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Abstract: The Qinling Mountains serve as a vital ecological barrier for China, needing regular mon-
itoring for sustainable progress. The present study analyzed the Qinling Mountains (sections in
Shaanxi province) via the Google Earth Engine (GEE) and Landsat images, constructing a Remote
Sensing Ecological Index (RSEI) for quantitatively analyzing the spatiotemporal evolution of the
ecological environment quality from 1990 to 2020. Additionally, this study integrated geodetector and
multiscale geographically weighted regression (MGWR) to discern the driving factors influencing
ecological quality. The results indicated the following: (1) over the 30 years, the RSEI in the study
area initially declined (1990–2005) and then began to improve (2005–2020), demonstrating an overall
upward trend; (2) RSEI varied with topography: lower values corresponded to lower elevations
(<1200 m) and gentle slopes (<10◦), whereas higher values were linked to higher elevations (>1600 m)
and steeper slopes (>20◦); and (3) NDVI, DEM, land use, and the presence of protected areas emerged
as the main driving forces of ecological quality. The interaction between ecological conservation poli-
cies and socioeconomic factors enhanced the explanatory strength for the differentiation in ecological
environment quality. In conclusion, factors like increased vegetation cover and the establishment
of protected areas have significantly promoted the improvement of ecological environment quality
in the Qinling region, making this study a scientific reference for providing ecological environment
protection and promoting high-quality development.

Keywords: Qinling Mountains; China; ecological environment quality; Remote Sensing Ecological
Index; Google Earth Engine; spatial and temporal change; geodetector; multiscale geographically
weighted regression

1. Introduction

The ecological environment constitutes the material foundation for human survival,
serves as the base and core of regional social economic development, and interacts closely
with historical development processes [1]. However, the pace of modernization has exerted
significant stress on ecosystems. Consequently, objective, scientific, and timely assessments
of ecological quality have become critical for effective monitoring of ecological condi-
tions and the sustainable management of natural resources. This also aids in advancing
environmental protection and sustainable economic prosperity [2].

Since the 1960s, researchers have explored the evaluation of ecological environment
quality, shifting from single-factor surveys to multifaceted evaluations [3]. Advances
in remote sensing technology have facilitated the rapid acquisition of a wide range of
ecological indicators, surpassing the constraints of traditional manual monitoring, and
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have been of widespread use in ecological and environmental research [4]. While many
studies utilize remote sensing technology to extract indicators such as the Normalized
Difference Vegetation Index (NDVI) [5], the Normalized Difference Water Index (NDWI) [6],
and the Land Surface Temperature (LST) [7], these singular metrics are insufficient for
capturing the complexity of ecological environments. Subsequently, Xu [8] proposed the
Remote Sensing Ecological Index (RSEI), which provides an objective evaluation of regional
ecological quality across four dimensions: greenness, wetness, heat, and dryness. RSEI’s
comprehensive and semi-automatic approach has been successfully implemented and
validated in various regions, including those of watersheds [9–11], urban areas [12], and
mining zones [13], yielding favorable results.

The Qinling Mountains serve as a natural boundary separating the climatic, biological,
hydrological, pedological, and geological elements of northern and southern China, playing
a vital role in the nation’s ecological stability. The forest ecosystem of the Qinling Mountains
is pivotal for water conservation, biodiversity preservation, and soil erosion control [14].
The ecological condition here is also crucial for the water supply of the South-to-North
Water Diversion Project, significantly impacting the ecological civilization construction and
socioeconomic development of the Yangtze and Yellow River basins [15]. Consequently,
protecting the Qinling’s ecological environment is essential for the ecological security
of the nation and surrounding regions [16]. However, frequent human activities have
caused significant ecological problems in the Qinling Mountains, including deforestation,
soil erosion, and geological disasters [17]. In particular, the extensive illegal construction
on the Qinling’s northern slopes in Shaanxi province has negatively impacted the area’s
ecological functions [18]. In response, the Shaanxi government has enforced various
ecological protection measures, such as natural forest protection and the Grain for Green
(GFG) project, aiding in the ecosystem’s recovery [19].

Therefore, investigating the patterns and spatial distribution of changes in the ecolog-
ical environment quality of the Qinling Mountains as well as analyzing the key drivers
behind these changes is crucial for a comprehensive understanding of Qinling’s distinct
geographic significance. Moreover, extracting and quantifying these drivers is essential
for assessing the enduring impact of human activities on the ecosystem in the context of
global warming.

Recent studies have applied remote sensing technology to investigate vegetation cover,
net primary productivity, and land use changes in the Qinling area [16,20,21]. Specifically,
from 2000 to 2020, the vegetation coverage on the east and west sides of the Qinling
remained consistently lower than that in the central areas, yet there was an overall trend of
continuous improvement [22]. Factors such as terrain slope and elevation were found to
significantly impact vegetation, as vegetation degradation mainly occurred in areas with
a slope of less than 10 degrees and an elevation of less than 1000 m between 2000 and
2015 [23]. Furthermore, influenced by global climate change, the Qinling region has seen
a marked increase in the number of days with a daily average temperature ≥ 10 ◦C from
1960 to 2019. Yu et al. [24] have crafted an ecosystem management planning map, taking
into account the altered ecosystem services in the Qinling region amidst climatic shifts.
In addition, Cui [25] conducted an analysis of the landscape ecological index, revealing
that zones with extremely high ecological risk within the Qinling predominantly lie in the
central and southeastern areas.

However, these studies often focus on single ecological elements and lack compre-
hensive monitoring and evaluation of the entire ecological environment, and place little
emphasis on the drivers of these changes. Therefore, this study selected the Shaanxi section
of the Qinling Mountains as the study area, employed RSEI to investigate the spatiotempo-
ral patterns of the ecological environment over the past 30 years in the area, and analyzed
the driving factors behind changes in its ecological environment quality. The aim of this
article is (i) to reveal the variability in the ecological environment under human influence,
(ii) to grasp the intrinsic factors affecting environmental quality, and (iii) to provide data
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support and a scientific basis for the ecological protection and sustainable development of
the Qinling Mountains.

2. Materials and Methods

A detailed workflow was established for this study (Figure 1). First, seven 30 m
resolution RSEI maps for the years 1990, 1995, 2000, 2005, 2010, 2015, and 2020 were
generated using Landsat5 TM and Landsat8 OLI imagery based on the GEE platform.
Second, the temporal and spatial changes in the ecological environment quality for the
Qinling Mountains were analyzed based on seven RSEI maps from 1999 to 2020. Finally,
the factors affecting environmental quality were identified via geodetector and multiscale
geographically weighted regression (MGWR).
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2.1. Study Area

This study focused on the narrower Qinling range (105◦30′ E–110◦05′ E, 32◦40′

N–34◦35′ N), specifically the section within Shaanxi province, as the area of study. The
northern boundary is marked by the base of the northern slope of the Qinling Mountains,
and the southern boundary is set along the northern bank of the Han River. The eastern
and western boundaries follow the provincial borders. The administrative division in-
cludes 39 districts and counties within six cities of Shaanxi province, spanning an area
of approximately 58,200 km2 (Figure 2). The region boasts a diverse landscape, with an
average altitude surpassing 1000 m, containing an array of mid-sized mountains that rise
above 2500 m and several towing peaks over 3000 m. Its northern face presents a dramatic,
steep incline, in contrast to the more gently sloping southern face. Additionally, the terrain
rises to higher elevations in the west and lower in the east [26]. And there are significant
differences in climate across the area. The north slope is dry, with average annual precipita-
tion generally below 600 mm and average annual temperatures below 10 ◦C. In contrast,
the south slope is more humid, with annual precipitation exceeding 600 mm and average
annual temperatures around 11 ◦C [27]. This variation in precipitation and temperature
leads to different types of natural vegetation on the northern and southern slopes, with
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the area predominantly characterized by temperate deciduous broadleaf forests. The soils
in the area are mainly brown soils [28]. The boundaries of the protected areas and the
ecological functional zones are shown in Figures S1 and S2.
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Figure 2. Location of study area.

2.2. Data Sources and Processing

Remote sensing image data were acquired from the Google Earth Engine (GEE) plat-
form database, specifically from the Tier 1 Surface Reflectance (SR) products of Landsat5
(TM) and Landsat8 (OLI). These datasets have been processed for geometric, radiometric,
and atmospheric corrections, yielding a spatial resolution of 30 m. Through the GEE plat-
form, images for the summer months (June to September) of the years 1990, 1995, 2000, 2005,
2010, 2015, and 2020 were selected. A cloud mask algorithm was employed to eliminate
pixels affected by clouds, and the median of the cloud-free pixels was used to generate
the composite images with the least cloud cover for the target years. Additionally, a water
index was employed to mask the water body information [29].

Land use data were derived from the 1985–2020 China Land Cover product of Wuhan
University [30], which, after reclassification, were used to characterize the degree of human
disturbance [31]. DEM data were obtained from the Geospatial Data Cloud [32], and slope
information was then extracted using ArcGIS spatial analysis functions. Precipitation data
were sourced from the National Earth System Science Data Center [33]. The ecological
function area vectors originated from the Resource and Environmental Science Data Center,
Chinese Academy of Sciences [34]. The soil type data were sourced from the Harmonized
World Soil Database [35].

Utilizing ArcGIS 10.2 software, the study area was divided into a regular grid. Bal-
ancing sampling point density and model computation efficiency, the grid size was set to
1 km by 1 km. Samples were taken from the center of each grid cell for the purpose of
calculations and analyses using the geodetector and multiscale geographically weighted
regression (MGWR).
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2.3. Methods
2.3.1. Assessment of Ecological Environment Evaluation Indices

The initial phase of the research involved the evaluation and selection of appropriate
indices. In 2006, China’s Ministry of Environmental Protection formulated the “Technical
Criterion for Ecosystem Status Evaluation”, which was first revised in 2015 [36] (hereinafter
referred to as the Criterion). This Criterion introduced the Ecological Environment Condi-
tion Index (EI), a tool primarily reliant on remote sensing technology designed to assess the
ecological status of regions at or above the county level. The EI calculation is as follows:

EI = 0.35 × Biodiversity Index + 0.25 × Vegetation Cover Index + 0.15 × Water Network Density Index +
0.15 × (100 − Land Stress Index) + 0.1 × (100 − Pollution Load Index) + Environmental Constraint Index

(1)

The numbers within the formula represent weights that have been subjectively as-
signed. Specific calculations for each index can be referenced in the Criterion [36]. Following
the EI scores, the ecological environment is classified into five levels: excellent (EI ≥ 75),
good (55 ≤ EI < 75), moderate (35 ≤ EI < 55), fair (20 ≤ EI < 35), and poor (EI < 20). Since its
adoption, the EI has been widely used across China for environmental assessments [37,38].
The current study presents the ecological environment assessment results for the Qinling
region based on the EI of 2020 (Figure 3). The EI provides a broad-brush assessment of
an area’s ecological status but lacks the ability to depict the precise spatial distribution
of environmental quality. Therefore, this study turns to the RSEI, which is entirely based
on remote sensing technology, devoid of subjective weighting, and allows for a visual,
quantitative assessment of the Qinling’s ecological environment.
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the ecological environmental data from the 2020 Shaanxi Province Environment Status Bulletin [39]).

2.3.2. The Calculation of the RSEI

This study employed the RSEI for dynamic monitoring and assessment of the ecologi-
cal environment quality of the study area. This index couples four assessment indicators—
greenness, wetness, heat, and dryness—which are expressed as follows [8]:
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RSEI = f(NDVI, WET, LST, NDBSI) (2)

In this formula, WET represents the wetness index, NDVI represents the greenness
index, LST denotes the heat index, and NDBSI stands for the dryness index. The formulas
of these remote sensing indices mentioned above are listed in Table 1. Since the four indices
were not dimensionally uniform, they were normalized to map their values to the [0, 1]
interval. After normalization, Principal Component Analysis (PCA) was conducted. The
first principal component (PC1) obtained through PCA was then normalized to yield the
RSEI. Results closer to 1 indicated a better ecological environmental quality in the study
area. All the aforementioned computational processes were implemented in GEE.

Table 1. NDVI, WET, LST, and NDBSI calculation formulas.

Index Formula Explanation

NDVI NDVI = (RNIR − Rred)/(RNIR + Rred) RNIR and Rred represent the reflectance values of the
near-infrared and red bands, respectively.

WET

wetTM = 0.0315Rblue + 0.2021Rgreen + 0.3102Rred
+ 0.1594RNIR − 0.6806RSWIR1 − 0.6109RSWIR2

wetOLI = 0.1511Rblue + 0.1973Rgreen + 0.3283Rred
+ 0.3407RNIR − 0.7117RSWIR1 − 0.4559RSWIR2

Rblue denotes the reflectance of the blue band, Rgreen
represents the reflectance of the green band, RSWIR1 is the

reflectance of the short-wave infrared band 1, and RSWIR2 is
the reflectance of the short-wave infrared band 2.

NDBSI

NDBSI = (SI + IBI)/2
IBI = IBI1/IBI2

IBI1 = 2RSWIR1/(RSWIR1 + RNIR) − [RNIR/(Rred +
RNIR) + Rgreen/(RSWIR1 + Rgreen)]

IBI2 = 2RSWIR1/(RSWIR1 + RNIR) + [RNIR/(Rred +
RNIR) + Rgreen/(RSWIR1 + Rgreen)]

SI = [(RSWIR1 + Rred) − (Rblue + RNIR)]/[(RSWIR1
+ Rred) + (Rblue + RNIR)]

The terms in the formula correspond to those defined earlier.

LST LST = T/[1 + (λT/ρ) lnϵ]− 273.15
T stands for the thermal value at the sensor, λ is the central
wavelength of the thermal infrared band, ρ is the constant
1.438 × 10−2 mK, and ε represents the surface emissivity.

2.3.3. Analysis of Driving Factors for Spatial Variations in RSEI

The geodetector was employed to test the spatial heterogeneity of single variables
and to uncover the driving factors behind it. This study used geodetector to compute the
q-statistic, analyzing the explanatory strength of driving factors in explaining the spatial
variations in ecological environment quality in the study area. The formula is represented as

q = 1 − SSW
SST

= 1 −

L
∑

h=1
Nhσ2

h

Nσ2 (3)

where the q values are in the range of [0, 1], with higher q values indicating stronger
explanatory strength of the driving factors for the spatial differentiation of ecological
environmental quality; SSW and SST represent the sum of within-stratum variances and
the total variance across the entire region; h represents the stratification of variable Y or
factor X; Nh and N are the numbers of units in stratum h and the entire region, respectively;
and σ2

h and σ2 are the variances of Y values in stratum h and the entire region. Additionally,
interaction detection was used to determine whether there was a combined effect between
two factors, assessing whether the driving factors jointly enhance or weaken the explanatory
power for spatial differences in ecological environmental quality [40].

2.3.4. Multiscale Geographically Weighted Regression

MGWR was built upon geographically weighted regression (GWR) as a type of local
regression model. This model allowed the regression coefficients of each explanatory
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variable to vary with geographic location, and permitted each explanatory variable to
exert its influence at different spatial scales. It demonstrates heightened sensitivity to the
spatial heterogeneity inherent in geographical phenomena [41]. The range of influence
(or bandwidth) of an explanatory variable determined which data points were included
in the linear regression analysis for the target feature, thereby assessing the impact of the
coefficient of that explanatory variable. The formula is represented as

yi = ∑k
j=1 βbwj(ui + vi)xij + εi (4)

where xij represents the j-th predictor variable; (ui, vi) are the coordinates of the sample
point; and βbwj is the bandwidth for the regression coefficient of the j-th variable. These
calculations were completed using MGWR 2.2 software.

3. Results and Analysis
3.1. Analysis of the Average RSEI in the Study Area

The changes in the average RSEI value for the study area from 1990 to 2020 are shown
in Figure 4. Over the past 30 years, the average RSEI in the study area generally exhibited
an increasing trend, with an average of 0.669. The lowest value was 0.618 in 2005, and the
highest was 0.745 in 2020. Combining the characteristics of the RSEI histogram distributions
from different periods, the study area was divided into five ecological environment quality
grades (Figure 5): excellent (0.8–1), good (0.6–0.8), moderate (0.4–0.6), fair (0.2–0.4), and
poor (0–0.2) [8]. The areas and their respective proportions for each ecological grade were
calculated across seven time periods. The results indicated that from 1990 to 2020, the
ecological environment quality grade of the study area was predominantly classified as
good, with an average proportion of 70.94%. The next most prevalent grade was moderate,
with an average proportion of 19.28%. The average proportions for poor, fair, and excellent
were relatively low, at 0.11%, 2.41%, and 6.92%, respectively (Table 2).
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Table 2. Area and proportion statistics of ecological environment quality grades in the study area.

Year RSEI
Grades Poor Fair Moderate Good Excellent

1990
Area 115.13 1436.65 16,086.99 39,391.83 1169.4

Proportion 0.2 2.47 27.64 67.68 2.01

1995
Area 166.69 2135.91 17,050.44 37,719.16 1127.79

Proportion 0.29 3.67 29.3 64.81 1.94

2000
Area 59.36 2249.41 15,717.13 39,092.31 1081.79

Proportion 0.1 3.86 27.01 67.17 1.86

2005
Area 69.19 2407.39 15,844.12 39,294.97 584.33

Proportion 0.12 4.14 27.22 67.52 1

2010
Area 3.13 436.29 4395.63 47,009.76 6297.63

Proportion 0.01 0.75 7.55 80.77 10.82

2015
Area 3.13 436.72 4399.98 47,056.3 6303.86

Proportion 0.01 0.75 7.56 80.85 10.83

2020
Area 2.65 394.98 3063.51 40,288.86 14450

Proportion 0 0.68 5.26 69.22 24.83

Unit: Area (km2), Proportion (%).
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3.2. Spatiotemporal Characteristics Analysis of Ecological Environment Quality in the Study Area
3.2.1. Temporal Characteristics Analysis of Ecological Environment Quality in the Study Area

Over the past 30 years, the ecological environment quality of the study area exhib-
ited a two-stage evolution, characterized by a gentle decline followed by a substantial
improvement (Figure 4). From 1990 to 2005, the RSEI decreased from 0.639 to 0.618, in-
dicating a downward trend. During this period, the ecological environment quality was
predominantly classified as good and moderate, with their combined area proportion
exceeding 94%. From 2005 to 2020, the RSEI increased from 0.618 to 0.745, demonstrating a
significant upward trend. The primary ecological environment quality grades were good
and excellent, with their combined proportion surpassing 68.52%. Since 2010, the combined
proportion classified as good and excellent consistently exceeded those classified as good
and moderate. Specifically, the excellent proportion has significantly increased, rising from
10.82% in 2010 to 24.83% in 2020.

The ecological environment quality grades of the study area from 1990 to 2020 are
presented in Table 3. On average, over the 30 years, the area with an unchanged ecological
environment quality grade accounted for 50.06% of the study area. The combined area
with light and significant improvements accounted for 48.86%, which was substantially
higher than the areas with light (1.08%) and significant (0%) degradation.

Table 3. Statistics of ecological grade changes in the study area.

Year Significant
Degradation

Light
Degradation Unchanged Light

Improvements
Significant

Improvements

1990–1995
Area 0.39 5547.91 49,594.64 3056.91 0.15

Proportion 0 9.53 85.21 5.25 0.00

1995–2000
Area 1.7 3863.03 49,093.32 5241.91 0.03

Proportion 0 6.64 84.35 9.01 0.00

2000–2005
Area 1.45 4838.81 49,456.02 3903.7 0.02

Proportion 0 8.31 84.98 6.71 0.00

2005–2010
Area 0.14 363.24 43,145.34 14,691.28 0.01

Proportion 0 0.62 74.13 25.24 0.00

2010–2015
Area 0.43 1678.03 47,923.79 8597.44 0.32

Proportion 0 2.88 82.34 14.77 0.00

2015–2020
Area 0.09 1506.27 45,648.81 11,044.79 0.04

Proportion 0 2.59 78.43 18.98 0.00

1990–2005
Area 5.57 6319.89 47,550.74 4323.61 0.19

Proportion 0 10.86 81.70 7.43 0.00

2005–2020
Area 0.06 174.16 27,843.06 30,180.53 2.19

Proportion 0 0.30 47.84 51.86 0.00

1990–2020
Area 0.31 626.25 29,137.82 28,414.82 20.8

Proportion 0 1.08 50.06 48.82 0.04

Unit: Area (km2), Proportion (%).

When examined in stages, from 1990 to 2005, the proportion of the study area with light
and significant degradation reached 10.86%, exceeding the 7.43% of areas that experienced
light and significant improvements during the same period. In contrast, from 2005 to 2020,
the proportion of areas with light and significant improvements significantly increased to
51.86%, and the light and significant degradation areas decreased to 174.46 km2, making a
reduction of 97.24%. This trend demonstrates that over the past 30 years, the ecological
environment quality in the study area initially declined and then improved markedly.
Furthermore, an analysis of ecological environment quality grade changes over seven
periods indicates that the most substantial degradation occurred from 1990 to 1995, while
the most significant improvement occurred from 2005 to 2010, aligning with the previously
described two stages of the environmental quality trajectory.
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3.2.2. Spatial Characteristics Analysis of Ecological Environment Quality in the Study Area

The spatial distribution of the ecological environment quality grades in the study area
is illustrated in Figures 6 and 7. The areas of moderate or lower quality were primarily
located at altitudes below 1200 m and on slopes less than 10◦, which also fell within the
general ecological protected area. The areas of good and excellent quality were primarily
situated at altitudes above 1600 m, within key and core protected areas. Over the 30 years,
the regions where the ecological environment quality grade degraded were concentrated
in the built-up and mining areas of Ankang City, Hanzhong City, Shangluo City, and
Weinan City.
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In the general protected area, the improvement in ecological grades was mainly
evident in the shift from moderate to good. In the key and core protected area, the trend
of change from good to moderate ecological quality was not significant before 2005. After
2005, there was a noticeable decline in the proportion of areas with good and moderate
ecological quality, largely reflecting a transition from good to excellent. When considering
elevation and slope, regions with elevations under 1600 m primarily showed an ecological
upgrade from fair and moderate to good, while regions with elevations over 1600 m mainly
saw an upgrade from good to excellent in ecological quality. For areas with slopes less than
20◦, ecological grades were mostly fair, poor, and moderate. In areas with slopes greater
than 20◦, the ecological grades were predominantly good, with the proportion of excellent
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ecological quality significantly increasing after 2005, with a peak proportion of 30.68% and
an average of 15.57%.

3.3. Analysis of Driving Factors for Spatial Heterogeneity in Ecological Environment Quality in
the Study Area

In order to analyze the driving factors behind the spatiotemporal changes in ecological
environment quality within the study area, the factor detector from the geodetector was
utilized to explore the explanatory strength of natural geographic, policy protection, and
socioeconomic factors for the spatial heterogeneity in ecological environment quality at
different times. The results showed that all factors passed the significance test (p < 0.05),
indicating that each factor had a certain explanatory strength for the spatial differentiation
in ecological environmental quality (Table 4).

Table 4. q values of each influencing factor.

Ecological
Factor Indicator

1990 1995 2000 2005 2010 2015 2020

q Rank q Rank q Rank q Rank q Rank q Rank q Rank

Natural
geographic

factors

DEM
(X1) 0.23 4 0.28 4 0.23 4 0.25 4 0.25 4 0.26 3 0.37 1

Slope
(X2) 0.07 9 0.08 8 0.09 8 0.12 7 0.11 8 0.06 8 0.06 8

NDVI
(X3) 0.53 1 0.55 1 0.46 1 0.51 1 0.45 1 0.35 1 0.3 2

Temperature
(X4) 0.42 2 0.33 2 0.35 3 0.36 3 0.38 3 0.3 2 0.3 3

Precipitation
(X5) 0.13 7 0.03 9 0.02 9 0.03 9 0.04 9 0.03 9 0.02 9

Soil type
(X6) 0.17 6 0.18 6 0.18 5 0.19 5 0.18 5 0.18 5 0.21 6

Policy
protection

factors

Protected area
(X7) 0.13 8 0.14 7 0.12 7 0.11 8 0.12 7 0.16 6 0.24 4

Ecological
function area

(X8)
0.19 5 0.21 5 0.16 6 0.17 6 0.16 6 0.17 7 0.24 5

Socioeconomic
factors

Land use
(X9) 0.26 3 0.31 3 0.35 2 0.38 2 0.41 2 0.24 4 0.2 7

The factor detection results for different periods all pointed out that NDVI, temper-
ature, land use, and DEM were the main factors affecting the spatial differentiation in
ecological environmental quality. Among them, from 1990 to 2000, NDVI and temperature
were the two most important factors causing spatial differentiation in ecological environ-
mental quality; from 2000 to 2010, NDVI and land use became the two most significant
impacting factors. After 2010, the explanatory strength of NDVI, temperature, and land use
decreased, while the explanatory strength of DEM increased. In addition, the soil type of the
study area, the setting of the ecological function area, and protected area boundaries also
impacted the spatial differentiation in ecological environmental quality to a certain extent.
Notably, the q value for the range of protected ecological areas averaged 0.12 before 2010,
but from 2010 to 2020, its explanatory strength rapidly increased to 0.24, indicating that the
implementation of ecological protection policies in the study area gradually influenced the
spatial differentiation in ecological environmental quality.

The interaction detection results for the factors across seven different periods (Figure 8)
consistently indicated that the interaction between any two influencing factors on the spatial
differentiation of ecological environmental quality was greater than the isolated effect of
each individual factor, with all the interactions exhibiting synergistic enhancement. This
demonstrates that the spatial differentiation in ecological environmental quality within the
study area was not dictated by solitary factors, but rather by the interplay of multiple factors.
The collective influence of natural geographic, policy protection, and socioeconomic factors
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often led to an amplified explanatory effect, with a multitude of factors jointly shaping the
spatial differentiation in ecological environmental quality.
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Based on the results of the factor detection, an analysis was further conducted in-
tegrating the MGWR to examine the response of the main driving factors to the spatial
differentiation in ecological environmental quality in the study area. It was found that
NDVI and temperature exhibited significant collinearity (Figure 8). Considering the impact
of protected areas on the ecological environmental quality of the study area, the tempera-
ture factor was replaced with the protected area factor for the MGWR analysis. The results
(Table 5) indicated that the average adjusted R-squared (adj.R2) value for the regression
outcomes of different periods was 0.874, and there was an overall upward trend in adj.R2

over time, signifying a clear spatial correlation between the spatial differentiation in ecolog-
ical environmental quality and the main driving factors, with this correlation strengthening
over time.

Table 5. Results of multiscale geographically weighted regression.

1990 1995 2000 2005 2010 2015 2020

AIC 3656.154 3419.475 4676.3 2630.783 875.226 3301.928 1142.899
AICc 3690.592 3426.205 4702.93 2685.871 950.72 3404.391 1256.355

R2 0.859 0.858 0.81 0.897 0.939 0.883 0.936
adj.R2 0.849 0.853 0.798 0.888 0.932 0.869 0.928

Bandwidth

NDVI 67.00 129.00 87.00 74.00 53.00 63.00 43.00
Land use 183.00 1594.00 161.00 70.00 1264.00 46.00 78.00

DEM 371.00 309.00 309.00 286.00 351.00 70.00 71.00
Protected area 270.00 3609.00 303.00 149.00 60.00 362.00 195.00

The bandwidth was the most crucial parameter of the MGWR, with a smaller value
indicating higher spatial heterogeneity. Among the driving factors, NDVI had the smallest
bandwidth, suggesting it had the most significant spatial heterogeneity. The bandwidths
for NDVI and DEM showed a downward trend, indicating an increase in their spatial
heterogeneity over time.

The bandwidths for the land use and protected area factors exhibited significant
variability over time. After 1995, the bandwidth for land use mostly presented a decreasing
trend, except for a sudden increase in 2010, whereas the bandwidth for the protected area
factor hit its lowest in the same period. In 2015, the bandwidth for land use diminished, and
that for protected areas grew, but by 2020, the bandwidth for protected areas had gradually
decreased once more. This suggests that, even with the expansion of the urbanization
process and increased human disturbance, the impact of conservation policies continued to
drive improvements in the ecological environmental quality of the study area.

4. Discussion
4.1. Ecological Quality Changes and Influences in the Study Area

Based on the GEE platform, this study calculated the RSEI to determine the changes
in ecological environmental quality in the Qinling region from 1990 to 2020. The results
showed that the ecological environmental quality experienced a degradation phase from
1990 to 2005. As depicted in Figure 6, the areas of degradation were mainly concentrated
at elevations below 1600 m and slopes less than 10◦, specifically in the administrative
regions of Ankang and Shangluo cities. These cities, located in low-elevation valley basins,
were areas within the Qinling region where socioeconomic development and urban land
expansion were rapid [42]. In this phase, human activities such as extractive mining,
urban expansion, and unsustainable cultivation [43,44] caused a rapid decrease in NDVI in
these areas and led to significant environmental damage, resulting in the degradation of
ecological environmental quality [17]. The detector results (Table 4) also confirmed that
NDVI and land use were the primary factors affecting RSEI.

As urbanization developed in the study area [42], a significant ecological improvement
was observed from 2005 onward, largely due to vegetation conservation initiatives under-
taken by the government. Since 2000, the Qinling region has implemented measures such
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as natural forest conservation and advancing the GFG project [45]. By 2021, the coverage
of natural forests in the region had reached 3.56 million hectares, with 840.5 thousand
hectares subjected to de-farming [46]. These actions have led to an increase in the vegeta-
tion coverage, which in turn has benefited the ecological environment [47]. Notably, areas
at higher altitudes saw more rapid improvements, aligning with Zhang’s research in the
Qilian Mountains [48]. Although variations existed in the ecological environmental quality
trends among the different cities within the study area (Figure 6), the overall trajectory for
the past 30 years has been positive, reflecting the effectiveness of the ecological restoration
efforts undertaken.

This study employed geodetector to reveal the factors influencing ecological environ-
mental quality in the area. NDVI emerged as the principal factor, exerting the greatest
impact on the ecological environmental quality of the study area, followed by temperature,
which is consistent with the findings of Cui’s research in the upper Yellow River basin [49].
This is because surface vegetation cover proves to be a crucial regulator of surface moisture,
energy exchange, and ecosystem balance, effectively curtailing environmental challenges
like soil erosion [50]. As a contributing factor, an increase in temperature can lead to soil des-
iccation, subsequently impacting ecological environmental quality by altering vegetation
growth patterns [51,52].

The ecological environment is influenced by both natural factors and human activities,
with the latter still playing a dominant role [53]. In the Qinling region, ecological quality
positively correlates with the intensity of management, and inversely with human distur-
bance. This indicates that stringent management measures effectively mitigate human
impacts on the environment [54]. In this study, an analysis of data over the past 30 years
reveals a declining trend in the q values for both NDVI and temperature. Simultane-
ously, the q values for land use increased before the year 2010 and then began to decrease.
Additionally, the q values for protected areas declined before 2010 but surged rapidly
thereafter. This trend indicates that prior to 2010, especially before 2005, the ecological
environment of the Qinling Mountains in Shaanxi was increasingly disturbed by human
activities despite the constraints and regulations of protected areas due to urbanization [55].
Following the implementation of the Qinling Ecological Protection Regulation in 2006
and the introduction of even stricter ecological and environmental protection measures in
the Qinling area in 2018 [56], the pace of social development and urbanization continued
unabated. However, the stringent constraints of ecological protection policies significantly
mitigated the negative impacts of developmental activities and strengthened ecological and
environmental restoration efforts. This improvement is highly consistent with the current
state of ecological environmental protection in the Qinling Shaanxi section, and the results
obtained from the MGWR analysis (Table 5) also support this conclusion.

Indeed, the implementation of ecological protection policies in China since 2010
has significantly improved the ecological quality across various regions. Nearly two
decades of research in the Erhai Lake basin has revealed overall enhancements in the
ecological environment, particularly in the less frequented high-altitude areas. However,
urbanization has exerted pressure on the ecological environment in the densely populated
low-altitude regions [57]. Long-term RSEI-based studies in Fuzhou [58], Taihu Lake [59],
Zijin Mountain [60], Wugong Mountain [61], and the Qilian Mountains [62] have further
confirmed that ecological environments are better preserved in high-altitude and steep
areas where the terrain limits development. These findings resonate with the situation
in the Qinling region and reinforce the importance of ecological protection policies in
maintaining and improving the ecological environment.

4.2. Limitations and Future Research Directions

The RSEI evaluation’s accuracy has been validated both qualitatively and quantita-
tively. Qualitative comparisons with 2020’s EI results, depicted in Figure 2, show that RSEI
correlates more closely with geographic locations, offering a refined view of the ecological
environment’s spatiotemporal variations and providing essential data for analyzing driving
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forces. For a quantitative accuracy assessment, we conducted ecological environmental sur-
veys in June 2023, examining the ecological conditions and vegetation cover at 12 locations
in the Qinling region, with specifics detailed in Supplementary Table S1. Despite the time
gap, these surveys reveal consistent patterns. By comparing the surveyed ecological grades
with RSEI’s assessments via a confusion matrix, we determined an accuracy rate of 83.3%
for RSEI in remote sensing ecological evaluations.

Although qualitative and quantitative evaluations indicate that the accuracy of the
RSEI is generally sufficient, certain limitations must be acknowledged. RSEI’s reliance on
remote sensing methods introduces a notable sensitivity to the timing of image captures.
Variability in the dates of image acquisition can induce significant discrepancies, with
potential errors in RSEI of up to 19.2% within a one-month period [63]. Furthermore, the
demand for cloud-free images over large areas exacerbates the issue of the data revisit
period. This study has also employed a commonly used method to address this issue
by using median calculations with data from the target year combined with the two
years before and after [64]. However, it is inevitable that annual RSEI values may still
fluctuate significantly between adjacent years. In terms of improving temporal resolution,
MODIS imagery with its 16-day revisit period has been utilized to monitor ecological
quality over large areas, although this approach inevitably loses some detail due to the
inherent spatial resolution limitations [65]. The recently developed Continuous Change
Detection and Classification (CCDC) technique fully leverages the available observations
in time-series imagery [63] and enables the synthesis of images at any given time [66].
Therefore, integrating the strengths of multi-source remote sensing data and enhancing
algorithms to optimize temporal and spatial resolution for obtaining continuous time-series
images over large areas is a direction for achieving more precise and continuous ecological
quality monitoring.

The ecological environment is complex, making it difficult to measure with a single
indicator. The current RSEI index, which includes four indicators, cannot fully represent
the ecological state of a region. For example, it does not consider the impact of water on the
ecological environment, because RSEI is not suitable for assessing the ecological quality of
water [59]. Water is an indispensable component of the watershed ecological environment,
and future research should further incorporate the ecological effects of water into the
regional ecological environmental assessment system. Despite its limitations, it is among
the most comprehensive ecological assessment tools available [67]. The Qinling region’s
uniform vegetation and consistent geomorphology lend credibility to the RSEI assessment
results in this study. However, to further improve the accuracy of the assessment, scholars
are considering the introduction of more diversified spatial data indicators, such as gross
primary product (GPP), land aerosol optical depth (AOD), et al. [57]. In addition, some
researchers have demonstrated that the improved RSEI with sharpened LST imagery can
effectively quantify regional ecological status, which is also a direction for improving
assessment precision [65]. Therefore, it is crucial to develop and optimize new evaluation
indicators for regions with distinct characteristics, and to establish a more rational, scientific,
and comprehensive ecological environmental quality assessment system. The enhancement
of ecological quality assessments depends on this critical development.

5. Conclusions

This study selected seven sets of Landsat remote sensing image data from 1990 to
2020, utilizing the GEE platform to construct an RSEI to analyze the changes in ecological
environment quality of the Qinling region over 30 years. The conclusions are as follows:

(1) From 1990 to 2020, the overall quality of the ecological environment in the study area
showed an upward trend, with characteristics of different stages. From 1990 to 2005,
it was a phase of ecological degradation, with the changes in ecological grade being
light and significant degradation, accounting for 10.86% of the total area, which was
higher than the 7.43% of the area that showed improvement. From 2005 to 2020, it was
a phase of ecological improvement, with changes in ecological grade mostly reflecting



Sustainability 2024, 16, 3251 16 of 19

light improvements. The area of improvement increased to 51.86%, while the areas of
light and significant degradation decreased by 97.24%.

(2) The ecological environmental quality of the study area exhibits significant spatial
heterogeneity. Areas with altitudes below 1200 m and slopes less than 10◦ have the
poorest ecological quality, which mainly transitioned from moderate to good over
30 years. In contrast, areas above 1600 m in altitude within the key and core protected
areas have the best ecological quality, primarily transitioning from good to excellent.
Regions where ecological grades have degraded were mainly located in Ankang,
Hanzhong, Shangluo, and Weinan cities. These cities should place a high priority on
ecological environmental protection and high-quality development.

(3) The spatiotemporal changes in the ecological environmental quality of the study area
are influenced by multiple factors, among which NDVI, DEM, land use, and protected
areas were key driving factors. The coupled and coordinated effects of the Qinling
ecological protection policies and socioeconomic factors have created an enhancing
effect on the differentiation of ecological environmental quality.

(4) This study has delineated the trends of ecological environmental quality in the Qinling
region across three decades, highlighting the significant effects of ecological protection
measures and the expansion of vegetation cover on the region’s ecological quality.
Continuous monitoring is essential for the sustainable development of this critical
ecological zone. This study’s insights can offer a scientific foundation for the protection
of the ecological environment and the promotion of high-quality development of the
Qinling area.
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shaanxi.gov.cn/zfxxgk/zfgb/2020/d17q/202009/t20200921_1728563.html). Figure S2: Ecological
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environment surveys.
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