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Abstract: Ship path planning is one of the most important themes in waterway transportation, which
is deemed as the cleanest mode of transportation due to its environmentally friendly and energy-
efficient nature. A path-planning method that combines the soft actor-critic (SAC) and navigation risk
assessment is proposed to address ship path planning in complex water environments. Specifically,
a continuous environment model is established based on the Markov decision process (MDP),
which considers the characteristics of the ship path-planning problem. To enhance the algorithm’s
performance, an information detection strategy for restricted navigation areas is employed to improve
state space, converting absolute bearing into relative bearing. Additionally, a risk penalty based on the
navigation risk assessment model is introduced to ensure path safety while imposing potential energy
rewards regarding navigation distance and turning angle. Finally, experimental results obtained from
a navigation simulation environment verify the robustness of the proposed method. The results also
demonstrate that the proposed algorithm achieves a smaller path length and sum of turning angles
with safety and fuel economy improvement compared with traditional methods such as RRT (rapidly
exploring random tree) and DQN (deep Q-network).

Keywords: ship path planning; navigation efficiency; maximum entropy deep reinforcement learning;
soft actor-critic; risk assessment

1. Introduction

Waterway transportation is an important mode of transportation with the advantages
of low costs and strong capacity, which is different from road and railway transportation.
With the trend of globalization, maritime containerized trade has been rapidly increasing
over the past two decades [1]. Concurrently, inland waterway transportation has also
developed rapidly, becoming a competitive alternative to and complement of road and
rail transport [2]. However, there are frequent safety accidents in water transportation [3].
According to statistics, the Suez Canal carries 30% of the world’s container traffic, and
about 12% of the world’s trade passes through this waterway. In January 2023, the cargo
ship “MV GLORY” ran aground on the canal due to errors in route planning and improper
operation by the operator. The heavy cargo ship “Ever Given” also ran aground in the canal
in March 2021, causing a major blockage that affected about USD 60 billion in trade. Path-
planning failures can cause significant damage, not only leading to ship’s hull damage and
obstructing or even blocking waterways, but also resulting in oil spills and environmental
pollution [4], and may even lead to casualties. These failures result in major safety and
economic losses.

Ship path planning must ensure the safety of waterway transportation while taking
into account the factors of efficiency, economy, etc. As the logistics industry accelerates its
transformation and upgrading to digitalization and intelligence, waterway transportation
is also gradually moving toward modernization and intelligence, and intelligent navigation
of ships is one of the important issues. The intelligent navigation system of a ship consists
of several modules, such as a perception and situation understanding module, a decision
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and planning module, a motion control and execution module, and a communication
module [5]. Path planning is the key sub-module of the decision and planning module.
Reasonable ship path planning considering navigation safety and economy can reduce
costs and improve transportation efficiency at the same time.

The ship path-planning problem aims at finding the optimal path from a start point to a
target point in each navigational environment under various constraints and environmental
limitations. Current research on path planning mainly uses traditional methods, which
make it difficult to learn a generalized planning strategy, and the deep reinforcement
learning methods which are popular in the robotics field are rarely applied to the ship path-
planning problem. Therefore, the research in this paper has practical value and theoretical
reference significance for improving the ship’s path-planning ability. The contributions of
this study can be specified as follows.

(1) Aiming at the ship path-planning problem under a continuous environment, this
study constructs a state-continuous environment model based on the Markov decision
process to avoid errors caused by the discrete processing of maps.

(2) The risk assessment model is applied to improve the state space and convert the
absolute bearing information into relative information. And the action space considers the
limitations of the ship course, which guides the path-planning strategy to optimize towards
high smoothness.

(3) The SAC algorithm framework based on maximum entropy reinforcement learning
is used to design the path-planning algorithm, balancing exploration and utilization in a
continuous environment, designing distance and angle potential rewards based on sparse
rewards, and introducing a risk penalty term to ensure path safety.

2. Related Works

According to the principle of the method, path-planning methods can be divided
into search mechanism-based, bionic evolution-based, sampling mechanism-based, and
reinforcement learning methods. As one of the classical heuristic search algorithms, the A-
star algorithm is widely used in path planning. However, the traditional A* algorithm has
shortcomings, including a long search time and too many redundant nodes [6]. Therefore,
He et al. [7] improved the A-star algorithm by considering the dynamic search mechanism of
the time factor so that the ship can generate a more reasonable dynamic obstacle avoidance
path. Zhen et al. [8] analyzed the factors that affect ship navigation safety and designed
the turning model and smoothing method to improve the A-star algorithm so that the
path could effectively avoid the shallow water area. Liang et al. [9] improved the A-star
algorithm by setting a safe distance from obstacles and removing unnecessary waypoints.
Song et al. [10] introduced the weights of distance, energy, and time to generate paths with
different costs, using attraction and repulsion fields to improve the cost estimation function
of the A* algorithm. The evolutionary algorithm is a global path-planning method with
high adaptability and robustness. Huang et al. [11] established a mathematical model for
ship route planning with the target point of the shortest ship sailing time and used the
ant colony algorithm to optimize the initial ship path. Zhao et al. [12] proposed a hybrid
ship path-planning method based on an improved particle swarm optimization–genetic
algorithm, which not only has fast convergence, but also improves the diversity of solutions.
Tsou et al. [13] and Dong et al. [14] utilized ant algorithms to develop ship path-planning
techniques with the aim of achieving optimal energy consumption. Search-based methods
can only optimize paths in a finite search space, and evolutionary algorithms need to
encode the space. Thus, these two types of methods both have limitations and are only
applicable to discretized environments.

The sampling-based method is suitable for solving path-planning problems in contin-
uous environments as it avoids the need for environment discretization processing. Cao
et al. [15] proposed an improved RRT algorithm including path shearing and smoothing
modules which considered the safe distance between a moving ship and an obstacle. The
algorithm’s feasibility was verified through experiments in two kinds of inland river sce-
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narios. However, the research did not address the limitation of turning angles during
ship navigation, which resulted in poor path smoothing. Liu et al. [16] presented a hybrid
probabilistic roadmap (HPRM) algorithm for ship route planning, which improves the
utilization of sampling points via the sampling point reset (SPR) function and reduces the
number of ship turns via the Douglas–Peucker (D-P) algorithm.

The above traditional path-planning methods are unable to fully utilize the histor-
ical experience and have difficulty learning a generalized strategy due to the lack of
autonomous learning capability without a data replay mechanism. In recent years, with the
development and application of artificial intelligence technology, reinforcement learning
has provided a new method for path planning that confronts the unsatisfactory results of
traditional methods, does not rely on accurate environment models, and has a significant
advantage in solving efficiency. Zhao et al. [17] proposed a Q-learning path-planning
algorithm for autonomous underwater vehicles (AUVs) using a potential-game-based
optimal rigid graph method to balance the trade-off between energy consumption and
network robustness. Chen et al. [18] regularized distances, obstacles, and prohibited areas
as rewards or penalties, and used Q-learning to learn an action-reward model that allows
ships to find navigation strategies.

Deep reinforcement learning is suitable for path-planning problems through function
approximation and representation learning of path-planning strategies using deep neural
networks [19]. Guo et al. [20] modeled the environment using the grid method and
optimized the reward function of DQN by setting the potential energy reward of the
target to the ship, adding a reward region near the target and a danger region near the
obstacles, which allowed the ship to avoid obstacles and reach the target point faster. Luo
et al. [21] proposed a reinforcement learning algorithm for single AGV path planning.
The algorithm uses the A* algorithm to guide the DQN algorithm, leading to a faster
training process and less time needed for decision making compared with using only the A*
algorithm. However, this method requires pre-gridding of the environment and the state
space is discrete, which makes it simple to implement but will cause some loss of accuracy
compared with continuous environments. Li et al. [22] improved the action space and
reward function of the DQN algorithm by using the artificial potential field method based
on the continuous state space, which learns an effective strategy. Zheng et al. [23] proposed
an improved dense reward of the PPO method for ship route guidance. The method has
high training efficiency and decision accuracy, enabling safe and efficient path decisions
in complex and uncertain environments. The disadvantage of the above methods is that
they only consider the minimization of distance in the evaluation index, without fully
investigating the generalization of the model. Dong et al. [24] addressed the robot path-
planning problem using the DDPG algorithmic framework and an adaptive exploration
method based on the ε-greedy algorithm to improve exploration efficiency. Zhao et al. [25]
improved the stability of the robot’s path-planning algorithm by normalizing the state
and adding a Batch Norm layer to the strategy network, but the study only addressed the
robot’s path-planning problem.

3. Problem Description and Environmental Modeling
3.1. Ship Path-Planning Problem Description

The ship path-planning problem contains two elements, the map and the ship. The
map consists of water boundaries, obstacles, a start point, and a target point. The ship
has elements such as the domain of the ship, the safety distance, etc. The water area
is represented by rectangular areas of length L and width W. A right-angle coordi-
nate system is established with the left boundary of the water area as the y-axis and
the lower boundary of the water area as the x-axis. The water area is represented as
Smap = {(x, y)|0 < x < L, 0 < y < W

}
. And the area outside the water area is represented

as Sout = {(x, y)| x ≤ 0 or x ≥ L, y ≤ 0 or y ≥ W}, which is defined as a restricted naviga-
tion area. Obstacles are simplified as circles, and each irregular obstacle expands into a
circle of radius ri whose position in waters is (x ri, yri) (i ∈ B = {0, 1, 2, . . . , n}), where B
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is the set of obstacles in the map. The space occupied by the obstacle is also a restricted
navigation area for ships, and a path is invalid if it crosses this area.

The ship is the subject of the path-planning problem. The ship domain is simplified
as a circle with radius of the safe distance d during ship navigation. Considering that the
actual ship is not a particle and will be affected by uncertain environmental factors such as
weather, weaves, etc. during navigation, the ship may deviate from the planned trajectory,
setting a safe distance to avoid accidents is necessary. Therefore, the solution for ship path
planning is a safe path zone rather than a separate path. The center trajectory of the ship’s
path at time t is P =

{(
pxt, pyt

)∣∣t ∈ {0, 1, 2, . . . , Tend}
}

.

3.2. Markov Decision Processes for the Ship Path-Planning Problem

Reinforcement learning consists of two parts, the agent and the environment. The
agent learns the optimal strategy in constant interaction with the environment. The agent
is the subject of actions, and various characteristics of the agent in the environment are
denoted as state, while the agent can take different actions to obtain a new state after
interacting with the environment [26]. The reward mechanism drives the state to make
transfers by taking sensible actions so that the agent receives a larger reward value in the
environment. The environment in reinforcement learning can generally be described by a
Markov decision process (MDP) [27].

The ship path-planning problem can be described as a Markov decision process,
represented by

(
S, A, R, Pa

ss′ , γ, π(at|st), vπ(s)
)
, where S is the set of states and A is the

set of actions. After taking the action a, the state transitions to s, and an instant reward
R(s, a) is obtained. Pa

ss′ represents the probability that the state is transferred from S to
S′ when action a is chosen. The cumulative reward of state St at moment t is called the
return Gt. The calculation function is shown as follows, including the instant reward Rt of
St and the rewards of the subsequent k steps, where γ is a discount factor characterizing
the degree of reward decay. Agents explore the environment and learn strategy π(at|st) by
interacting with the environment. The value function vπ(s) is used to evaluate the merits
of the state.

G = ∑∞
k=0 γkRt+k (1)

The state of the ship in navigation can be described by position and course. Consider-
ing the mission objectives of path planning, information on the target point and obstacles
should also be included. When an action is taken, the state of the ship’s position and course
is updated; meanwhile, the ship is reasonably rewarded for guiding itself toward the target
point. The objective of the ship’s path-planning scenario is to optimize the path-planning
scheme, i.e., the policy π(at|st), specifically to maximize the expectation of cumulative
return J(π) of the policy. The objective function is calculated as follows:

J(π) = Eπ

[
∑t r(st, at)

]
(2)

3.3. Risk Assessment Model

To guide the algorithm in finding a safer path more quickly in path-planning scenarios
with known or unknown obstacles, the restricted navigation information is fully exploited
by evaluating the collision risk of the restricted navigation area. The state space is updated
using direction and distance information of the restricted navigation area through the
restricted navigation area detection strategy. And the reward function is improved based
on a risk assessment model in which the path safety factor is increased by introducing a
risk penalty.

3.3.1. Detection of Restricted Navigation Area Information

The restricted navigation area includes the area outside the water boundary and the
space occupied by the obstacles. Obtaining the position and bearing of the restricted
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navigation area facilitates the correct decision making in path planning, enabling the ship
to avoid obstacles while avoiding entering the shoal area and running aground.

Firstly, the current center position is denoted by O, and the current course is denoted
by α. A ray Lo is drawn out from the direction of α with O as the pole and Lo as the polar
axis, so that a polar coordinate system ρ ∼ θ is established. Five line segments are utilized
to detect the restricted navigation area. The polar equations for the ship safety domain
boundary, the detection line segments, and the obstacle boundaries are as follows:

ρ = rsa f e (3){
rsa f e ≤ ρ ≤ rdet

θ = θi, i = 1, 2, 3, . . . , n
(4)

ρ2 − 2acos θ − 2bsin θ + a2 + b2 − robs
2 = 0 (5)

In this function, parameter rsa f e denotes the radius of the ship safety domain; parame-
ter rdet denotes the length of the detection line segment; and parameter θi denotes the angle
relative to the ship’s course, where I = {0, 1, 2, . . . , n}. Parameter a and parameter b are
the location parameters of the center point of the obstacle, and parameter robs is the radius
of the obstacle.

We assume that the two endpoints of the line segment are P1i and P2i. If there is an
intersection between Li and the obstacle’s boundary, the intersection point is denoted as Qi,
and li is returned, which takes the value of the length of the line segment P1iQi. If the line
segment Li does not intersect with the obstacle’s boundary, returning directly to the length
li of the line segment Li will result in the same value as the endpoint P2i and intersection
point Qi coincide with each other. This can be easily confused with the case where there
is an intersection. As a result, ki is used as the return value in the end, and it is defined
as follows.

ki =

{
li, restricted navigation area detected
li + ε, no restricted navigation area detected

(6)

In this formula, parameter ε is a small positive number relative to li. The range of
values for ε is 0 < ε ≤ 0.05li.

The method for detecting information regarding restricted navigation areas outside
the boundary is the same as that for obstacle detection. The diagram in Figure 1 shows how
to acquire distance information of the restricted navigation area (k1, k2, . . . , ki, . . . , kn) and
bearing information (θ1, θ2, . . . , θi, . . . , θn).

3.3.2. Navigation Risk Assessment Model

Distance information from different directions can be obtained by detecting restricted
navigation areas. To make full use of this information, the data are first normalized. Then,
the coefficients of each direction’s information are determined. Finally, a linear summation
is performed to obtain a comprehensive risk assessment model. The level of collision risk
faced by the ship increases with the assessment value and decreases vice versa. The risk
assessment process consists of the following steps:

Step 1: The traversal judgment determines whether there is an intersection between
the set of line segments Lall = {L1, L2, . . . , Li, . . . , Ln} and the boundary. If an intersection
exists, return ki and proceed to Step 3. If not, proceed to Step 2.



Sustainability 2024, 16, 3239 6 of 16Sustainability 2024, 16, 3239 6 of 16 
 

 
Figure 1. Information detection diagram of restricted area. 

3.3.2. Navigation Risk Assessment Model 
Distance information from different directions can be obtained by detecting restricted 

navigation areas. To make full use of this information, the data are first normalized. Then, 
the coefficients of each direction’s information are determined. Finally, a linear 
summation is performed to obtain a comprehensive risk assessment model. The level of 
collision risk faced by the ship increases with the assessment value and decreases vice 
versa. The risk assessment process consists of the following steps: 

Step 1: The traversal judgment determines whether there is an intersection between 
the set of line segments 𝐿 = {𝐿 , 𝐿 , … , 𝐿 , … , 𝐿 }  and the boundary. If an intersection 
exists, return 𝑘  and proceed to Step 3. If not, proceed to Step 2. 

Step 2: To determine whether the set of detected line segments 𝐿  intersects with 
the obstacle or not, the traversal is performed and 𝑘  is obtained. After this, proceed to 
Step 3. 

Step 3: The risk of collision is calculated using the risk assessment function, which is 
based on the obtained 𝐾 = 𝑘 ,𝑘 , … , 𝑘 , with the following formula: 𝐴 = − ∑ 𝜗 𝑘 , (7) 

In this formula, the parameter 𝜗  represents the coefficient that corresponds to 𝑘 . 
It is a great challenge to solve the continuous environment model in reinforcement 

learning. The ship path-planning model in this study utilizes MDP with continuous state 
space and considers the safe distance between the ship and obstacles to determine a safe 
path area. Additionally, a risk assessment model is constructed to evaluate the 
navigational risk of the ship based on the direction and position of the restricted 
navigation area obtained from detection. By incorporating the risk assessment model into 
the path-planning method, the safety of the path can be improved. 

4. Path-Planning Algorithm Design 
Based on the SAC algorithm framework, a novel path-planning algorithm is 

proposed, in which this paper specifically considers the limitations of the ship course 
during navigation when designing the action space so that the safety and smoothness of 
the path can be increased. To improve the generalization of the model, the ship’s position 
coordinates relative to the target point, the sine and cosine values of the course angle, and 
restricted navigation area information are used to construct a continuous state space, 
which can reduce errors caused by state discretization. Considering the size of the ship 
domain and the risk assessment model, the reward function is improved by introducing 

Figure 1. Information detection diagram of restricted area.

Step 2: To determine whether the set of detected line segments Lall intersects with the
obstacle or not, the traversal is performed and ki is obtained. After this, proceed to Step 3.

Step 3: The risk of collision is calculated using the risk assessment function, which is
based on the obtained K =

{
k1, k2, . . . , kn

}
, with the following formula:

A = −∑n
i=1 ϑiki, (7)

In this formula, the parameter ϑi represents the coefficient that corresponds to ki.
It is a great challenge to solve the continuous environment model in reinforcement

learning. The ship path-planning model in this study utilizes MDP with continuous state
space and considers the safe distance between the ship and obstacles to determine a safe
path area. Additionally, a risk assessment model is constructed to evaluate the navigational
risk of the ship based on the direction and position of the restricted navigation area obtained
from detection. By incorporating the risk assessment model into the path-planning method,
the safety of the path can be improved.

4. Path-Planning Algorithm Design

Based on the SAC algorithm framework, a novel path-planning algorithm is proposed,
in which this paper specifically considers the limitations of the ship course during navi-
gation when designing the action space so that the safety and smoothness of the path can
be increased. To improve the generalization of the model, the ship’s position coordinates
relative to the target point, the sine and cosine values of the course angle, and restricted
navigation area information are used to construct a continuous state space, which can
reduce errors caused by state discretization. Considering the size of the ship domain and
the risk assessment model, the reward function is improved by introducing the risk penalty
into the sparse reward. Additionally, distance potential energy and angle potential energy
rewards are designed to guide path optimization reasonably, which ensures the avoidance
of navigation risks and guarantees the quality of the path.

4.1. Action Space Design

A discretization approach is used for the design of the action space in the form of a
discrete action space, which is a finite number of actions. To prevent a large turning angle
in the path from exceeding the ship’s steering operating range and producing unnecessary
fuel consumption, a turning angle limit of θres is set for each step. The two-dimensional
path-planning problem addressed in this paper involves a discrete action space comprising
three actions: turning left by θres, maintaining the current state, and turning right by
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θres. The actions are mutually exclusive, have no temporal correlation, and are limited in
number, so the action space can be coded using a three-dimensional one-hot vector, which
allows for the conversion of the three categorical variables into numerical vectors. Each
action category is represented by a dedicated column or feature in the numerical vector
and is converted into a vector consisting of 0 and 1. The encoding positions, respectively,
indicate whether the actions have been adopted, where a1 = [1, 0, 0]T, a2 = [0, 1, 0]T, and
a3 = [0, 0, 1]T.

4.2. State Space Design

The direct information describing the current position of the ship mainly includes its
absolute coordinates, course, the absolute coordinates of the target point, and information
on any restricted navigation areas. However, it is difficult to learn the path-planning
strategy efficiently if direct information is used as the state. Deep reinforcement learning
can fully fit the characteristics of each position and plan paths on a specific map by learning
the relationship between absolute location and action selection through a large amount of
exploration. But when the target point position changes, the relationship between absolute
position and action selection will also change. This leads to the learned strategy becoming
invalid and the model losing its generalization ability. To improve the transferability of the
state and the generalization of the model, the original state is reprocessed again to create a
more concise and efficient representation that still maintains a strong correlation with the
reward function. The information processing involves the following three aspects:

1. Transform absolute position data into relative target point position data, including
relative coordinates, relative distance, and relative direction.

2. Set three measuring lines to obtain the information of bearing and distance using the
strategy for detecting restricted navigation area information that integrates itself into
the state space and combines with the designed action space. The bearing information
consists of the directions of the three measuring lines, each corresponding to an angle
in the action space. The distance information includes the values obtained by the three
measuring lines, representing the restricted navigation area detection information.

3. Use the sine and cosine values to represent the course angle data adequately, which
are constrained to the range of [−1,1]. The benefits of the above method include not
only avoiding standardization processing, but also directly using sine and cosine
values to calculate other information, such as the angle between the heading angle
and the target guidance line.

4.3. Reward Function Design

In reinforcement learning, the feedback signals received by the agent through interac-
tion with the environment are called rewards, which can be used to improve the strategy
through the reward mechanism constantly [28]. In the path-planning task, sparse rewards
are designed for the two subtasks, i.e., avoiding restricted navigation areas and reaching
the target point from the start point. The reward Rgoal is obtained when the ship reaches the
target point; the penalty Rout is obtained when the ship enters the restricted navigation area.
And if the ship does not reach the target point and does not enter the restricted navigation
area, it continues to navigate and obtains the step penalty Rstep. The ship is encouraged to
avoid restricted navigation areas and to reach its target in as few steps as possible.

Rs =


Rgoal , reaching target
Rout, entering restricted navigation area
Rstep, keep sailing

(8)

This paper designs a potential-guided reward, including a distance potential and an
angle potential, to densify the reward. When the ship’s state changes, the reward function
can respond quickly to obtain an instant reward so that each state transition of the ship is
fully learned, and it helps to avoid excessive exploration. The risk assessment model is
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also incorporated into the reward function, which imposes penalties on high-risk paths to
improve the safety of the algorithm.

1. Distance Potential Reward

A simpler form of determining the reward is based on the distance of the current
position from the target point, but it lacks immediate feedback. The distance potential
reward in this paper is defined as a reward if the ship’s current position is closer to the target
than its previous position, or a penalty if it is farther away. This form better describes the
instant change in distance potential energy and encourages the ship to be more proactive
in its approach to the target. The distance potential energy reward expression is shown
as follows:

Rdis = −ωdis
(
disnow − dispre

)
(9)

In this formula, disnow and dispre represent the relative distance of the current state
and the previous state, respectively. ωdis is the factor of Rdis.

2. Angular Potential Reward

The potential energy of the angle is calculated based on the angle φ between the target
guideline and the current course angle, which is in the range of [0, π], where the target
guidance line is the line connecting the ship’s current position and the target, representing
the ship’s expected course. The formula for this reward is as follows:

Rangel = ωangel∆ϕ = ωangel
(
cos φnow − cos φpre

)
(10)

In this formula, φnow represents the angle of the current state, while φpre represents
the angle of the previous state. The variable ∆ϕ represents the difference in cosine values
between the two given angles. ωangel is the factor of Rangel . If ∆ϕ > 0, it means that
the current angular potential energy is greater than the angular potential energy of the
previous moment and should be rewarded. And if ∆ϕ < 0, it means that the current angular
potential energy is smaller than the angular potential energy of the previous moment and
should be punished.

3. Penalty for risk assessment

Due to the restricted navigation area information introduced to the state space, the
corresponding reward function must be added based on the principle of state and reward
co-design. According to the risk assessment model, the risk assessment penalty function is
designed as follows:

Rra = −
3

∑
i=1

ωisi (11)

In this formula, si corresponds to the distance data of the restricted navigation area.
When the distance is larger, the navigation risk is greater and the penalty should be imposed,
and in the end, the restricted navigation area penalty is obtained. And ωi is the factor of si.
Compared with sparse rewards, the risk penalty Rra enables the ship to learn the strategy
of staying away from restricted navigation areas in advance, and the resulting path is safer.

4.4. Algorithmic Framework Based on SAC

The concept of entropy is employed to quantify the level of disorder in system vari-
ables [29], and the entropy, i.e., H(π(·|st )), characterizes the extent of randomness in the
stochastic strategy π. There are three advantages of SAC introducing entropy into rein-
forcement learning: it increases the degree of the strategy’s randomness, strengthens the
degree of algorithmic exploration, and prevents the algorithm from becoming trapped in a
local optimum or even losing the ability to learn. The parameter of the strategy function
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is denoted as θ. The entropy value is added to the objective function, which is calculated
as follows:

J(π(θ)) = Eπ

[
∑

t
r(st, at) + αH(π(·|st ))

]
(12)

Policy π∗(θ) can be obtained from J(π(θ)). SAC is an off-policy reinforcement learning
method. It stores each step’s state, action, and reward in a replay buffer and approximates
the value using randomly selected samples. This process is called experience replay [30].
SAC adopts the actor-critic framework. The actor collects data by interacting with the
environment [31], while the critic’s value function directs the actor in learning a more
efficient strategy by using a policy-based gradient optimizer [32]. The critic learns a value
function to measure the quality of state–action pairs from the data collected by the actor,
and then helps the actor to update the policy.

To avoid overestimation of value, one actor network (πθ) and two critic networks
(Qω1 and Qω2 ) are constructed. The algorithm’s instability, caused by repeated updates of
TD error targets, can be avoided by introducing target networks Qω−

1
and Qω−

2
, correspond-

ing to Qω1 and Qω2 . The target networks all utilize the soft update mechanism [33], which
gradually brings the parameters of the critic target network closer to the critic network.
This ensures a more reliable convergence of the algorithm. The parameters of the target
networks are updated as follows:

ω−
new = τω + (1 − τ)ω−

old (13)

In this formula, τ represents the soft update factor. ω−
old and ω−

new, respectively,
represent the parameters of the target network before and after updating. And ω represents
the parameter of the training network. To prevent inefficiency in the algorithm, this paper’s
method uses fully connected neural networks instead of overly complex networks. The
ship path-planning algorithm that combines SAC with navigational risk assessment is
abbreviated as RA-SAC.

5. Simulation Experiment
5.1. Experimental Setup

The simulation experiment’s hardware platform configuration is Intel Core i7-9700K
CPU @ 3.60 GHz (8 CPUs) (Intel, Santa Clara, CA, USA). The programming was imple-
mented on the PyCharm 2021.1.2 platform. The simulation experiment’s map size is
50 × 50, and the algorithm’s parameters are determined through repeated testing. The
specific parameter values are listed in Table 1.

Table 1. Parameters for experiments.

Parameter Meaning Value

lractor Actor network learning rate 10−4

lrcritic Critic network learning rate 10−3

dimh Number of neurons in the hidden layer 128
γ Discount factor 0.95
τ Soft update factor 0.005

N Number of samples for batch gradient
descent 128

L Length of detection line in restricted
navigation area 2.0

D Radius of ship domain 0.5

5.2. Algorithm Validation Experiment

To examine the algorithm’s effectiveness throughout the training process, experiments
were conducted in an obstacle-free environment. In Figure 2, the horizontal axis represents
the number of training episodes, and the vertical axis represents the return and the number
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of steps, respectively. Figure 3 shows the trajectory changes after different episodes. The
return before training was −200, which means that the ship had not yet learned the path-
planning strategy, and at this time, the model used randomly initialized parameters. As
the algorithm gradually learned the strategy, the model parameters were continuously
optimized, and there was some volatility in the return curve.
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After 10 episodes, the ship tried to approach the target point, but it ended up reaching
the boundary near the starting point, resulting in a significant penalty and the end of
the episode. This shows that the algorithm was still exploring and had not yet explored
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positive samples. Due to the exploratory mechanism of reinforcement learning, the agent
obtains different training samples by continuously interacting with the environment.

After 117 episodes, the ship successfully reached the goal from the starting point and
the algorithm collected positive samples that brought a positive return of 118, which helped
the agent to learn good strategies. After 150 episodes, the ship reached the boundary near
the goal with more steps than in the tenth episode. In this stage, the policy continued to
explore based on positive samples, which may have resulted in better or worse samples.
These samples were used by the algorithm to learn the path-planning strategy. After
193 episodes, the return curve and step curve converged, and the optimal solution for path
planning was obtained. The validation experiments demonstrate the dynamic refinement
process of the path-planning policy, which consists of four stages: the exploration stage
without positive samples in the early stage, the stage in which positive samples are collected,
the exploration stage with positive samples in the later stage, and the stage where the
positive samples are utilized with the negative samples to learn the converged strategy.

5.3. Algorithm Performance Comparison Experiments

To verify the effectiveness of RA-SAC in solving the path-planning problem, path-
planning comparison experiments with RRT and DQN methods were conducted. The
methods can be categorized into deep reinforcement learning-based methods (DQN)
and traditional methods (RRT) based on their characteristics. The complexity of the en-
vironment could be increased by adding more obstacles while keeping the same map
size. Two indicators, path length and turning angle sum, were used to evaluate the path-
planning results. Path length characterized the quality of the path-planning result, with
shorter paths indicating better economy. Turning angle sum, on the other hand, character-
ized the safety and economy of the path.

5.3.1. Scenario 1

In Scenario 1, five obstacles are randomly generated, with start and target points
located at coordinates (10, 20) and (41, 45), respectively. Figure 4 displays the experimental
results, which include the trajectory change and the distance curve between the ship and the
target. The experimental results indicate that the paths obtained through the three methods
were in the same region. However, the path obtained through the RRT algorithm had
larger turning angles, while the paths obtained through the other two deep reinforcement
learning algorithms were smoother.
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This is because RRT expands paths based on the principle of sampling, which makes
it difficult to generate paths with excellent smoothness. In the early stage of path planning,
the RRT algorithm approaches the target more quickly, but the superiority of RA-SAC and
DQN is quickly reflected in step 8, since the latter two algorithms approach the target more
smoothly and faster. To accomplish the same path-planning task, RRT requires the greatest
number of steps, and the curve is more volatile, while RA-SAC requires the least number of
steps and the curve is smooth with the largest slope, which shows that the improved state
space and reward function of RA-SAC are more efficient in directing ship path planning
than those of DQN.

5.3.2. Scenario 2

Compared with Scenario 1, Scenario 2 increases the complexity of the environment
by setting 10 obstacles with start and target point coordinates of (10, 6.5) and (39, 43),
respectively. The three methods were tested under the same experimental conditions, and
the results are presented in Figure 5. The planned paths of the three methods fell into
different regions. When facing the first obstacle, RRT chose to find its path in the positive
direction of the y-axis, while RA-SAC and DQN found their paths in the positive direction
of the x-axis. Resembling Scenario 1, RRT was faster than the deep reinforcement learning
methods in approaching the target in the early stage of path planning, but the path had
more turning points and was closer to the obstacle boundary.
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When facing the second obstacle, RA-SAC and DQN used different strategies to navi-
gate the ship around obstacles. In the later stages of path planning, RA-SAC outperformed
DQN significantly, suggesting that RA-SAC can effectively achieve a balance between risk
assessment rewards and potential rewards of distance and angle. When the number of
steps was 42, the path planned by RA-SAC approached the target more quickly than RRT.
The ship’s approach to the target was expedited by the reward function while considering
the constraints of the path turning angles in the action space, thereby facilitating smoother
and more efficient path planning.

To eliminate contingency, 10 experiments were conducted using the RA-SAC, RRT,
and DQN methods in the same scenario. The comparison results are shown in Table 2,
and each index is averaged. Compared to RRT and DQN, RA-SAC showed performance
improvement, as evidenced by the minimum path length achieved and the sum of average
turning angles. RA-SAC and DQN outperformed the RRT algorithm in the evaluation of
the turning angle and this index, which indicates that the smoothness of the paths planned
by the deep reinforcement learning method was better. The smaller the turn of the ship,
the safer it is and the more fuel it saves. Simultaneously, RA-SAC had the smallest polar
deviation, which means its stability was the best.
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Table 2. Comparison of results of repeated experiments.

Algorithm

Scenario 1 Scenario 2

Average Path
Length/km

Sum of Average
Turning

Angles/rad

Average Path
Length/km

Sum of Average
Turning

Angles/rad

RA-SAC 42.07 1.65 54.53 1.68
RRT 49.71 26.21 58.20 29.38
DQN 50.74 6.96 63.59 9.11

5.3.3. Experiments on Model Generalizability

To validate the generalization and robustness of the model, a random start point and
a random target point were set to train the algorithm. The random values of the position
coordinates of the start and target points were treated as dynamic changes in the model
inputs. Due to the randomness of the start point and the target point, different combinations
of the start point and target point corresponded to different optimal trajectories and, hence,
different return values. Thus, the planning success rate was used as an index to evaluate
the generalization and robustness of the algorithm. The proportion of ships arriving at a
random target point from a random start point and avoiding restricted navigation areas in
every 100 experiments was taken as the success rate, and a higher success rate indicated
better robustness of the model.

The curve of the success rate changing with the number of iterations is shown in
Figure 6, which shows that in the early stage, the success rates of both methods of training
tended to increase with the number of iterations, and it can be observed that the perfor-
mance of DQN improved more rapidly. However, when the number of iterations reached
900, the success rate of RA-SAC exceeded that of DQN, and the curve converged more
quickly. In the later stage of training, the curve was smoother and the success rate was
close to 100%, indicating that the performance of RA-SAC was more stable.
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The results of the generalization experiments with the algorithm are shown in Table 3.
The total success rate represents the proportion of the ship completing the path-planning
task after convergence, and the range of success rates represents the difference between the
maximum success rate and the minimum success rate, which characterizes the robustness of
the model. The total success rate of the paths obtained by the RA-SAC solution was 99.56%,
which is an improvement of 3.96% compared with DQN; the range of the success rate
after convergence of the algorithm was 3%, which is smaller than that of DQN, indicating
that the generalization and robustness of the model are better than that of DQN. This is
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because SAC is based on maximum entropy deep reinforcement learning, which adds an
entropy regularization term to the objective and is more exploratory compared to DQN, so
the subsequent policy learning is faster and the performance with the policy network is
more stable.

Table 3. Results of generalizability experiments.

Algorithm Success Rate Range of Success Rate

RA-SAC 99.56% 3.00%
DQN 95.77% 13.00%

6. Conclusions

In this paper, a deep reinforcement learning-based RA-SAC path-planning method is
proposed for the ship path-planning problem, considering the collision risk during ship
navigation. The main conclusions are as follows:

(1) The ship path-planning problem was modeled based on a Markov decision process
and was combined with the limitations of the ship’s course to improve action space.
Based on the distance and bearing data of restricted navigation areas obtained from
the restricted navigation area information detection strategy, a continuous state space
was constructed to improve the convergence speed and model generalization of
the algorithm.

(2) This paper proposes a path-planning algorithm that integrates SAC and navigation
risk assessment. It improves sparse rewards based on the risk assessment model by
introducing risk penalties to improve path safety. It also introduces distance potential
rewards and angle potential rewards to effectively guide the ship to the target while
avoiding restricted navigation areas.

(3) The effectiveness of the algorithm was verified through simulation experiments,
which were measured with the indicator of the path length and the sum of the turning
angle. Compared with RRT and DQN, the RA-SAC algorithm showed a superior
performance in scenarios of two levels of complexity. Under the environment setting
of random start and target points, the success rate of the RA-SAC algorithm path
planning was 99.56%, 3.96% higher than that of DQN, indicating that the model has
good generalization and robustness.

This study realizes ship path-planning in a continuous environment by using the
maximum entropy deep reinforcement learning method SAC, which is combined with
a risk assessment model to improve the state space and reward function, and considers
the limitations of the ship course to ensure smoother paths. Therefore, the planned path
is both safe and economical, and the learned strategy gains a degree of generality due to
the experience replay mechanism. Given the complexity of the ship’s actual navigation
environment, additional uncertainties like weather, currents, wind, and waves can be taken
into account in future research.
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