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Abstract: The scheduling of harbor tugboats is a crucial task in port operations, aiming to optimize
resource allocation and reduce operational costs, including fuel consumption of tugboats and the
time cost of vessels waiting for operations. Due to the complexity of the port environment, traditional
scheduling methods, often based on experience and practice, lack scientific and systematic decision
support, making it difficult to cope with real-time changes in vessel dynamics and environmental
factors. This often leads to scheduling delays and resource waste. To address this issue, this study
proposes a mathematical model based on fuzzy programming, accounting for the uncertainty of
the arrival time of target vessels. Additionally, we introduce the NRPER-DDPG algorithm (DDPG
Algorithm with Prioritized Experience Replay and Noise Reduction), which combines a prioritized
replay mechanism with a decaying noise strategy based on the DDPG algorithm. This approach
optimizes the time for tugboats to reach the task location as a continuous action space, aiming to
minimize the total system cost and improve scheduling efficiency. To verify the effectiveness of
the mathematical model and algorithm, this study conducted experimental validation. Firstly, the
optimal algorithm hyperparameter combinations were adjusted through random examples to ensure
the stability and reliability of the algorithm. Subsequently, large-scale examples and actual port cases
were used to further verify the performance advantages of the algorithm in practical applications.
Experimental results demonstrate that the proposed mathematical model and algorithm significantly
reduce system costs and improve scheduling efficiency, providing new insights and methods for the
sustainable development of port operations.

Keywords: port tugboat scheduling; port costs; navigation efficiency; fuzzy programming mathemat-
ical model; deep reinforcement learning

1. Introduction

With the booming development of global trade, ports, as key nodes connecting the
ocean and land, have seen their scale and operational needs continue to rise. Against this
backdrop, the demand for tugboats in port operations has also shown a rapid growth trend.
Tugboats play a crucial role in assisting large ships in berthing, shifting, and departing
operations, and are an indispensable part of port operations. However, at the same time,
the costs and environmental issues brought about by tugboat operations have also become
increasingly prominent [1].

Firstly, as an important auxiliary tool for port operations, the high operating costs
of tugs have always been a focus of port operators. The purchase, maintenance, and fuel
consumption of tugs account for a significant portion of port operating costs. Especially
in the context of rising oil energy prices, the fuel cost of tugs has become a major burden
for port operations [2]. Therefore, how to reduce the operating costs of tugs and improve
resource utilization efficiency has become an urgent issue for port operators.
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Secondly, the environmental issues caused by the operation of tugs cannot be ignored.
As tugs mainly rely on petroleum energy for driving, the emission of large amounts of
carbon dioxide and other greenhouse gases has had a profound adverse impact on the
global climate environment [3]. In the context of an increasingly environmentally conscious
era, reducing carbon emissions during port operations and promoting the construction of
green ports have become an important direction for the development of global ports [4,5].
Therefore, optimizing the dispatching strategy of tugs and reducing their energy consump-
tion and carbon emissions during operation are of crucial importance for promoting the
sustainable development of ports.

In response to the above issues, this article conducts an in-depth study of the com-
plex tugboat scheduling problem involving multiple tugboats and multiple tasks to be
performed. In this problem, each ship waiting for work has specific requirements for the
power and number of tugboats, which increases the complexity of the scheduling. To better
reflect the real port operation scenario, this study also comprehensively considers a series
of practical constraints and specifically introduces the uncertainty factor of the arrival time
of the tugboats at the target location. Based on these considerations, this article constructs a
mathematical model with minimizing time cost and fuel cost as the optimization objective,
and uses deep reinforcement learning to solve it. In order to verify the effectiveness of the
proposed algorithm and model, this article designs simulation examples of different sizes
for comparative experiments, aiming to prove the effectiveness of the proposed method
through comparison results. Furthermore, in order to verify the practicality of intelligent
scheduling in practical port applications, we selected a real case from Huanghua Port for
solving and analysis. Through this series of research and practice, we hope to explore the
optimal tugboat scheduling strategy in complex and changing port environments, thus
providing strong theoretical support and practical guidance for improving the efficiency
and cost savings of port operations.

2. Literature Review
2.1. Tug Dispatching Method

This article studies the problem of tugboat scheduling and designs multi-dimensional
decisions for each tugboat, including task allocation and departure time, which makes
traditional manual scheduling difficult to adapt to the challenges of large-scale and dynamic
changes. In recent years, many scholars have conducted research on this topic.

The optimization method for tugboat scheduling based on operations research and
heuristic algorithms is currently the focus of research. Ref. [6] describes tugboat schedul-
ing as a parallel machine scheduling problem with special constraints, and proposes a
heuristic algorithm based on hybrid evolutionary strategies to solve it. Ref. [7] proposed an
improved discrete particle swarm optimization method, and constructed a mixed integer
programming model to effectively solve the tugboat scheduling problem. Ref. [8] deeply
explored the port resource allocation problem, especially in terms of tugboat allocation,
in which it was assumed that each ship required a single tugboat for assistance and only
involved berthing and docking operations. To solve this problem, the author innovatively
proposed an evolutionary algorithm aimed at generating local optimal solutions. Ref. [9]
developed a new chaotic quantum adaptive satin bow bird optimization algorithm to
solve the joint scheduling problem of containers, tugboats, and terminal cranes, and solved
it based on simulation examples from two ports in North China, obtaining reasonable
scheduling results. Ref. [10] developed an adaptive large-neighborhood search algorithm to
solve the tugboat scheduling problem in large-scale instances and obtain good scheduling
rules. Ref. [11] constructed a dual-objective mixed integer linear programming model
aimed at solving the tugboat scheduling problem. By optimizing both objectives of mini-
mizing maximum completion time and total fuel consumption simultaneously, the model
effectively improved the overall efficiency and quality of tugboat services. Ref. [12] used a
mixed integer linear programming model to develop tugboat scheduling rules and solved
it using a branch and cut algorithm. Experiments showed that it could solve different
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scale instances within a reasonable time. Ref. [13] introduced a mixed integer program
to simulate ship scheduling under channel restrictions and different tugboat allocation
strategies, and proved the feasibility of the method through real case analysis. Ref. [14]
established a mixed integer programming model, and designed a temporary algorithm
to generate towing chains for solving it. Through experimental verification, it can solve
large-scale practical problems. Ref. [15] constructed a state-time network from the perspec-
tive of tugboats, and used a variable neighborhood search algorithm to obtain reasonable
results. Ref. [16] applied Lagrangian relaxation and Benders decomposition combined
with iterative methods to optimize tugboat scheduling for ship berth planning, various
mobile ships’ tugboat points, and their horsepower requirements, aiming to minimize the
weighted sum of berthing and departure delays, tugboat operating costs, and the number
of unserviced ships.

2.2. Reinforcement Learning Scheduling Method

Heuristic algorithms are based on experience and rules, and seek approximate optimal
solutions by continuously adjusting parameters and heuristic functions. They have high
efficiency, but due to their experience and rules, they are easily affected by the complexity
of the problem, and it is difficult to guarantee the global optimal solution, which is prone
to local optimal solutions. Compared to heuristic algorithms, reinforcement learning algo-
rithms have more advantages in solving large-scale and highly complex data in dynamic
scenarios [17]. In dynamic environments, feedback data are obtained through interaction
with the environment and repeated experiments, and then behavior strategies are con-
tinuously optimized to maximize reward feedback [18,19]. The decision-making process
is adjusted based on the feedback, thus gradually approaching the optimal solution [20].
Currently, there are many studies applying reinforcement learning to scheduling. Ref. [21]
proposes a deep multi-agent reinforcement learning method to address the complex and
dynamic job-shop scheduling problem. Experimental results demonstrate its efficient
learning and superior performance. Ref. [22] studies the link scheduling problem in the
Internet of Things network based on reinforcement learning, overcoming the challenge
of exponential growth in state space dimensions, and verifies the feasibility of the algo-
rithm through simulation experiments. Ref. [23] solves the parallel processor scheduling
problem with identical acceleration functions by introducing a new state variable into
the reinforcement learning algorithm and by using a set of virtual boxes to classify jobs
according to remaining processing time, generating reasonable scheduling rules. Ref. [24]
proposes an anti-fact attention multi-agent reinforcement learning method that considers a
decentralized partially observable Markov decision process, effectively solving the joint
scheduling problem of multi-level hybrid assembly lines.

In terms of port scheduling, Ref. [25] constructed a mixed integer linear programming
mathematical model, and used an innovative reinforcement learning-based adaptive ge-
netic simulated annealing algorithm to efficiently solve the ship scheduling optimization
problem. Ref. [26] used deep reinforcement learning to optimize the AGV scheduling
of container terminals, aiming to improve port efficiency and achieve a balance between
energy consumption and transportation time. Ref. [27] proposed a model based on artificial
potential field and twin delayed deep deterministic policy gradient APF-TD3 to optimize
the transportation path of AGV in automated container terminals, achieving efficient, safe,
and stable operation of the port. Ref. [28] proposed a dynamic truck scheduling system
based on Internet of Things technology, which combines Real2Sim simulation and deep re-
inforcement learning, and uses historical and real-time port data to learn high-quality truck
scheduling strategies to optimize the operational efficiency of maritime container terminals.

It is evident that the application of reinforcement learning in the field of port dis-
patching has been widely studied. However, there is limited research on the application of
reinforcement learning in tugboat dispatching. Therefore, this article abstracts the tugboat
dispatching problem as a Markov decision process, models the driving and operating pro-
cess of the tugboat in the port as state and action transitions, and uses deep reinforcement



Sustainability 2024, 16, 3379 4 of 26

learning to continuously optimize the optimal strategy with the goal of minimizing fuel
costs and total working time for operation.

3. Problem Description
3.1. Tugboat Scheduling Process

The tugboat scheduling problem is a complex optimization issue that revolves around
the rational allocation and scheduling of tugboats in harbor channels. Its main objective
is to ensure that ships within the harbor or channel can smoothly complete inbound and
outbound port operations or navigation tasks. The goal of this problem is to maximize
the operational efficiency of tugboats while minimizing their operating costs, all while
guaranteeing the safety and efficient operation of ships. This problem encompasses multi-
ple tugboats and vessels, varying task requirements, and diverse constraints such as the
number of tugboats, power, speed, navigation distance, and fuel consumption. Therefore,
addressing the tugboat scheduling problem requires comprehensive consideration of mul-
tiple factors to formulate a reasonable scheduling plan that achieves optimal economic
benefits and operational efficiency.

The scenario considered in this paper is when multiple vessels requiring assistance
enter the port and the tugboat resources are initially berthed at the tugboat base. Our aim is
to effectively assist these vessels in shifting, berthing, and unberthing operations, ensuring
that they complete these tasks within their designated time windows and are guided to
appropriate berths. Our ultimate goal is to minimize fuel consumption costs and tugboat
operating time while enhancing the efficiency and safety of port operations.

To facilitate a more intuitive understanding, Figure 1 illustrates the process of two
tugboats assisting a vessel in entering the harbor. When the vessel arrives at the offshore
anchorage, the tugboats move towards it, and the point where they meet is referred to
as the task start point. The illustration indicates that this particular vessel requires the
assistance of two tugboats for its entry into the harbor. Once the tugboats reach the task
start point, they assist the vessel in reaching its berth and then return to the tugboat base.
During this entire process, it is imperative to consider the fuel consumption and time costs
incurred by the tugboats while reaching the task point, assisting the vessel, and returning
to the tugboat base. In this paper, we define a “task” as the determination of the required
number of tugboats, their power ratings, start and end times, and the final berthing location
for a single vessel awaiting operation.
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In practical port operations, due to their complexity, the time for tugboats to arrive
and return to the tugboat base is often affected by various uncertain factors such as traffic
and weather conditions. To more accurately address these uncertainties, this paper chooses
to adopt a fuzzy programming mathematical model. It utilizes triangular fuzzy numbers
to represent some key parameters, thus making the model more realistic and applicable to
actual situations.
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3.2. Problem Hypothesis

To facilitate the establishment of a mathematical model, the following assumptions
are proposed in this paper:

(1) The start and end times of each task are fixed and not influenced by random factors.
(2) All relevant information about the task, including the required number of tugboats,

power ratings, and task duration, is available before scheduling the tugboats.
(3) The location of the tugboat base where the tugboats are docked is known before the

start of all tasks.
(4) The time taken by tugboats to dock and depart from the base is negligible compared

to their transit time.
(5) Different tugboats have their respective fixed speed (optimal economic speed).
(6) Each tugboat base has an upper limit on the number of tugboats it can accommodate.

3.3. Symbol Definition

The mathematical model for the tugboat scheduling problem is represented by the
symbolic parameters, as shown in Table 1, which includes symbolic variables, decision
variables, and their respective meanings.

Table 1. Parameters of the Tugboat Scheduling Model.

Parameter Type Parameter Description

Set

i Tugboat number, i ∈ {1, 2, 3, · · · , I}
j Task number, j ∈ {1, 2, 3, · · · , J}
k Base number, k ∈ {1, 2, 3, · · · , K}

D1k
ij The distance from tugboat i at base k to the starting point of task j

D2k
ij Distance from tug i at base k to the ending point of task j

Cni The fuel cost per unit time of tugboat i during navigation assistance
Cti The fuel cost per unit distance for tugboat i when it is unloaded (or empty)

Input Parameters

Pj The power required for the tugboats assigned to task j
Oj The number of tugboats required for task j
Pi The power of tugboat i
Hk

j Tugboat i is at base k after completing the previous task
stj Time of arrival of vessel for task j at the starting point
etj Time of arrival of vessel for task j at the ending point
Vi The speed of tugboat i when it is unloaded (or empty)

[ts, te] The time window for the tugboats to arrive at the starting point of the task
[tw, tk] The return time window for tugboats upon task completion.

Output Parameters Z1 Total fuel cost incurred by the tugboats
Z2 Total waiting time cost incurred by the vessels awaiting operation

Decision variables
Aij If tugboat i is assigned to task j, the value is 1; otherwise 0
Bk

ij If tugboat i is at base k after task j, the value is 1; otherwise 0

3.4. Mathematical Model

To improve decision-making in port operations, this paper establishes a mathematical
model that comprehensively considers the fuel cost incurred by tugboats and the waiting
time of vessels awaiting operation. The aim is to minimize fuel costs and operation time
within the port by making reasonable tugboat scheduling decisions to complete all tasks.

This paper considers the effective control of tugboat fuel costs, recognizing that the
primary expenses during tugboat-assisted berthing and unberthing operations depend
on the tugboat’s effort and the execution time of the task. Therefore, this paper evaluates
the cost of the assistance phase by measuring the costs associated with different tugboat
assistance scenarios. The remaining phase, which involves unloaded travel, can be assessed
by measuring the cost per unit distance traveled by the tugboat. The cost of the tugboat
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during the assistance phase is influenced by two key factors: on the one hand, it depends
on the tugboat’s power, where higher power results in higher costs; on the other hand, it
depends on the duration of the work, which is determined by the operation schedule of the
target vessel.

Additionally, considering the time cost of tugboat operations, the tugboats should
arrive at the task starting location within the required time window and return to the
tugboat base within the designated time window after task completion, waiting for the
next dispatch. This helps minimize the time cost as much as possible.

In summary, a mathematical model based on fuzzy programming has been established,
considering the minimization of tugboat fuel costs (including unloaded travel and assis-
tance phase) and total operation time costs. Equations (1)–(12) represent the constraints
and objective function.

Z1 = CtiD1k
ij Aij + Cni Aij(etj − stj) + CtiD2k

ij AijBk
ij (1)

Z2 = (D1k
ij + D2k

ij)/V + etj − stj, ∀i ∈ I, ∀k ∈ K (2)

∑
i

Aij = Oj, ∀j ∈ J (3)

Bk
0i = Hk

i , ∀i ∈ I, k ∈ K (4)

Pi ≥ Oj Aij, ∀i ∈ I, ∀j ∈ J (5)

∑
k

D1k
ijy

k
0,i Ai1/Vi ≤ st1, ∀i ∈ I (6)

Cr

{
ts ≤

∣∣∣∣∣stj − etj−1 −∑
k

D1k
i,j−1Bk

j−1,i Ai,j−1/Vi

∣∣∣∣∣ ≤ te, ∀i ∈ I, j ∈ {2, 3, · · · , J}
}
≥ α (7)

Cr

{
tw ≤∑

k
D2k

i,j−1Bk
j−1,i Ai,j−1/Vi ≤ tk

}
≥ α (8)

Bk
j−1,i ≥ Aij∀i ∈ I, ∀j ∈ J, ∃k ∈ K (9)

∑
k

Bk
ji ≥ Aij, ∀i ∈ I, ∀j ∈ J (10)

∑
k

Bk
ji = 1, ∀i ∈ I, ∀j ∈ J, k ∈ K (11)

Bk
j−1,i = Bk

ji, ∀i ∈ I, ∀j ∈ J, k ∈ K (12)

Equation (1) represents the fuel cost incurred by the tugboat at time t. Equation (2)
represents the operational time cost of the tugboats within the port at time t. Equation (3)
indicates the number of tugboats assigned to each task. Equation (4) represents the initial
position of the tugboats before the start of the first task. Equation (5) ensures that the
tugboats assigned to a task must meet the power requirements of that task. Equation (6)
states that the tugboats assigned to the first task should arrive at the starting point of the task
before it begins. Equation (7) indicates that the feasibility of the tugboats arriving within
the designated time window for task commencement should be no less than α. Equation (8)
states that the feasibility of the tugboats returning to the tugboat base within the designated
time window after task completion should be no less than α. Equation (9) ensures that the
tugboats should meet the requirement of returning to a specific tugboat base before the
start of the next task. Equation (10) represents that the number of tugboats docked at the
base should meet the required number of tugboats for the tasks. Equation (11) states that a
tugboat can only be docked at one tugboat base at a given time. Equation (12) indicates
that the tugboats remain at their previous tugboat base when not performing tasks.
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3.5. Model Processing

By consulting the Ref. [29], this paper adopts a fuzzy ranking method based on
credibility measures to address the time window constraints within the model. In this
context, ã and b̃ are designated as two potential parameters represented by triangular
possibility distributions, also referred to as fuzzy numbers.

ã = TFN(a1, a2, a3), b̃ = TFN(b1, b2, b3) (13)

The degree of possibility for ã ≤ b̃ is calculated as follows:

Cr(ã ≤ b̃) =


0 a1 ≥ b3

b3−a1
b3−b2+a2−a1

a2 ≥ b2, a1 ≤ b3

1 a2 ≤ b2

(14)

When the confidence level is α, ã ≤ b̃ can be re-expressed as:

Cr(ã ≤ b̃) ≥ α ≡
{ b3−a1

2(b3−b2+a2−a1)
≥ α 0 ≤ α ≤ 0.5

a3−b1+2b2−2a2
2(b2−b1+a3−a2)

≥ α 0.5 ≤ α ≤ 1
(15)

Therefore, for symmetric triangular fuzzy numbers, the definite equivalent of the
fuzzy equality Cr(ã ≤ b̃) ≥ α can be simplified to:

ac + (2α− 1)ωa ≤ bc + (1− 2α)ωb (16)

In this context, ac and ωa represent the center and spread of a symmetric fuzzy number
ã, respectively. Similarly, bc and ωb represent the center and spread of a symmetric fuzzy
number b̃, respectively.

If all fuzzy parameters in the model are considered as symmetric triangular fuzzy
numbers with a 10% distribution on both sides, i.e., ã = ⟨ac, 0.1ac⟩ ≡ TFN(0.9ac, ac, 1.1ac),
the following can be derived:

(0.9 + 0.2α)ac ≤ (1.1− 0.2α)bc, ∀α ∈ [0, 1] (17)

Therefore, Equations (7) and (8) related to the time window in the model can be
rewritten as:

(0.9 + 0.1α)ts ≤
∣∣∣∣∣stj − etj−1 −∑

k
D1k

i,j−1Bk
j−1,i Ai,j−1/Vi

∣∣∣∣∣ ≤ (1.1− 0.2α)te, ∀i ∈ I, j ∈ {2, 3, · · · , M} (18)

(0.9 + 0.1α)tw ≤∑
k

D2k
i,j−1Bk

j−1,i Ai,j−1/Vi ≤ (1.1− 0.1α)tk (19)

The above is the fuzzy programming mathematical model for tugboat scheduling
established in this paper.

4. Improved DDPG Algorithm
4.1. Markov Decision Process

Within the framework of the defined tugboat scheduling model, the tugboat schedul-
ing problem can naturally be represented as a problem of state space and state transition.
At any given point in time, the state of the system can be used to describe the locations,
demands, and availability of tugboats and vessels. The process of transitioning a tugboat
from one state to another is defined as a state transition, which can be represented by the
model. Since the state of the tugboat is not influenced by its historical states, i.e., the future
state only depends on the current state and the action taken, this property possesses the
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basic characteristics of a Markov Decision Process (MDP). Therefore, the tugboat scheduling
problem can be abstracted as an MDP.

A Markov Decision Process (MDP) is a five-tuple: <S, A, P, R, γ>, where S represents
the state space of the system, A represents the action space, P represents the state transition
function, R represents the immediate reward associated with taking an action, and γ is a
parameter ranging from 0 to 1 that determines the degree of discounting for future reward
values. When γ is closer to 1, the algorithm pays more attention to future rewards, whereas
when γ is closer to 0, the algorithm focuses more on immediate rewards. The objective of
an MDP is to determine an optimal policy that maximizes the long-term cumulative reward
value for the individual. By solving the MDP, a clear and executable decision-making plan
can be obtained to guide reasonable decisions during scheduling [30].

4.2. State Space Definition

In tugboat scheduling, the construction of the state space requires consideration of
various factors related to task execution. In this paper, the state variable is defined as st,
representing the system state at the decision stage t for each task. st is a comprehensive
information set that incorporates critical information about the tugboat scheduling system
when making decisions at stage j. This information can significantly impact the decision-
making efficiency of the entire scheduling system, and it is crucial to extract these key pieces
of information during the optimization process [31,32]. By utilizing system input data
and considering the state changes that occurred after the previous decision, an accurate
assessment of the current system state information can be made. This paper characterizes
the system state information from two perspectives: task sequence information, and tugboat
status information. A tugboat status vector is established, and at time t, the system state is
represented as:

st = {O(t), P(t), x1(t), x2(t), · · · , xI(t)} (20)

where O(t) represents the current demand for tugboats based on the task requirements,
P(t) represents the required tugboat power for the task, and x1, x2, · · · xn represents the
location ID of the tugboat base where the tugboat is currently stationed. If the tugboat is
engaged in a task and not at the tugboat base, the value of (z) is set to 0.

4.3. Action Space Definition

Based on the description of the tugboat scheduling problem and the construction of the
mathematical model, a more reasonable action space is required for the scheduling system
to effectively plan the execution sequence of tugboat tasks and consider the allocation of
tugboat resources within the time window of arrival at the target task. Due to the increase in
port tasks and the limited number of tugboats, the decision-making system must accurately
determine the task execution order within a limited time [33]. Therefore, in the optimization
process of tugboat scheduling, this paper considers the strategy of the tugboat’s departure
time for each task and incorporates the departure time as a key parameter into a continuous
action space framework. The aim is to ensure that the tugboat arrives within the task’s start
time window at the most economical speed possible, optimizing both energy consumption
and time costs. Therefore, the action space is defined for each state as whether the tugboat
is dispatched to the task destination and the dispatch time parameter. The action space is
as follows:

Aj =
{
(a1, x′1), (a2, x′2), · · · , (ai, x′i), · · · , (aN , x′N); λ1(t), λ2(t), · · · , λi(t), · · · , λN(t)

}
(21)

In the action space definition, ai represents whether a tugboat is dispatched to execute
the current task. It is a binary variable, ai ∈ {0, 1}. x′i represents the base number where the
tugboat returns after completing the task. If the tugboat is not dispatched, the base number
remains unchanged. λi(t) represents the time delay parameter for each tugboat dispatch,
where λi(t) ∈ [0, 1].
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4.4. Reward Setting

The setting of reward values in tugboat scheduling aims to guide the agent in reinforce-
ment learning training to find a balance between minimizing the fuel cost of tugboats and
the cost of on-time arrival. Through iterative training, the reward values are maximized to
achieve improved performance in tugboat scheduling. At each decision-making stage of
a task, the scheduling system acquires the current state variable st and makes a decision
π(st) [34]. During the decision-making process, the system assigns tugboats to target
vessels based on the state variables and returns the tugboats to their corresponding bases
after task completion.

An effective metric is needed to measure the effectiveness of task completion. There-
fore, two key optimization objectives are considered: minimizing task delay time, and
minimizing the fuel consumption cost of tugboats. Based on these objectives, a reward
function is designed to calculate feedback reward values, which are used to evaluate actions
and optimize strategies. The start time of each target vessel’s task is set as the arrival time
of the tugboat, and the arrival time is calculated by multiplying the time delay parameter
for dispatching the tugboat with the time window. Therefore, the reward value setting at
each time step t is redefined as:

r(t) = e−ηZ1 + e−(1−η)Z2 (22)

where η represent the weights of fuel cost and time cost, respectively. To maximize the
expected cumulative long-term reward, the reward function is ultimately expressed as:

Rn = ∑
n

γt−nr(st, at) (23)

4.5. DDPG Algorithm

As a policy gradient algorithm that searches for an optimal policy in the policy space
to maximize expected returns, the Policy Gradient (PG) algorithm estimates the policy
gradient through sampled trajectories and uses the gradient to update policy parameters.
This is done by increasing or decreasing the probability of taking a certain action in a given
state to maximize expected returns. In the PG algorithm, actions are sampled by randomly
selecting actions from the policy’s probability distribution. Unlike the PG algorithm, the
Deterministic Policy Gradient (DPG) algorithm uses a deterministic policy, which is a
deterministic mapping from states to actions, to address continuous action space problems.
The Deep Deterministic Policy Gradient (DDPG) algorithm is an extension of the DPG
algorithm that applies deep neural networks to the learning of both the policy and the value
function. This allows the DDPG algorithm to handle high-dimensional state and action
spaces. In the context of tugboat scheduling, where time is considered as a continuous
action space, the application of the DDPG algorithm offers more flexible and applicable
optimization capabilities [35].

The DDPG algorithm combines the DPG algorithm with the DQN algorithm by
introducing an experience replay mechanism. Through the training of neural networks,
the agent is able to select the optimal action based on the current state and gradually learn
how to take the optimal sequence of actions in a given state by learning approximate
action functions and approximate deterministic policies using deep neural networks. The
algorithm introduces the Actor-Critic network framework, where the Critic network, also
known as the value network, is used to evaluate the Q-value of the current state-action pair.
After the evaluation, it provides gradient information to the policy network for updating
its parameters. The Actor network, also known as the policy network, is used to calculate
the deterministic policy corresponding to the current action [36]. The structural framework
of the Actor-Critic network is illustrated in Figure 2.
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In the DDPG algorithm, to address the instability issues associated with the single-
network learning of the DQN algorithm, a dual-network architecture is employed. Both 
the value network and the policy network consist of two neural networks: a predictor 
network, and a target network. The introduction of an experience replay mechanism en-
hances the stability and convergence of the DDPG algorithm. Within this framework, the 

Figure 2. DDPG algorithm framework.

In the DDPG algorithm, to address the instability issues associated with the single-
network learning of the DQN algorithm, a dual-network architecture is employed. Both the
value network and the policy network consist of two neural networks: a predictor network,
and a target network. The introduction of an experience replay mechanism enhances the
stability and convergence of the DDPG algorithm. Within this framework, the online policy
network generates actions by maximizing the action value Q(st, at) associated with the
state st. The goal of the Actor network is to learn actions with higher Q values, leading to
better performance. The Critic network consists of an online network and a target network,
where the online network estimates the state-action value. The training objective is to
optimize the Critic network such that it can generate more accurate Q values, resulting
in superior estimation performance. Figure 3 illustrates the framework structure of the
DDPG algorithm.
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The DDPG algorithm consists of four networks used for approximating the Q-value
function and the policy. Among them, the Critic target network is used to estimate the
Q-value function Qω′(st+1, πθ′(st+1)) for the state-action function at the next time step. This
Q-value function aims to approximately estimate the next action value πθ′(st+1) through
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the Actor target network. Through this process, the target value of the Q-value function
under the current state can be obtained. Hence, the target value of the Q-value function
under the current state can be represented as:

yt = rt + γQω′(st+1, πθ′(st+1)) (24)

The Critic network outputs the Q-value function for the current state-action pair,
serving as a critical evaluation of the current policy’s performance. To enhance the agent’s
exploration in the environment, the DDPG algorithm introduces a Gaussian noise function
to the action policy, introducing a degree of randomness during training.

The target yt − Qω(st, at) for the Critic network is obtained from the Actor target
network by estimating the next action values and then calculating the corresponding
Q-values for those actions. The parameters of the Critic network are updated by minimizing
the loss value, aiming to approximate the target Q-values. The loss function is calculated
as follows:

L(ω) =
1
N ∑N

t=1 (yi −Qω(st, at))
2 (25)

where, at = πθ(st) + ε, ε represents the exploration noise added to the action policy. In
a deterministic environment, the gradient of the objective function with respect to the
parameters θ is equivalent to the expectation of the gradient of the Q-value function with
respect to θ. To obtain an estimate of this expectation, a random sample of N mini-batches
of data is drawn from the experience replay buffer. Subsequently, mini-batch gradient
descent is used to maximize the objective function J(θ):

∇πθ
J(θ) ≈ ∇πθ

JN(θ) =
1
N ∑N

i=1 [∇aQω(st, at)∇θπ(st)] (26)

To update the target network parameters ω′ and θ′, the algorithm employs a soft
update mechanism, where updates occur at a frequency determined by the target network
update rate ξ, ensuring stable convergence during training. The DDPG algorithm combines
value-based and policy-based methods, enabling it to effectively handle continuous action
spaces while maintaining a degree of exploration capability.

ω′ ← ξω + (1− ξ)ω′ (27)

θ′ ← ξθ + (1− ξ)θ′ (28)

where ξ ∈ [0, 1].

4.6. Prioritized Experience Replay Mechanism

The PER (Prioritized Experience Replay) mechanism introduces the concept of priority
on the basis of experience replay. Its core idea is to assign different priorities to the
experiences stored in the experience replay buffer, such that during training, the experiences
that are more helpful for learning are selectively sampled with higher probabilities [37].
The prioritization is typically based on the TD error (Temporal Difference Error) of the
experiences, which represents the difference between the model’s estimation of the action-
value function in the current state and the actual reward received. The TD error can be
computed using the Bellman equation:

Tτ = rt + γQ′ω(st+1, at+1)−Qω(st, at)) (29)

To optimize the experience replay process and improve the learning efficiency of
important experiences, the TD error can be converted into a priority score. This allows the
training process to focus more on experiences that have a greater impact on updating the
network parameters. Initially, the computed TD error is converted into a priority score:

pτ = |Tτ |+ µ (30)
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where µ is a small constant used to avoid zero priority.
Then, the probability of each selected sample is calculated by normalizing the priorities

into a probability distribution. An adjustable hyperparameter β is used to control the
distribution of sample weights. The probability distribution is defined as:

P(t) =
pβ

t

∑k pβ
k

(31)

where P(t) is the sampling probability of the t-th sample, which is positively correlated
with its priority. After sampling, the importance sampling weight of each sample relative
to the others is computed and used to adjust the gradients during the update of network
parameters. The weight for the t-th sample is given by:

ωt = (
1
N
· 1
P(t)

)
β

(32)

The gradients are computed using the sampled experiences, and the parameters of the
DDPG’s policy and value networks are updated accordingly. Additionally, to maintain the
freshness of the experience replay buffer, the priorities within the buffer are periodically
updated by mapping new TD errors to the corresponding experiences. Therefore, the loss
function equation is modified as follows:

L(ω) =
1
N ∑N

t=1 ωt(Q(s, a)−Qω(s, a))2 (33)

4.7. Noise Reduction Method

To address the balance between exploration and exploitation and prevent the agent
from getting stuck in local optima, noise is added to the action space of the algorithm to
encourage the agent to better understand the environment [38,39]. Adding noise to the
action space refers to adding noise to the computed actions, allowing the agent to explore
new actions and preventing it from settling for suboptimal solutions:

at+1 = πθ(st) + Nt (34)

The noise source is Gaussian noise with a mean of 0 and a variance of σ. The recursive
formula for noise is defined as:

Nt ← Nt−1 + N(0, σ) (35)

where s denotes the degree of retention of the noise from the previous step to the
current step.

To encourage more exploration during the initial stages of training and to focus more
on the learned strategy in the later stages, the method of gradually reducing the noise
standard deviation σ over the course of training is adopted. The method used in this
paper is exponential decay, which gradually decreases the intensity of exploration. The
exponential decay of the standard deviation σ is defined as:

σt = σ· exp(τt) (36)

where τ is the decay rate that controls the speed of decay, and t is the current training step
number. By decaying the exploration parameter exponentially, the agent becomes more
inclined to make decisions based on learned experience, which can improve the stability of
the algorithm.

Based on the aforementioned improvements to the DDPG algorithm, the enhanced
algorithm is named NRPER-DDPG (DDPG Algorithm with Prioritized Experience Re-
play and Noise Reduction). Drawing upon the preceding description of the enhanced
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PER-DDPG algorithm, Figure 4 offers a visual representation of the intricate architecture
underlying the algorithm’s operation. This figure provides a detailed breakdown of the
various components and their interactions, offering a clear picture of how the algorithm
functions, such as the prioritized replay buffer, which ensures that important transitions
are replayed more frequently, and the dual neural networks, which separately estimate the
value function and select actions. The Figure also demonstrates the decaying noise strategy
employed to encourage exploration during the initial stages of learning.
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4.8. Tugboat Scheduling Method Based on the NRPER-DDPG Algorithm

Based on the aforementioned theoretical approach, the tugboat scheduling problem is
solved by combining mathematical models and algorithmic improvements. The solution
process is divided into the following steps:

(1) Acquisition of Port Task-Related Information: Firstly, information related to port
tasks is obtained, including the arrival time of each task, the required number of
tugboats, expected working hours, and specific tugboat power requirements. Subse-
quently, detailed data on the existing tugboats in the port are collected, covering the
number of tugboats, power, idle speed, idle cost, and assistance cost, as well as the
number and specific geographical location of tugboat bases, to initialize the tugboat
scheduling environment.

(2) Initialization of Experience Replay Buffer: Experience samples are constructed from
information related to decision-making, such as state, action, and reward, and the ex-
perience replay buffer is initialized. Subsequently, these experience samples are
added to the buffer by randomly generating initial solutions, ensuring that the
agent interacts with the environment to generate new experiences and provide more
learning samples.

(3) Actor-Critic Network Model Training: The Actor network receives environmental state
information as input and outputs tugboat actions. Noise is introduced into the action
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output to improve exploration. Meanwhile, the environmental state information and
the action information generated by the Actor network are used as inputs to the Critic
network, which estimates the value of the actions. The output of the Critic network is
an estimate of the value function for a given state and action, and this output is used
to calculate the TD error for prioritized experience replay.

(4) Iterative Optimization of Reinforcement Learning Model: The deep reinforcement
learning model based on the Actor-Critic network is trained to learn which actions to
take in different states to maximize cumulative rewards. This involves adjusting deci-
sions such as tugboat task allocation and departure times to optimize fuel costs and
task completion times. After multiple iterations of training, the model continuously
optimizes the tugboat scheduling strategy.

The flowchart of the algorithm is shown in Figure 5.
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Algorithm 1 presents the pseudocode for addressing the tugboat scheduling prob-
lem through the utilization of the NRPER-DDPG algorithm. This pseudocode outlines
the process of implementing the algorithm, providing a detailed breakdown of the steps
involved. These steps encompass the initialization of necessary variables, the definition
of state and action spaces, and the iterative learning and updating of policies to optimize
tugboat scheduling decisions. Through this pseudocode, readers can gain a deeper un-
derstanding of how the NRPER-DDPG algorithm operates and how it can be effectively
applied to address real-world scheduling challenges in port operations. This enhanced
understanding can facilitate the development and implementation of more efficient and
sustainable tugboat scheduling strategies in port management.
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Algorithm 1. Tugboat Scheduling Method Using the NRPER-DDPG Algorithm

Initialize: tugboat scheduling environment, parameters for Actor and Critic networks, experience
replay buffer ReplayBuffer, noise parameters
Input: hyper-parameters ω, γ, θ, ε, β, ξ, N, λ, Itmax
Output: Tugboat scheduling decision
For episode in range(Itmax):

Initialize state s
For step in range(max_steps):

The Actor target network approximates the next action value πθ′ (st+1) based on the
current state st

Target Q-values = Critic_target(st + 1, a)
Store state transition sequence [st, at, rt, st + 1] to the experience replay memory
Update priority function using the current Q-values output by Critic
If replay_buffer is full:

Randomly sample a minibatch of transitions [st, at, rt, st + 1] from replay_buffer
Compute target Q-values y_target using Critic_target
Calculate the mean square error loss function L(ω)
Update Critic neural network ω′ ← ξω + (1− ξ)ω′

Using Small Batch Gradient Descent Method to Calculate the Maximum
Value of J(θ)

Update Actor neural network θ′ ← ξθ + (1− ξ)θ′

If episode % update_freq = 0:
Soft update target networks Actor_target and Critic_target
Decay noise to a smaller value

s = st + 1

5. Experimental Discussion

To robustly validate the effectiveness of the proposed NRPER-DDPG algorithm in
addressing the intricate fuzzy programming mathematical model for tugboat scheduling,
comprehensive simulation experiments were conducted. These experiments aimed to
demonstrate the algorithm’s performance and applicability in real-world scenarios, thereby
bolstering the credibility and reliability of the research findings. To ensure accurate and
efficient execution, the experimental code was written in Python 3.10, a widely used and
reliable programming language. The code was then executed on a system equipped with
an Intel i7-13700KF @ 2.70GHz processor, 32GB RAM, and a 64-bit Windows operating
system, all manufactured by Intel, located in Santa Clara, CA, USA. Through these rigorous
simulation experiments, the study aimed to provide a solid foundation for the application of
the proposed stable noise PER-DDPG algorithm in practical tugboat scheduling operations.

5.1. Experimental Parameter Settings

To thoroughly evaluate the performance of the meticulously designed algorithm and
mathematical model, this paper utilizes China’s port charging standards [40] as a reliable
reference point. In order to ensure the experiments’ efficacy and practicality, multiple
simulation random cases of varying scales are constructed. These cases aim to capture the
nuances and complexities of real-world port operations. The parameters of these simulation
random cases, along with the neural networks employed, are comprehensively outlined
in Table 2. These simulations take into account three crucial aspects of constraints: the
demand for tugboats for each individual task, the operational limitations inherent to the
tugboats themselves, and the capacity limitations of the tugboat bases. By considering
these factors, the simulations aim to reflect the realities of port operations, and thereby
provide a robust assessment of the algorithm and mathematical model’s performance.
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Table 2. Parameters in Simulation Cases and Neural Networks.

Parameters Value Parameters Value

Oj Uniform [1, 4] Task generation probability 0.4
D1k

ij (n mile) Uniform [10, 20] Learning rate lr 1× 10−4

D2k
ij (n mile) Uniform [10, 20] Reward discount factor γ 0.1

Cti (USD) Uniform [8, 12] Soft update coefficient ξ 0.01
Cni (USD) Uniform [20, 28] Maximum number of episodes Itmax 1000

Pi (hp) Uniform [3000, 6000] Target network parameter update frequency 100
Pj (hp) Uniform [3000, 6000] Experience replay buffer capacity R 3× 105

Vi (n mile/h) Uniform [6, 15] Batch size N 64

5.2. Parameter Experiments

To strike a balance between the fuel cost and time cost of tugboats, this paper in-
troduces weighted objectives into the reward function. The selection of these weights
plays a crucial role in the solution accuracy and convergence speed of the algorithm. To
investigate the impact of these weights, an experiment was conducted using a case with
J = 50 objectives and I = 60 tugboats, as designed in Table 2. In the experiment, the value of
η was set to 0.2, 0.4, 0.6, and 0.8 to observe its effect on the algorithm’s performance. The
results are presented in Table 3 (-- indicates that the algorithm did not converge).

Table 3. Scheduling Results with Different η Values.

η Reward Fuel Cost (USD) Time Cost (min)

0.2 33.8847 288,830.9563 683.5225
0.4 34.6327 282,682.3915 652.3833
0.6 33.2221 296,113.7766 706.1413
0.8 -- -- --

Figure 5 illustrates the variation curves of cumulative rewards, fuel costs of tugboats,
and time costs of the algorithm. By observing the charts, it can be found that the opti-
mization objectives exhibit different trends with changes in the η value. An appropriate η
value helps ensure that the optimization objectives move towards minimization. However,
excessively high or low η values may result in the algorithm failing to achieve ideal opti-
mization objectives after convergence or even cause the algorithm to diverge. Therefore,
after comprehensive consideration, this paper sets the η value to 0.4 to balance the algo-
rithm’s accuracy and convergence speed. This aims to ensure that the algorithm maintains
high solution accuracy while converging quickly during optimization, thereby facilitating
better decision-making.

5.3. Simulation Case Study and Comparison

To further validate the effectiveness of the tugboat scheduling method proposed in this
paper, multiple sets of simulation cases were designed, encompassing a range of different
case sizes, as detailed in Table 4. These cases were specifically designed to simulate real-
world tugboat operations, incorporating various practical scenarios encountered in day-to-
day operations. By simulating these diverse scenarios, the aim was to comprehensively
assess the performance of the proposed scheduling method across different conditions,
providing a robust evaluation of its practical applicability and reliability.

The results of these simulation cases were compared with the standard DDPG algo-
rithm and the PER-DDPG algorithm. In this paper, large-scale case 8 is used as an example
to demonstrate the performance comparison between the two algorithms. As shown in
Figure 6a–c, the convergence curves of the three methods in terms of reward value, fuel
consumption, and time cost are presented, respectively. From the figures, it can be ob-
served that the NRPER-DDPG algorithm significantly outperforms the standard DDPG
algorithm and the PER-DDPG algorithm in key performance metrics such as reward value
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acquisition, fuel consumption, and time cost. Specifically, the NRPER-DDPG algorithm
achieves an improvement of 7.25% and 16.67% in cumulative reward value compared
to the standard DDPG algorithm and the PER-DDPG algorithm, respectively. It also re-
duces fuel consumption costs by 13.67% and 20.05%, and reduces time costs by 5.59% and
13.11%, respectively.

Table 4. Scale of the example.

Numerical Example Vessel Tugboat Tugboat Base

1 10 16 6
2 20 32 12
3 30 48 18
4 40 64 24
5 50 80 30
6 65 104 39
7 75 112 45
8 85 120 51
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To further validate the superiority and stability of the proposed algorithm, three
reinforcement learning algorithms were used to conduct 20 repeated experiments on large-
scale case 8. In each experiment, data on cumulative reward value, fuel consumption, and
time cost were recorded for each algorithm. The upper edge, upper quartile, median, lower
quartile, lower edge, and average of the data were calculated separately. To more intuitively
demonstrate the distribution and dispersion of the data, a box plot was created, as shown
in Figure 7.

Based on the results of the 20 experiments conducted, compared to the standard
DDPG algorithm and the PER-DDPG algorithm, the average cumulative reward value
of the NRPER-DDPG algorithm increased by 5.13% and 4.21%, respectively. The fuel
cost decreased by 17.9% and 14.1%, and the time cost decreased by 19.4% and 10.93%,
respectively. Additionally, as can be seen from the box plot, the NRPER-DDPG algorithm
exhibits greater stability in terms of reward value, fuel cost, and time cost compared to
the other two algorithms. The data distribution of the NRPER-DDPG algorithm is more
compact and has lower dispersion, demonstrating its high stability.

The original slow convergence speed of the standard DDPG algorithm was signifi-
cantly improved by introducing the prioritized replay mechanism. However, the stability
of its performance after convergence still appeared insufficient, exhibiting relatively large
fluctuations. By further introducing the decaying noise processing, the NRPER-DDPG
algorithm not only maintained the advantage of fast convergence, but also significantly
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improved its stability after convergence, significantly reducing fluctuations. This signif-
icantly enhanced the robustness and practicality of the algorithm. After solving eight
simulation cases, the convergence stability of the three algorithms is shown in Figure 8,
and the results of solving each case using NRPER-DDPG are recorded in the table below
the figure. It can be seen from the figure that the standard DDPG algorithm has the lowest
cumulative reward value but the highest standard deviation. After introducing the priori-
tized replay mechanism, the algorithm effectively utilizes the data stored in the experience
replay buffer, resulting in an increase in cumulative reward. After using the decaying noise
method, the stability of the strategy is improved, further increasing the cumulative reward
value and reducing the standard deviation. These improvements collectively enhance the
robustness and practicality of the algorithm, enabling it to perform better when solving
complex problems.
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The fuel cost and time cost results obtained by using the three algorithms to solve the
eight simulation cases are shown in Figure 9a,b. It can be seen that the proposed NRPER-
DDPG algorithm can achieve the optimal solution for different sizes of simulation cases.
When the simulation case size is small, the performance of the NRPER-DDPG algorithm
on the tugboat scheduling problem is similar to that of the standard DDPG algorithm and
the PER-DDPG algorithm. As the simulation case size gradually increases, the proposed
NRPER-DDPG algorithm demonstrates significant advantages, significantly reducing the
fuel cost and time cost incurred by tugboat scheduling. This proves its effectiveness in
handling large-scale simulation cases.
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5.4. Experimental Comparison with CPLEX Solver

To validate the effectiveness of the deep reinforcement learning algorithm and model
proposed in this paper for small-scale tugboat scheduling problems, we designed 18 small-
scale instances based on Algorithm 1. By conducting comparative experiments between
these instances and the CPLEX mathematical solver, we evaluated the performance of our
algorithm in solving small-scale tugboat scheduling problems. The results are summarized
in Table 5. The first four columns of the table represent the instance number, the number of
tugboats I, the number of ships waiting for operation J, and the number of tugboat bases
K, respectively. Columns 5 to 7 present the fuel cost, time cost, and solution time of the
NRPER-DDPG method. Columns 8 and 9 list the fuel cost, time cost, and solution time of
CPLEX, where ‘--’ indicates that the CPLEX mathematical solver did not find a feasible
solution within 2000 s.

From Table 5, it becomes apparent that the CPLEX mathematical solver is only capable
of addressing small-scale tugboat scheduling problems. As the size of the problem instances
increases, the solution space experiences exponential growth. Notably, when the tugboat
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fleet expands to 13 vessels, the computational time required by the CPLEX solver surpasses
2000 s, leading to a memory overflow and subsequent failure in obtaining a solution.
Additionally, as the problem scale continues to escalate, CPLEX encounters difficulties
in finding optimal solutions. In contrast, when utilizing the NRPER-DDPG algorithm
proposed in this study, all instances can be solved within 4 s. Furthermore, an examination
of the objective function reveals that, on average, the NRPER-DDPG algorithm achieves a
3.19% reduction in fuel costs and a 1.76% decrease in time costs compared to the solutions
obtained by the CPLEX mathematical solver.

Based on a thorough analysis of the performance of the objective function,
Figures 10 and 11 present a detailed comparison of the maximum time costs and fuel
costs obtained using the CPLEX solver and the NRPER-DDPG algorithm across 18 case
studies, excluding those instances where the CPLEX mathematical solver failed to find
solutions. Through comparative analysis, it is observable that the NRPER-DDPG algo-
rithm, while maintaining computational efficiency, is capable of delivering optimization
results that are comparable or close to those of the CPLEX solver within a reasonable
timeframe. Notably, when the algorithm exhibits superiority in terms of fuel cost, it is often
accompanied by an increase in time cost, further validating the difficulty in simultaneously
achieving optimal states for both fuel cost and time cost. This finding demonstrates that the
NRPER-DDPG algorithm, when addressing small-scale tugboat scheduling optimization
problems, not only maintains the quality of solutions, but also significantly reduces the
computation time, striving to strike a balance between the two objectives of fuel cost and
time cost. Consequently, this validates the effectiveness of the method proposed in this
paper for solving tugboat scheduling problems.

Table 5. Comparison of NRPER-DDPG and CPLEX on 18 small-scale instances.

ID I J K
NRPER-DDPG CPLEX

Fuel Cost Time Cost CPU Time Fuel Cost Time Cost CPU Time

1 5 5 3 249.62 98.87 2.52 249.62 98.87 0.34
2 5 6 4 298.81 114.24 2.63 298.81 114.24 0.29
3 5 7 5 441.13 168.36 2.68 441.13 168.36 0.36
4 7 7 5 430.40 162.14 2.74 430.40 162.14 0.58
5 7 8 6 527.58 181.89 2.73 527.58 181.89 1.73
6 7 9 7 618.23 212.23 2.77 618.23 212.23 3.69
7 9 9 6 624.85 208.36 2.89 624.85 208.36 5.80
8 9 10 7 693.46 218.07 2.62 693.46 218.07 12.84
9 9 11 8 775.91 243.94 3.04 782.73 221.67 33.47

10 11 11 7 747.15 218.93 3.15 713.26 231.94 58.62
11 11 12 8 825.41 241.34 3.22 825.41 241.34 113.71
12 11 13 9 897.36 245.16 3.35 897.36 245.16 158.79
13 13 13 8 857.94 233.98 3.37 857.94 233.98 367.60
14 13 14 9 1069.70 287.52 3.40 -- -- 2000
15 13 15 10 1143.87 307.12 3.64 1143.87 307.12 875.91
16 15 15 9 1125.72 289.23 3.72 1284.62 268.35 1374.25
17 15 16 10 1205.43 308.10 4.86 -- -- 2000
18 15 17 11 1267.51 319.79 6.88 -- -- 2000
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Figure 11. The time costs of NRPER-DDPG and CPLEX after solving 15 instances.

5.5. Conduct Comparative Experiments with the Existing Literature

Currently, the research on intelligent tugboat scheduling primarily relies on heuristic
and meta-heuristic algorithms. However, this paper introduces reinforcement learning
into the tugboat scheduling problem for the first time. To validate the effectiveness of the
proposed reinforcement learning algorithm in addressing large-scale tugboat scheduling
problems, we generated 18 sets of large-scale instances based on Algorithm 1. These
instances were compared with the ALNS method proposed in Ref. [10], which employed a
weighted linear summation of tugboat operational costs in defining the objective function.
The experimental results of running both methods 10 times are summarized in Table 6. The
first four columns represent the instance number, the number of tugboats (I), the number of
vessels requiring service (J), and the number of tugboat bases (K). Columns 5 to 7 present
the average values of fuel cost, time cost, and computation time obtained from 10 runs
using the NRPER-DDPG method, while Columns 8 and 9 show the corresponding results
for ALNS.

Table 6. Comparison of NRPER-DDPG and ALNS on 18 large-scale instances.

ID I J K
NRPER-DDPG (10 runs) ALNS [10] (10 runs)

Fuel Cost Time Cost CPU Time Fuel Cost Time Cost CPU Time

1 30 20 12 2044.04 357.18 10.21 2087.13 349.18 7.46
2 40 22 15 2265.39 406.16 10.32 2379.26 413.57 14.51
3 45 28 18 2518.23 462.15 22.97 2562.57 445.30 19.68
4 55 30 22 6111.06 478.71 24.16 6254.71 470.19 33.62
5 65 32 25 8016.29 494.35 35.80 8114.63 484.31 42.59
6 70 36 28 8644.38 513.73 47.89 8982.86 517.22 60.68
7 75 44 31 11,330.87 536.02 61.26 11,426.92 528.61 88.20
8 80 46 34 13,008.06 584.22 84.19 14,295.65 554.37 102.69
9 85 52 37 16,081.48 643.65 116.12 15,973.71 662.11 166.25

10 90 54 40 17,402.96 671.08 252.68 17,681.45 679.48 274.91
11 95 60 43 18,120.26 695.48 314.09 18,355.94 701.38 368.35
12 100 62 46 18,768.37 707.83 435.15 18,406.62 758.97 487.24
13 105 68 49 20,206.46 714.16 497.07 21,564.17 684.34 531.54
14 110 70 52 20,443.59 781.52 625.98 21,648.43 681.16 753.80
15 115 86 55 28,397.06 801.51 726.09 31,751.16 793.50 813.44
16 120 88 58 28,909.40 966.10 810.80 30,149.57 924.28 1348.21
17 125 94 61 33,723.62 1011.44 872.15 35,729.83 997.55 1815.57
18 130 96 64 34,294.32 1167.19 938.56 33,915.36 1354.70 1893.26

Through the analysis of the data presented in Table 6, we observed that both algorithms
were able to generate scheduling results within 2000 s for all 18 instances. When the instance
size was smaller, the solutions obtained by the two algorithms exhibited a high degree of
similarity. However, as the number of tugboats increased beyond 80 and the number of
vessels waiting for service exceeded 46, the NRPER-DDPG algorithm began to demonstrate
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its superiority over ALNS. Specifically, in terms of average fuel consumption, the NRPER-
DDPG algorithm achieved an average reduction of 3.51% compared to the ALNS algorithm.
Additionally, there was an average decrease of 0.34% in time cost. These data indicate
that the NRPER-DDPG algorithm can not only reduce the fuel cost of tugboats during the
solution process, but also find optimal solutions in terms of time cost. Furthermore, in
terms of solution time, apart from instance 1, the method proposed in this paper was able
to find the optimal solution faster than the ALNS algorithm. The average solution time for
the 18 instances was reduced by 49.8% compared to the ALNS algorithm. Especially in the
case of larger instances, the proposed NRPER-DDPG algorithm reduced the solution time
by up to 108.17% compared to ALNS. This proves that the method proposed in this paper
can find optimal solutions in a shorter time frame.

To further validate the stability and consistency of the algorithm proposed in this paper
for problem-solving, we specifically plotted the average values and standard deviations of
the 10 solution results obtained by the two methods under their respective case studies into
bar charts with error bars, as shown in Figure 12. This visualization provides an intuitive
demonstration of the superiority and reliability of the algorithm’s performance.
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By observing the solution results presented in the Figure, we discovered that when
the size of the case study is relatively small, the standard deviation of the five solutions
obtained by both algorithms remains at a low level. However, as the scale of the case
study continues to expand, the standard deviation of the NRPER-DDPG algorithm is
significantly lower than that of the ALNS algorithm. This trend strongly demonstrates
the clear advantages of the stability and robustness of the method proposed in this paper
compared to the ALNS algorithm.

5.6. Real-Case Experiment at Huanghua Port

To further validate the effectiveness and practicality of the tugboat scheduling method
proposed in this paper, we selected the Huanghua Comprehensive Port Area, one of the
important ports in China. Located on the coast of Bohai Sea in Huanghua City, Cangzhou
City, Hebei Province, China, with geographic coordinates of 38◦22′ N latitude and 117◦38′

E longitude, it sits at the junction of Hebei and Shandong provinces and is a core area of
the Bohai Rim Economic Circle. Due to the complex scheduling demands and rigorous
operational environment of the Huanghua Comprehensive Port Area, its test results are
of great significance for evaluating the practicality and reliability of the method. In this
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section, we use the actual port work plan for 30 May as the test scenario. Through detailed
analysis and application of the work plan for that day, a comprehensive performance test
of the method was conducted. The accuracy and reliability of the test results are crucial
for assessing the practical value and broad applicability of the method. The specific work
arrangement for Huanghua Port on 30 May is presented in Table 7. By addressing this
specific scenario, we can more intuitively evaluate the performance of the algorithm in
practical applications.

Table 7. Work Schedule of Huanghua Port on 30 May.

Task Required Number of Tugboats Required Tugboat Power (hp) Berthing or Departure Task Start Time

1 2 2000 Departure 0:00
2 2 2000 Berthing 2:30
3 2 3000 Berthing 5:00
4 3 3000 Departure 9:00
5 2 2000 Berthing 10:00
6 2 3000 Departure 12:00
7 3 5000 Departure 12:00
8 2 4000 Berthing 13:30
9 2 2000 Berthing 14:30
10 2 2000 Berthing 16:00
11 3 3000 Departure 18:00
12 2 2000 Departure 21:00
13 5 5000 Berthing 21:00
14 3 4000 Departure 22:00
15 3 3000 Departure 23:00

Using the method proposed in this study, the scheduling problem was solved, generat-
ing fuel consumption data for different time periods. To intuitively describe the distribution
characteristics of these data, we specifically created a histogram, as shown in Figure 13.
Furthermore, to demonstrate the practicality and superiority of the proposed method, a
comparative analysis was conducted between this method, the CPLEX mathematical solver,
and the ALNS method from reference [10]. The comparison focused on two key indicators:
time cost, and fuel cost. Table 8 organizes and presents the relevant data.
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Table 8. Solution results of the instance by three methods.

Method Fuel Cost (USD) Time Cost (min)

CPLEX 8774.62 1088.32
ALNS 9137.81 974.25

NRPER-DDPG 8774.62 1088.32
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Based on the experimental results, it is evident that the proposed method in this
paper demonstrates superior performance in solving the Huanghua Comprehensive Port
Area instances. Specifically, in terms of fuel cost, our approach achieves a reduction of
18.56% and 9.79% compared to the CPLEX mathematical solver and ALNS, respectively.
Furthermore, in terms of time cost, our method outperforms the other two methods by
4.13% and 9.54%, respectively. The comparative experiments conducted in the Huanghua
Comprehensive Port Area provide compelling evidence of the practicality of the algorithm
presented in this paper.

6. Conclusions and Prospects

This paper delves deeply into the mathematical modeling and algorithm optimization
of tugboat scheduling problems, innovatively constructing a tugboat scheduling mathe-
matical model based on fuzzy programming theory. This model meticulously considers
the complex state transitions and dynamic action sets of tugboats and vessels waiting
for operations in continuous time dimensions. Building upon this foundation, the paper
further proposes a novel NRPER-DDPG algorithm that intelligently adjusts and refines
scheduling decisions through continuous simulation training and iterative strategy opti-
mization, thereby significantly enhancing decision accuracy and stability. To verify the
scientific validity of the constructed mathematical model and the advancement of the
algorithm, this paper not only conducts systematic testing in simulation examples, but also
comprehensively compares it with current mainstream reinforcement learning algorithms.
It is worth mentioning that we specifically compare the proposed NRPER-DDPG algorithm
with the widely recognized ALNS algorithm under the same experimental conditions in
terms of detailed performance. Experimental results fully demonstrate that the proposed
algorithm exhibits significant advantages in both decision efficiency and solution superior-
ity when addressing tugboat scheduling problems. Furthermore, to enhance the practical
significance and application value of the research, this paper integrates the algorithm into a
real-world tugboat scheduling case at Huanghua Port. Through on-site data collection and
model application, the effectiveness and practicality of the algorithm in actual operations
are successfully verified, providing solid support for the translation of theoretical achieve-
ments into practical applications. In summary, this paper comprehensively explores the
mathematical modeling, algorithm design, simulation comparison, and practical applica-
tion of tugboat scheduling, fully proving the outstanding contributions and practical value
of the proposed model and algorithm in this field.

In future research, we can build upon the existing foundation to further refine and
enhance the model and algorithm, aiming to strengthen their adaptability and stability in
complex scenarios. Specifically, we can integrate diverse factors such as weather condi-
tions, tidal variations, and ship types into the model, thereby improving its realism and
practicality. Furthermore, to more accurately simulate the changing conditions in the actual
environment, we should also consider employing multi-source data fusion techniques to
seamlessly integrate data from various sources, providing richer and more precise input
information for the model. Through these improvements, we expect to enhance the model
and algorithm’s effectiveness in solving practical problems such as tugboat scheduling.
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