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Abstract: Convective weather, through its heavy showers, strong winds and hail, significantly impacts
human activities, having the potential to inflict serious damage on social and environmental sectors.
Limited research has been conducted on this phenomenon within Romanian territory, and currently
there is no referenced climatological study primarily aimed at air traffic management users in this
context. This study aims to assess the climatological aspects related to convective events based on
sub-hourly observation data recorded at 17 airport weather stations throughout Romania during an
11-year period (2012–2022). The spatiotemporal distribution of convective events was analyzed based
on occurrences of Cumulus Congestus (TCU) clouds, Cumulonimbus (CB) clouds, thunderstorms
(TSs), heavy showers (+SHs), and hail (GR). With the data being extracted from meteorological
aerodrome reports (METARs) and special meteorological aerodrome reports (SPECIs). Short-term
trends were determined using Sen’s slope estimator, and statistical significance was assessed through
the Mann–Kendall test. The main findings indicated that the highest occurrence of convective events
is located over central and western Romania, with June emerging as the extreme month in terms of
convective events, while the hourly distribution emphasizes that the highest frequency of convective
events occurred in the afternoon. Trend analysis in TCU, CB, and TS show tendencies toward higher
frequency of convective events while the results related to +SH and GR indicate a high variability
across Romanian territory. Trend analysis disclosed more substantial changes in the TS variable. The
results of this study bear potential significance for a broad spectrum of human activities and the
management of natural environments.

Keywords: climate change; convective weather; METAR; SPECI; Romania

1. Introduction

Convective weather has a substantial influence on human activities, generating heavy
showers, strong winds, and hailfalls, with the potential to cause serious damages to
social and environmental sectors. Moreover, severe convective weather possesses strong
destructive power, significantly exacerbating economical losses [1]. For instance, convective
events can severely damage crops and affect the supply of electricity, communications,
and air traffic [2]. This type of weather poses a serious risk to aircraft flights through
associated hazardous phenomena [3]. Furthermore, convective weather is affected by the
ongoing climate change, which can significantly increase its impact on society and the
environment [4–6]. However, different sustainable measures and concepts for protection
should be regularly developed based on the newest scientific results.

Convective weather is quite frequent during the warm season (April–September) in
temperate regions of the globe [7–10]. The main elements for convection development in-
clude a high amount of moisture in the lower and mid-atmosphere, atmospheric instability,
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and strong heating of the terrestrial surface [2]. The main products of convection are Cumu-
lus Congestus and Cumulonimbus clouds, along with convective systems of different sizes
and complexity that can generate thunderstorms, lightning, heavy precipitation in a short
period of time, hail, wind shear, turbulence, and even tornados. Deep convective clouds,
such as Cumulus Congestus and Cumulonimbus clouds, play a major role in weather and
climate by facilitating the transport of heat and moisture from the Earth’s surface to the
upper tropospheric level [3]. These clouds can particularly be threatening when they form
near an airport, leading to constraints in airspace and the handling of operations [2]. Cu-
mulus Congestus clouds exhibit robust updrafts, distinct edges, and generally significant
vertical expansion [2]. They often evolve into Cumulonimbus clouds, which are dangerous
to aviation and other sectors as they can generate strong winds, severe turbulence, severe
icing, lightning, heavy showers and hail falls. Typically, atmospheric convection comprises
both deep convection and shallow convection. Deep convection mainly includes ordinary,
multicellular and supercell thunderstorms, as well as mesoscale convective systems, while
shallow convection includes Cumulus and Stratocumulus clouds [4].

The occurrences of severe weather events, including hailstorms, thunderstorms, and
lightning, are escalating in numerous parts of the world, posing threats to various aspects of
natural and social environments, including sustainable development [11]. Climate change
is expected to affect the climatology of convective events [12]. The interest in studying
convection events and associated hazards has grown in recent decades due to climate
change and the increasing number of flights [13]. Identifying patterns in the occurrence
and strength of convective events has been challenging due to restricted and incomplete
direct observations [14–16]. Many studies have analyzed changes in convective events by
examining trends in CAPE index and wind shear, emphasizing that the effect of shear is
more important than that of CAPE [5,12].

Taszarek et al. [15] investigated the climatology of thunderstorms across Europe and
found that these events are most frequent in the central Mediterranean, the Alps, the Balkan
Peninsula, and the Carpathians, including large areas of Romania. Studies investigating
the climatology of convection and associated hazards have found increasing trends in the
frequency of these events in different regions of the world [16,17]. Mohr and Kunz [18]
found that the atmosphere became more unstable and prone to convective processes over
the last few decades in large areas of Europe. Llasat et al. [19] found a significant increase in
convective events, convective precipitation, and precipitation over the Júcar Hydrographic
Confederation of the Spanish Mediterranean region. Molnar et al. [16] found that, in the
past three decades, there has been a notable rise in the occurrence of convective events
in the Swiss Alps. Decreasing trends were found only in a few regions of the world,
such as Tehran, parts of southwestern, far southeastern, and south-central Europe, and
Australia [8,12,15]. Decreasing trends may be an effect of local urban factors for some
regions [6]; nevertheless, large-scale atmospheric mechanisms may also play an important
role. Other studies found mixed results in trend analysis of convection and associated
hazards [14,20].

Studies that analyzed future changes in convection characteristics showed a consistent
transition towards a higher frequency environment that is supportive for convection and
convective storms [21,22]. In contrast, other studies showed that changes in favorable
convective environments are only partially consistent for Europe and the United States [7].
The predominant factor driving the rise in convective environments is primarily the ther-
modynamic instability associated with the increased availability of moisture in the lower
atmosphere [7]. This area of study requires needs more research to better understand such
processes and relationships.

In Romania, there are only a few studies that have investigated convective events, and
such studies examined severe convective storms and tornadoes [23–25]. Manea et al. [17]
have found statistically significant increasing trends in the frequency of days with rain
showers and snow showers over most of Eastern Romania, with no statistically significant
trends in the frequency of sleet showers. Statistical correlations were observed between
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these changes and the trends in Cumulonimbus cloud frequency. Additionally, convective
phenomena have shown an increase in late spring and early autumn, prompting a transition
from a stratiform nature to a more convective one. During the winter, convection frequency
recorded only a slight increase [17]. Mixed trends were found in Romania in the frequency
of days with hail, and only few were statistically significant [17].

Data from meteorological aerodrome reports (METARs) and special meteorologi-
cal aerodrome reports (SPECIs) have been extensively used worldwide in meteorolog-
ical and climatological studies [2,12,26–31]. However, to our knowledge, in Romania
only a few studies employed METAR and SPECI data, and only one of them examined
convection-related variables, with this study being restricted to a limited area (Southern
Romania) [32,33].

Convection processes are a complex issue due to a series of factors such as synoptic
systems, interaction between micro- and meso-scale systems, and terrain configuration [28].
The specific terrain characteristics in a given area are essential in shaping and amplifying
the intensity of convective weather events. Romanian topography has a great degree of
complexity and includes plain, hilly and mountainous areas, which are almost equally
distributed across the country (Figure 1). The different orientation of the Carpathian ranges
across Romania further complicates the convection processes.
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Although convective events have a great spatiotemporal variability, climatological
studies can provide valuable information in respect to their spatial and temporal differences
in a particular region, as well as providing trends on various time-scales [34,35]. Based
on climatological scientific results, the user can anticipate important changes in local or
regional weather, as well as severe weather associated with convection events [29].

The main objective of this study is to evaluate the convective episodes based on
METAR and SPECI data collected from 17 Romanian airports from 2012 to 2022. Extensive
METAR data has not been previously utilized for such analysis on a Romanian scale. To
the authors’ knowledge, none of the studies investigating convective events in Romania or
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in larger areas that overlap Romania have specifically examined the climatological aspects
of convective-related variables at airports within Romania. Additionally, there is currently
no referenced climatological study primarily aimed at air traffic management users in this
context. Despite the limited weather data covering only an 11-year period, this study can
be useful for a diverse range of sectors, especially for aviation. Thus, this study investigates
convective events by analyzing the spatiotemporal distribution of Cumulus Congestus
clouds (TCU), Cumulonimbus clouds (CB), thunderstorms (TS), heavy showers (+SH), and
hail (GR).

The paper is structured as follows. Section 2 illustrates the data and methods. Section 3
presents the results and discussion in terms of annual, monthly, and hourly distribution of
convective-related variables, as well as annual trends. Concluding remarks are given in
Section 4.

2. Data and Methods

METAR messages provide real-time weather information at an airport and its sur-
rounding area [36,37]. Issued regularly, these reports are primarily utilized by pilots and
air traffic controllers for flight-planning purposes. This type of meteorological information
is measured automatically by instruments and sensors located at the aerodromes. However,
a human observer is present to monitor the weather, adjusting and completing the METAR
when it is needed. Romanian airports operate automated weather stations assisted by mete-
orologists that deliver observations as Meteorological Terminal Aviation Routine—METAR
(SPECI included). METARs are generated every half hour, while SPECIs are emitted every
time a meteorological parameter improves or exceeds a certain threshold. The proximity
of an airport is typically defined as the area extending approximately 8 to 16 km from the
aerodrome reference point. This reference point corresponds to the location of the human
observer [3].

For this study, METAR and SPECI data from 17 Romanian airport weather stations
were used over an 11-year period between 2012 and 2022 (Figure 1). The airport indicative,
location, elevation, and geographical coordinates are given in Table 1.

Table 1. The airports’ indicative, location, geographical coordinates, and elevation.

No Station Location Latitude
(deg)

Longitude
(deg)

Elevation
(m)

1. LRTR Timişoara 45.7711 21.2582 88
2. LRAR Arad 46.1336 21.3536 118
3. LROD Oradea 47.0358 21.8958 140
4. LRSM Satu Mare 47.7214 22.8872 124
5. LRBM Baia Mare 47.6608 23.4917 185
6. LRCL Cluj-Napoca 46.7821 23.6758 413
7. LRCT Câmpia Turzii 46.4957 23.8925 325
8. LRTM Târgu-Mureş 46.4681 24.413 309
9. LRSB Sibiu 45.7893 24.0913 444
10. LRSV Suceava 47.6328 26.2406 351
11. LRIA Iaşi 47.1708 27.6283 104
12. LRBC Bacău 46.5319 26.9125 185
13. LRTC Tulcea 45.0667 28.7167 6

14. LRCK Constanţa
(Mihail Kogălniceanu) 44.3333 28.4333 108

15. LRBS Bucureşti-Băneasa 44.5 26.13 91
16. LROP Otopeni 44.5722 26.1022 95
17. LRCV Craiova 44.3103 23.8669 191

Data sets were obtained from the Iowa State University Environmental Mesonet
database (IOWA, 2023). The Mesonet database was also used by several previous studies
on convective events [38–40]. The data have a half-hour frequency, except SPECI reports,
which may increase the frequency of reports. For ease of reading, in the following, only the
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METAR terms will be mentioned, which will also include SPECI reports. The availability
of reliable METAR/SPECI data for Romania from the Mesonet database begins only from
2012 onwards. Prior to this year, significant amounts of missing and incomplete data were
identified. Despite the relatively short duration of the data series, these analyses hold
significance for air traffic management users.

To comprehensively analyze the convective events across Romania, data of TCU, CB,
TS, +SH and GR were extracted from METAR reports. Subsequently, in order to assess
monthly and annual spatiotemporal variability for each variable, the monthly and annual
number of days were calculated from half-hour reports for each of them. Each day where at
least one METAR message was reported was considered as a day with that reported event
in question. Furthermore, to analyze hourly distribution of variables related to convective
events, every METAR containing the variable of interest was counted and associated with
the time of observation. To better represent the hourly distribution of TCU clouds, CB
clouds, and TS, we expressed the values as frequencies. Notably, +SH are considered those
episodes of precipitation in which the accumulation rate has a value higher than 10 mm per
hour. GR episodes are defined as events in which the largest hailstones observed have a
diameter of 5 mm or more. The variables were organized and analyzed for distinct regions
of Romania—western region (station no. 1, 2, 3), northwestern region (station no. 4, 5,
6), central region (station no. 7, 8, 9), eastern region (station no. 10, 11, 12), southeastern
region (station no. 13, 14), and southern region (station no. 15, 16, 17)—as the climate of
each region is influenced differently by the presence of the Carpathian chain and the Black
Sea [41,42].

Trend detection was performed by employing Sen’s slope estimator for the magni-
tude of the trend and a Mann–Kendall test for statistical significance of the trend [43].
Mann–Kendall is a non-parametric test widely used in the trend analysis of the hydro-
climatological variables. In this study a trend was considered statistically significant at a
5% level (p < 0.05). Due to the limited availability of METAR data, trends were computed
over an 11-year period. It’s important to note that this timeframe may not be sufficient to
capture long-term changes in convective-related variables, and, as such, the results should
be interpreted with caution. Longer datasets will be required to comprehensively assess
changes in these variables over time. Notably, similar short-term trend analyses have been
conducted in various climatological studies [44–47].

3. Results and Discussions
3.1. Eleven-Year Climatology of METAR Variables Related to Convective Events
3.1.1. Annual Distribution of Convective-Related Variables

The results indicate that the territory of Romania experiences, on average, between
12.7 days per year with TCU clouds over northwestern Romania and 57.6 days per year
with TCU clouds in the central region of Romania (Figure 2a). The highest values of the
annual number of days with TCU clouds were found in central and northwestern regions of
the country. The number of days with TCU clouds is considerably lower than the number
of days with CB clouds. The time required to develop from a TCU cloud to a CB cloud is
relatively shorter compared to the total life cycle of a CB. Thus, the observation frequency
of TCU is considerably lower compared to the occurrence of CB. Henken et al. [3] observed
the same situation at Amsterdam Airport Schiphol and explained it on the basis of more
pronounced characteristics of CB clouds compared with TCU clouds. Therefore, the latter
is often difficult to distinguish from cumulus clouds, resulting in less frequent reporting.
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The average annual number of days with CB clouds is between 61.6 in western
Romania (LROD) and 141.8 in central region of Romania (LRTM), following a similar
pattern with spatial distribution of TCU clouds in respect to maximum values (Figure 2b).
The spatial distribution of the average number of days with CB across Romanian territory
indicates that the highest values were recorded in the western, central, northeastern, and
capital city areas (southern Romania). Local factors, such as topography and land use, play
a major role in the distribution of the average number of days with CB. For example, in
the capital city of Romania (LROP and LRBS), with similar topography and land use, the
annual number of CBs have similar values. This is also the case of LRSM and LRBM with
similar land use and topography, which favors the same exposure to air masses direction.
However, this pattern does not apply to the annual number of days with TCU, where there
is a significant difference between LRSM and LRBM stations. This consistent difference
in the case of the annual number of TCU might be explained by the presence of the Gutâi
Mountains, north of LRBM, which favors convection.

The TCU and CB clouds are reliable Indicators of the presence of a convective event.
Furthermore, their products, such as TSs, +SHs, and GR, indicate intense convection.

A TS is a meteorological phenomenon typically marked by the occurrence of light-
ning and thunder within deep convective clouds and systems. TS occurrence is heavily
influenced by factors such as convective instability, moisture within the lower troposphere,
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significant wind shear, and dynamic lifting mechanisms [48]. Considering the annual
average number of days with TS, their values follow a similar spatial distribution with the
values of the annual number of days with TCU and the annual number of days with CB
clouds (Figure 2c). The highest number of days with TS was recorded in the central region of
Romania (45.5 days/yr), where convective activity is often forced by orographic influence.

The highest number of days with TCU clouds, CB clouds, and TS in central Romania
might be also explained by a higher frequency of moist air masses coming from western
Europe and crossing the Romanian Western Carpathians. This information could be useful
for airports operating in the central regions of Romania for better flight planning.

Additionally, +SHs pose potential hazards to flights by causing a substantial drop in
visibility and also can contribute to flight delays. The spatial distribution of the average an-
nual number of days with +SH presents a high variability, indicating that the highest values
were recorded in northwestern, central, southern, and southeastern Romania (Figure 2d).

GR phenomena is one of the most important perils in Romania. Hailstorms cause con-
siderable damage to crops, buildings, automobiles, sustainable agriculture, and elements
of sustainable infrastructure, such as solar panels and wind power plants [11,49,50]. The
mechanical effect of hail negatively affects the photovoltaic modules, as it may cause silicon
to crack, resulting in considerable renewable power loss and shortening of operational
lifespan [51]. The annual average number of days with GR indicated the highest values in
the central and southeastern regions of Romania (Figure 2e). These results are in accordance
with those of [9], in which the mean annual number of days with hail were assessed over a
54-year period.

The occurrence of the convective-related variables vary over time (not shown here),
suggesting interannual variability in atmospheric conditions influencing their occurrence.
Factors such as temperature, humidity, and atmospheric instability may contribute to these
interannual differences. Further in-depth analysis of meteorological data could provide
insights into the underlying mechanisms driving the variability.

3.1.2. Monthly Distribution of Convective-Related Variables

The monthly distribution of TCU clouds (Figure 3, black columns) indicates that the
highest frequency is occurring, as expected, during the warm season, with a maximum in
June for the most of the weather stations when convective processes are most intense.

The CB clouds’ monthly distribution (Figure 3, blue columns) shows intense convective
processes starting from April to May and ending in August−September. As in the case of
the monthly distribution of TCU, the maximum is reached in June in most of the analyzed
locations. Weather stations located mainly in plain areas (LRTR, LRAR, LRBS, LROP)
indicate that CB clouds occur in winter months with a higher frequency than in the rest of
the country (up to 6 days per month).

TS monthly distribution follows in general the same patterns as TCU and CB cloud
distribution, with the highest frequency in June, followed by July (Figure 3, red columns).
Generally, the season of TS starts in March and ends in October. Most of the stations did not
record or had recorded a minimal electrical activity during the November−February period.

The monthly distribution of +SH shows great spatial and temporal variability (Figure 4).
The highest average number of days with +SH occurred in weather stations located in
western, central, and southeastern Romania. In general, +SH had the highest frequency
in May and June (1.0–1.5 days). The highest frequency during the summer months was
recorded in weather stations located in western, central, and southern Romania. The LRCK
station, located near the Black Sea coast, recorded the highest frequency of +SH in January
and February. This might be explained by local factors, such as the proximity of the Black
Sea and the characteristic eastern atmospheric circulation pattern [42].

Generally, GR phenomena occurred from April to September. Few exceptions were
recorded in March and October (not presented). The highest frequency of GR events during
the 2012−2022 period was recorded in May and June, which is in accordance with the study
of Istrate et al. [52] which assessed hail climatology in Romania over the 2007–2016 period.
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The increased frequency of convective events during May and June likely accounts for their
highest occurrence, consequently elevating the probability of TS and GR.

By comparing the variables values related to convective events, it turns out that June is
the most extreme month in terms of convective events. These results could be particularly
useful for flight planning, air force missions, and others. With the rise in temperatures and
the intensification of climate change, we can expect that convective events will be more
frequent and of higher intensity. Also, the convective season can extend, affecting more
and more of the off-season periods.
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3.1.3. Hourly Distribution of Convective-Related Variables

The hourly distribution of TCU clouds indicates that the convective processes generally
start between 07 and 09 Universal Time Coordinated (UTC) and end between 18 and
20 UTC, with the highest frequency being recorded around 12 UTC (Figure 5, black contour).
Spatially, the highest frequency during mid-day was recorded in northeastern, central, and
eastern Romania, while the lowest frequency was registered in stations located in western
and southern Romania.
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CB clouds’ hourly distribution showed a few differences compared with TCU clouds’
hourly distribution (Figure 5, blue contour). Since the development of CB clouds takes
longer than the TCU clouds, the highest convective frequency according to CB clouds
occurrence was generally recorded in the afternoon between 14 UTC and 16 UTC. Spatially,
the highest frequency of CB clouds in the afternoon occurred in western and central
Romania. This may be explained by higher frequency of moist air masses coming from
western Europe and/or from the Mediterranean Sea, which contributes to the development
of CB clouds. Most of the weather stations recorded a sharp decrease in CB clouds frequency
after 16 UTC, indicating that convective processes have considerably decreased their
intensity after that hour.

As expected, TS hourly distribution showed a similar pattern to CB clouds’ hourly
distribution (Figure 5, red contour). Generally, the highest frequency values were between
14 and 15% in the analyzed period and occurred in the 12–14 UTC interval. The lowest
hourly frequency of TS was recorded between 04 and 08 UTC.

The hourly distribution of +SH showed a great spatial and temporal variability
(Figure 6, blue columns). Generally, the highest frequency of +SH occurred in the af-
ternoon (12–18 UTC) in 8 stations out of 17. The majority of them are located in western,
eastern, and southern Romania. In six weather stations located in western, central, and
southern Romania, the highest frequency of +SH was recorded in the evening (19–00 UTC).
In LRSB and LRSV aerodrome weather stations, the highest frequency of +SH was recorded
in the morning (06–11 UTC). The results in hourly distribution of +SH indicate that the
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highest frequency during the day is not necessarily related to the highest frequency of CB
clouds, which generates this type of precipitation. This is also the case with the monthly
distribution of the two variables. Thus, one cannot assume that a higher frequency of CB
clouds translates to a higher frequency of +SH. Beyond the station’s local topography, the
environmental conditions and atmospheric circulation play a significant role in shaping
the occurrence and timing of convective phenomena. Therefore, future research endeavors
should explore these atmospheric circulation principles to better understand the observed
temporal patterns of heavy showers (+SH) across different regions.
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Since GR is quite a rare phenomenon and occurs in limited areas, only a few cases were
observed at each station (Figure 6, red columns). Their occurrence during the study period
does not exhibit any clear pattern or relationship with the other analyzed variables. Laviola
et al. [53] analyzed hail climatology in the Mediterranean Basin, including the Romania
region across the 1999–2021 period based on remote sensing data, showing that the highest
frequency of GR was concentrated during the 00–06 and 18–00 UTC intervals. A longer
period of analysis may show particular distributions during the day and relationships with
other variables related to convective processes.

3.2. Trends in METAR Variables Related to Convective Events

Trend analysis showed modest significant changes in variables related to convective
events (Figure 7). However, few patterns are observed in the spatial distribution of TCU
clouds, CB clouds, TS and +SH trends. The number of days with TCU clouds are decreasing
at an average rate of 5.25 days/decade in western Romania (Figure 7a). Only the LRSM
station indicated a statistically significant decreasing trend. Increasing trends were recorded
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over the most stations, but only the LRCT station indicated a statistically significant trend.
A similar pattern is observed in the number of days with CB clouds, indicating a climate
heading towards more frequent convection events (Figure 7b). Statistically significant
trends were found in central (LRTM) and northeastern Romania (LRSV). Rusz [54] analyzed
CB clouds at Târgu Mures, (where LRTM is located) for the 1971–2005 period and found
statistically significant increasing trends.
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The annual frequency of days with thunderstorms TS has shown an upward trend
for the majority of weather stations (Figure 7c). Statistically significant increasing trends
at a confidence of 95% were recorded in northwestern and southwestern Romania. These
results indicate a tendency towards a higher number of days with TS on Romanian territory.
Other studies focused on Europe found significant increasing trends in the frequency of
TS [15,16].

The number of days with +SH showed mixed results in respect to spatial distribution;
only the central region of Romania presented a significant increasing trend.

Trends in the annual number of days with hail (GR) could not be identified due to
the limited time-series and the rarity of hail events. Burcea et al. [9] analyzed trends in the
annual number of days with hail in 105 weather stations across Romania over a 54-year
period and found statistically significant increasing trends in 58 of the stations, while only
four stations exhibited a significant downward trend at a confidence of 95%. There is
evidence suggesting that the fluctuation in the average annual number of days with GR in
Romania is intricately linked to the variability in the occurrence of low-pressure systems
originating in the Atlantic. These systems may subsequently lead to the development of
low-pressure systems over the Mediterranean Basin and the advection of moist air toward
the eastern regions of Europe [9]. Laviola et al. [53] also showed increasing trends in GR
events over the entire Mediterranean basin, including Romania.

Several studies have shown an increase in convective cloudiness across northern
Eurasia in recent decades [14,55–57]. An increase in convective cloud frequency indicates
the intensification of convective processes across large areas of Europe. An increase in CB
and TCU cloud frequency leads to higher frequency of TS, which further has the potential
to raise the risk of forest fire initiation [14]. Moreover, Rädler et al. [6] showed that the
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occurrence of detrimental convective weather events, including thunderstorms (TS) and
hail (GR), is anticipated to elevate across Europe until the conclusion of the century.

4. Conclusions

In this study, climatology and trends in convective events were analyzed based on
variables related to convection that occurred between 2012 and 2022, using data extracted
from METAR and SPECI telegrams issued for 17 airport weather stations in Romania.

The results revealed that certain regions of Romania are prone to a considerably higher
frequency of convective events than others due to local factors, such as topography and
different zonal atmospheric circulation. Therefore, future studies should investigate these
atmospheric circulation principles to enhance comprehension of the observed temporal
patterns of convective events across various regions.

The monthly distribution of weather variables associated with convective events
indicates that June is the “extreme” month, featuring the highest values. Hourly distribution
emphasizes that the highest frequency of convective events occurred in the afternoon
(12–18 UTC interval), while the lowest occurred during the 00–06 UTC interval.

Meanwhile, trend analysis in TCU, CB, and TS reveals a tendency toward a higher
frequency of convective events in Romania, and results related to +SH and GR indicate a
high variability across Romania. However, these results should be interpreted with caution,
as the time series only spans 11 years. Furthermore, while the 11-year interval may not
capture long-term trends, it can still provide valuable insights into short-term variations
and patterns in convective events. By analyzing trends over this period, we can identify
potential patterns or anomalies that may warrant further investigation. Additionally, the
inclusion of multiple climatic data sources can help corroborate and strengthen the findings
of our analysis. This interdisciplinary approach enhances the robustness of our conclusions
and opens avenues for future research collaborations.

While acknowledging the limitations of the 11-year dataset, we believe that the find-
ings presented in this analysis offer valuable contributions to the scientific understanding of
convective events in Romania and lay the groundwork for further exploration using longer-
term datasets and interdisciplinary approaches. These results could be particularly useful
for planning flights, air force missions, etc. With rising temperatures and the intensification
of climate change, we can expect that convective events will be more frequent and of higher
intensity. Additionally, the convective season may extend, impacting off-season periods.
This study can also contribute to the development and application of principles in strategies
for sustainable development and aid in future studies related to convective events.
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