) in some regions, suggesting that the economic growth
and social development of these areas might have negatively impacted on the air quality
of these local regions (such as Nei Mongol, Jilin, Hubei, Anhui Sichuan, and Guangxi
Province). For SDG6.4.1 (water-use efficiency), some of the regions except Jilin Province
exhibited a synergistic relationship on the indirect and total effect (Figure S2b,c) with
SDG11.6.2 (concentration of PM2.5), suggesting that improving water use efficiency of local
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and surrounding areas had contributed to the improvement of air quality for these areas.
Similarly, for SDG12.2.1 (material footprint), Beijing and its surrounding areas displayed
a synergistic relationship on the indirect and total effect (Figure S17b,c) with SDG11.6.2
(concentration of PM2.5), suggesting that reducing sulfur dioxide emissions of local and
surrounding areas had also contributed to the improvement of air quality for these areas.

Additionally, some indicators exhibited varying spatial interrelationships with SDG
11.6.2 (concentration of PM2.5) across different geographical regions. For example, SDG9.1.2
(passenger and freight volume) demonstrated a synergistic effect in both the indirect and
overall impact with SDG11.6.2 (concentration of PM2.5) within some southern regions of
China, yet manifested a trade-off relationship in some northern regions, including Nei
Mongol, Xinjiang, and Tianjin (Figure S9b,c). This divergence may be attributed to the
accelerated adoption of new energy vehicles within the passenger and freight sectors in the
southern provinces compared to the northern provinces. Such discrepancies could poten-
tially result in a spillover effect, adversely impacting the air quality of the northern regions
and their surrounding areas. Therefore, intensifying the promotion of new energy vehicles
is essential to realize their potential impact on reducing PM2.5 levels [51]. SDG12.5.1 (na-
tional recycling rate) displayed a synergistic effect in both the indirect and overall impact
with SDG11.6.2 (concentration of PM2.5) in Sichuan and Nei Mongol, yet manifested a trade-
off relationship in Beijing, Tianjin, Hebei, Jiangsu, Henan, and Chongqing (Figure S18b,c).
The data used in this study to measure SDG12.5.1 were the comprehensive utilization
rates of industrial solid waste, which primarily impacts soil, water, and air quality. This
trade-off relationship observed in several economically advanced regions such as Beijing,
Tianjin, Jiangsu, Chongqing suggests that the off-site recycling and processing of industrial
solid waste can still impact the environmental quality of these areas, owing to spatial
spiller over. Enhanced recycling and processing technologies for industrial solid waste
are crucial to mitigate further negative impacts. Inappropriate waste disposal methods,
such as direct incineration, exacerbate air pollution [52,53]. Table 5 presents the average
coefficients of direct, indirect, and total effects of 21 indicators on SDG 11.6.2 (concentration
of PM2.5) in all provincial scale regions. From the analysis of average indirect and total
effect coefficients, some indicators exhibited significant synergistic effects (an average effect
value greater than 1.00), including SDG 15.4 (conservation of mountain ecosystems), SDG
9.4 (sustainable & clean industries), and SDG 6.3 (water quality), and some indicators
displayed slightly synergistic effects (an average effect value greater than 0 and less than
1.00), including SDG 6.4.1 (water-use efficiency), SDG6.a (wastewater treatment, recycling,
and reuse), SDG7.1.2 (reliance on clean energy), SDG9.1.2 (passenger and freight volume),
SDG11.6.1 (municipal solid waste), SDG11.7.1 (open space for public use), SDG12.2.1
(material footprint) and SDG15.1.1 (forest area). Most of these indicators are directly re-
lated to the environment, indicating that improvement of natural environment-related
indicators can promote the quality of the air environment in the local and surrounding
regions. Conversely, indicators showing a trade-off on average indirect and total effect
coefficients including SDG6.4.2 (water stress), SDG6.6 (water-related ecosystems), SDG
7.3.1 (energy intensity), SDG 9.2.1 (manufacturing value added), SDG9.b.1 (medium and
high-tech industry value added), SDG11.2.1 (convenient access to public transport), SDG
11.3.1 (land consumption), SDG 12.5.1 (national recycling rate), and SDG15.2 (sustainable
forests management) are mostly social and economic related indicators. This suggests that
the enhancement of socioeconomic-related indicators may, to a certain extent, be achieved
at the detriment of air quality in the region and its surrounding areas, an issue that warrants
close attention in future development initiatives. Regarding the average direct effect, 11 of
the 21 indicators exhibited an insignificant impact on SDG 11.6.2 (concentration of PM2.5)
in all provincial-scale regions. The reason for this phenomenon can be attributed to the
complexity of the factors influencing PM2.5 concentrations. Despite the potential impact
of the 21 indicators selected for this study on PM2.5 concentrations, the variability across
different regions—owing to disparities in socioeconomic development and natural resource
allocations—necessitates a more granular analysis. This is further compounded by the
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intricate interplay of regional policy effects, underscoring the need for a broader array
of sample sizes. The observational data’s limitations, encompassing a 21-year span from
2000 to 2020 for each region, hinder the ability to conclusively ascertain the influence of
each indicator. In contrast, when considering the indirect and total effects, the number of
observed indicators escalated to 651, due to the inclusion of elements from neighboring
areas, thereby unearthing certain significant correlations.

Table 5. Average coefficients of direct, indirect, and total effects of 21 indicators on SDG 11.6.2
(concentration of PM2.5) in all provincial-scale regions.

Indicator Average of Direct Effect Average of Indirect Effect Average of Total Effect

SDG6.3 −0.0731 1.0892 1.0800
SDG6.4.1 \ 0.9863 0.8947
SDG6.4.2 \ −0.6270 −0.6630
SDG6.6 0.3213 −5.3188 −4.2059
SDG6.a \ 0.1396 0.1403

SDG7.1.2 \ 0.1607 0.0918
SDG7.3.1 0.0858 −0.2974 −0.1009
SDG8.1.1 −0.0338 0.0463 −0.0306
SDG9.1.2 −0.0419 0.1926 0.1813
SDG9.2.1 0.1119 −0.9859 −0.8227
SDG9.4 \ 1.3328 1.4353

SDG9.b.1 0.1338 −0.2971 −0.1134
SDG11.2.1 \ −0.5387 −0.5223
SDG11.3.1 \ 0.1655 0.1705
SDG11.6.1 \ 0.6828 0.8798
SDG11.7.1 0.0922 −0.0290 0.2980
SDG12.2.1 \ 0.4358 0.7830
SDG12.5.1 \ −0.5060 −0.5488
SDG15.1.1 0.2703 0.0870 0.6032
SDG15.2 \ −0.1080 −0.0715
SDG15.4 −0.2630 3.5340 3.3798

Note: \ means the result is not significant.

3.3.2. Analysis of the Results from the Provincial-Scale Regions

Table 6 presents the maximal, minimal, and average coefficients of the 21 indicators
for their direct, indirect, and total effects on SDG 11.6.2 (concentration of PM2.5) across all
provincial-level regions of China. Figure 2 also presents these average values in map form.
The results reveal that all 31 observed provincial-scale regions demonstrated a synergistic
effect on the average direct effect, which suggests that holistic enhancement of various
indicators has had a positive impact on the improvement of PM2.5 in all the local region.
This indicates that the policies and measures implemented by the Chinese government
have generally played a positive role in reducing PM2.5 levels. Particularly noteworthy
is the government’s promulgation in 2011 of the “Weight Method for the Determination of
PM10 and PM2.5 in Ambient Air”, marking a significant step forward in environmental
regulation. Subsequently, a series of policy documents has been issued to provide guidance
to local governments on air quality management. These include the “Technical Specification
for the Installation and Acceptance of Continuous Automatic Ambient Air Particulate Matter
(PM10 and PM2.5) Monitoring Systems” in 2013, the “Technical Guidance for the Development of
Primary Source Emission Inventories of Atmospheric Respirable Particulates (Trial)” in 2014, and
the “Technical Requirements and Test Methods for Continuous Monitoring Systems for Flue Gas
(SO2, NOX, Particulate Matter) Emissions from Stationary Sources” in 2018. These initiatives
demonstrate a comprehensive approach to controlling air pollution and underscore the
proactive stance of the Chinese government in enhancing air quality. This aligns with the
overarching conclusions drawn from previous research [54,55].
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Table 6. The maximal, minimal, and average coefficients of the 21 indicators for their direct, indirect, and total effects on SDG 11.6.2 (concentration of PM2.5) across
all provincial-level regions of China.

Province
Maximum Minimum Average

Indicator Value Effect Type Indicator Value Effect Type Direct Effect Indirect Effect Total Effect

Anhui SDG15.1.1 0.29 Direct SDG6.3 −0.0669 Direct 0.0707 / /
Beijing SDG12.2.1 1.328 Total SDG7.3.1 −2.647 Indirect 0.0910 −0.2538 −0.1874
Fujian SDG6.4.1 1.312 Total SDG9.2.1 −1.03 Indirect 0.1304 0.5430 0.5670
Gansu SDG6.4.1 0.71 Indirect SDG9.2.1 −1.209 Indirect 0.0767 −0.0989 −0.0974

Guangdong SDG15.1.1 0.264 Direct SDG11.6.1 −1.623 Indirect 0.0727 −1.0108 −1.0018
Guangxi SDG11.6.1 1.715 Total SDG6.4.2 −3.292 Indirect 0.0937 −0.4343 −0.4075
Guizhou SDG9.4 2.235 Indirect SDG9.2.1 −0.769 Indirect 0.1061 0.3004 0.3190
Hainan SDG9.4 2.365 Total SDG15.1.1 −1.66 Indirect 0.0806 0.7784 0.9211
Hebei SDG15.4 8.056 Indirect SDG6.6 −10.63 Indirect 0.0714 −0.6027 −0.6017
Henan SDG15.4 12.4 Indirect SDG6.6 −15.29 Indirect 0.0912 −0.2632 −0.2365

Heilongjiang SDG6.4.1 1.182 Indirect SDG7.3.1 −1.866 Indirect 0.1111 −0.4598 −0.5265
Hubei SDG11.6.1 2.146 Total SDG6.3 −1.936 Total 0.0611 −0.0138 −0.0194
Hunan SDG9.4 2.633 Total SDG15.1.1 −1.115 Indirect 0.0784 0.2058 2.6330

Jilin SDG6.6 8.23 Total SDG6.4.2 −2.43 Total 0.1114 0.8340 0.9050
Jiangsu SDG15.4 3.477 Indirect SDG12.5.1 −0.573 Indirect 0.0757 0.5461 0.1183
Jiangxi SDG6.6 0.351 Direct SDG15.4 −3.551 Total 0.1140 −1.6323 −3.5510

Liaoning SDG6.3 2.166 Indirect SDG11.2.1 −0.85 Indirect 0.0836 0.6100 0.6020
Nei mongol SDG15.1.1 2.932 Total SDG9.b.1 −0.788 Total 0.0573 0.4350 0.5924

Ningxia SDG7.3.1 0.654 Total SDG15.2 −0.249 Direct 0.0646 0.2322 0.3098
Qinghai SDG6.6 1.248 Total SDG15.1.1 −2.026 Indirect 0.0799 −0.6404 −0.5391

Shandong SDG6.3 5.409 Indirect SDG6.6 −11.28 Indirect 0.1233 −0.6105 −0.5888
Shanxi SDG9.4 1.903 Total SDG9.2.1 −0.774 Indirect 0.1509 0.4583 0.7027
Shaanxi SDG7.3.1 0.939 Total SDG15.1.1 −1.198 Indirect 0.1302 −0.0475 0.1953

Shanghai SDG6.3 7.424 Indirect SDG11.2.1 −0.174 Indirect 0.1457 1.5297 1.7957
Sichuan SDG7.3.1 1.5 Total SDG9.2.1 −1.227 Indirect 0.0838 0.1375 0.1884
Tianjing SDG6.3 1.568 Indirect SDG6.4.1 −0.304 Total 0.0714 0.3426 0.3526
Xizang SDG15.4 4.412 Indirect SDG6.6 −3.52 Indirect 0.0942 0.1934 0.2478

Xinjiang SDG9.4 1.142 Indirect SDG9.b.1 −0.471 Indirect 0.0651 0.0413 0.3476
Yunnan SDG9.4 1.42 Indirect SDG11.2.1 −0.942 Indirect 0.1043 0.5568 0.4674
Zhejiang SDG6.4.1 0.873 Indirect SDG11.7.1 −0.476 Indirect 0.1115 0.3098 0.5063

Chongqing SDG6.4.1 0.913 Indirect SDG12.5.1 −0.664 Indirect 0.0995 −0.0980 0.1285
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For the indirect and total effects, regions with a larger average of synergy effects
included Shanghai, Hainan, Jilin, Hunan, etc. Among these regions, Shanghai has a
developed economy and exhibited the largest synergy on the average total effect. The
China Statistical Yearbook data showed that tertiary industry’s added value accounted for
73.1% in 2020. Shanghai has significantly enhanced its environmental protection and
urban development, following a seven-round, 3-year environmental protection action plan
through 2020. The area of green space in Shanghai has expanded from 6561 hectares in
1995 to 171,200 hectares in 2021. Meanwhile, environmental investment soared from RMB
4.65 billion in 1995 to RMB 92.35 billion in 2017. Additionally, there were reductions in
smoke emissions and sulfur dioxide exhaust, decreasing from 207.8 thousand tons and
534.1 thousand tons, respectively [56]. Successful industrial transformation has promoted
the improvement of air quality. On the other hand, the regions with larger trade-off effects
on the average of total effect included Jiangxi, Guangdong, Hebei, Shandong, etc. Most of
these are regions with a large proportion of industry and manufacturing. Therefore, while
promoting industrial transformation, it is necessary to improve technology and strengthen
pollutants, harmless treatment, and secondary utilization [24].

Through the analysis of maximum and minimum indicators related to PM2.5 across
31 province-scale regions in China, it was observed that indicators manifesting maximum
values on three or more occasions included SDG6.3 (water quality), SDG6.4.1 (water-use ef-
ficiency), SDG6.6 (water-related ecosystems), SDG7.3.1 (energy intensity), SDG9.4 (sustain-
able and clean industries), SDG15.1.1 (forest area), and SDG15.4 (conservation of mountain
ecosystems). Conversely, indicators presenting minimum values more than three times
were SDG6.6 (water-related ecosystems), SDG9.2.1 (manufacturing value added), SDG11.2.1
(convenient access to public transport), and SDG15.1.1 (forest area). This highlights the im-
perative of prioritizing these indicators in the trajectory towards sustainable development.
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4. Conclusions and Discussion

This study investigated the spatial autocorrelation and agglomeration characteristics
of SDG11.6.2 (concentration of PM2.5) across China from 2000 to 2020, employing spatial
econometric models to analyze the influence of various socioeconomic and environmen-
tal indicators on PM2.5 distribution. The study’s findings highlight significant spatial
autocorrelation in PM2.5 concentrations, with pronounced high–high agglomerations in
East and North China, indicating that local governments in this region particularly need
to strengthen cooperation to control and prevent air pollution. Using 31 spatial inverse
distance matrices for model validation, the study adopted the SDM with individual fixed
effects, justified by various model validity tests (LM, robust LM, Hausman, and LR tests)
that confirmed the presence of spatial autocorrelation between variables and the superiority
of fixed effects in capturing these relationships. The chosen SDM model, applied to panel
data encompassing 20 years and 31 provincial regions, effectively addressed the challenges
of autocorrelation in the disturbance terms, thereby ensuring model reliability.

In contrast to previous studies, this research systematically analyzed the direct, indi-
rect, and total effects of various influencing factors on PM2.5 at the provincial scale in China.
The results reveal the individual influencing factors for each provincial unit, providing aux-
iliary support for differentiated policymaking in each province. Overall, in all regions with
significant results, environmental indicators such as vegetation protection, afforestation,
water-use efficiency, and sulfur dioxide emission reduction exhibited synergistic direct
effects in lowering PM2.5 levels. Conversely, indicators linked to economic growth and
social development, including SDG8.1.1 (real GDP per capita growth rate) and SDG9.1.2
(passenger and freight volume,) showed trade-off direct effects, particularly in regions like
Nei Mongol and Jilin, where they correlated with poorer air quality. These regions are
primarily characterized by underdeveloped economies, indicating that economic growth
in some of China’s less developed provinces still comes at the expense of the environ-
ment to a certain extent, without having reached the inflection point of the environmental
Kuznets curve.

The study further explored the spatial variance of these effects across provincial-scale
regions, revealing a complex phenomenon where some indicators demonstrated synergistic
effects in certain regions while exhibiting trade-offs in others. For instance, the adoption of
new energy vehicles in southern provinces showed a positive indirect and total effect on
air quality improvement, in contrast to northern regions. Similarly, the study identified a
trade-off in the comprehensive utilization rate of industrial solid waste in economically ad-
vanced areas, suggesting a need for improved recycling and waste processing technologies.
Analysis of average coefficients for direct, indirect, and total effects of the indicators under-
scores the nuanced influence of environmental and socioeconomic factors on SDG11.6.2
(concentration of PM2.5). Some indicators, such as SDG 15.4 (conservation of mountain
ecosystems), SDG 9.4 (sustainable and clean industries), and SDG 6.3 (water quality) consis-
tently showed significant positive impacts, advocating for their prioritization in sustainable
development efforts. In contrast, certain socioeconomic indicators revealed negative effects,
highlighting the critical need for industrial transformation, technological advancement, and
effective pollution control measures, especially in industrial-heavy regions. The provincial
scale analysis further accentuated the diverse impacts of these indicators across China,
with regions like Shanghai showing significant synergies in improving air quality due to
successful economic and industrial transformation. On the other hand, provinces with a
heavy industrial base face challenges in air quality management, necessitating a balanced
approach to industrial growth and environmental sustainability.

However, it is necessary to recognize the potential limitations that may exist in this
study. In an effort to quantitatively ascertain the spatial spillover effects of PM2.5, along
with its potential influencing factors across a multiplicity of variables and throughout
provincial-scale regions in China, this study adopted an iterative approach to refine the
conventional inverse distance matrix. This method preserved spatial distance weights
between a singular region and its counterparts, thereby generating discrepancies in the
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outcomes of the direct effect when compared to the indirect and total effects across certain
regions and indicators. While such variances might mirror real-world scenarios, they could
also stem from biases induced by an inadequate sample size for observation, which was
underscored by the pervasive presence of non-significant outcomes in the direct effects
observed. Therefore, confirming the reliability of the conclusions derived from this study
necessitates further observed data and methodological enhancements for adequate support
and verification in the future.

5. Policy Recommendations

The study’s comprehensive analysis illustrates the intricate interplay between environ-
mental policies, socioeconomic development, and air quality. It underscores the importance
of a holistic approach to air quality improvement that integrates environmental conserva-
tion, economic transformation, and technological innovation. Tailored policies that consider
the unique characteristics and needs of each region are imperative for effectively mitigating
PM2.5 pollution across China. This nuanced understanding of the factors influencing PM2.5
distribution provides valuable insights for policymakers, suggesting that enhancing air
quality necessitates not only environmental measures but also socioeconomic adjustments
to foster sustainable development. Based on the study’s findings, here are some policy
recommendations to reduce PM2.5 concentrations in China.

1. Enhance inter-regional collaboration: Develop mechanisms for stronger cooperation
among local governments, especially in East and North China, to address the high–
high agglomerations of PM2.5. This could involve sharing technologies, strategies,
and information on successful pollution control measures.

2. Promote environmental conservation measures: Prioritize environmental indicators
that have shown synergistic effects in lowering PM2.5 levels, such as vegetation
protection, afforestation, water-use efficiency, and sulfur dioxide emission reduction.
Implement national and local programs to expand green spaces and urban forests, en-
hance water conservation practices, and accelerate the shift to cleaner energy sources.

3. Adjust economic and industrial policies: For regions with underdeveloped economies
showing a trade-off between economic growth and air quality, policies should encour-
age industries to adopt cleaner and more sustainable practices. This includes investing
in new energy vehicles in the northern provinces, improving the comprehensive uti-
lization rate of industrial solid waste with better recycling and waste processing
technologies, and supporting the transition towards sustainable and clean industries.

4. Tailor policies to regional needs and characteristics: Recognize the diverse impact of
socioeconomic and environmental indicators across provinces. Implement policies
that are customized to the specific needs and challenges of each region, considering
their economic, environmental, and social contexts. This may involve differential
strategies for regions with heavy industrial bases versus those undergoing economic
and industrial transformation.
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