
Citation: Pu, Y.; Li, F.; Rahimifard, S.

Multi-Agent Reinforcement Learning

for Job Shop Scheduling in Dynamic

Environments. Sustainability 2024, 16,

3234. https://doi.org/10.3390/

su16083234

Academic Editor: Maxim A.

Dulebenets

Received: 1 February 2024

Revised: 22 March 2024

Accepted: 10 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Multi-Agent Reinforcement Learning for Job Shop Scheduling in
Dynamic Environments
Yu Pu 1 , Fang Li 1,* and Shahin Rahimifard 2

1 School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China; cspy@mail.scut.edu.cn

2 School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University,
Loughborough LE11 3TU, UK; s.rahimifard@lboro.ac.uk

* Correspondence: cslifang@scut.edu.cn

Abstract: In response to the challenges of dynamic adaptability, real-time interactivity, and dynamic
optimization posed by the application of existing deep reinforcement learning algorithms in solving
complex scheduling problems, this study proposes a novel approach using graph neural networks
and deep reinforcement learning to complete the task of job shop scheduling. A distributed multi-
agent scheduling architecture (DMASA) is constructed to maximize global rewards, modeling the
intelligent manufacturing job shop scheduling problem as a sequential decision problem represented
by graphs and using a Graph Embedding–Heterogeneous Graph Neural Network (GE-HetGNN) to
encode state nodes and map them to the optimal scheduling strategy, including machine matching
and process selection strategies. Finally, an actor–critic architecture-based multi-agent proximal policy
optimization algorithm is employed to train the network and optimize the decision-making process.
Experimental results demonstrate that the proposed framework exhibits generalizability, outperforms
commonly used scheduling rules and RL-based scheduling methods on benchmarks, shows better
stability than single-agent scheduling architectures, and breaks through the instance-size constraint,
making it suitable for large-scale problems. We verified the feasibility of our proposed method in
a specific experimental environment. The experimental results demonstrate that our research can
achieve formal modeling and mapping with specific physical processing workshops, which aligns
more closely with real-world green scheduling issues and makes it easier for subsequent researchers
to integrate algorithms with actual environments.

Keywords: multi-agent proximal policy optimization; job shop scheduling problem; graph neural
network; green scheduling

1. Introduction

The manufacturing industry is continuously advancing towards intelligent manufac-
turing, shifting from the original large-scale single-product production mode to a variable-
batch personalized production mode. The products on production lines are becoming more
diverse, and the demand for orders is constantly changing. The probability of dynamic
unexpected events, such as equipment failures, has increased significantly, causing major
negative impacts on product production and factory operations. In addition, the flexibility,
scalability, and stability of intelligent production lines are being tested by various factors,
such as alterations in product categories and batches, shorter delivery cycles, constraints
on quality costs, and energy usage. Moreover, there is mounting pressure on future manu-
facturing applications to devise solutions for highly intricate tasks that not only cater to
market demands but also align with increasing economic and eco-efficiency requirements.
The urgent challenge facing intelligent production scheduling is how to adapt the intel-
ligent production mode to variable-batch personalized production, achieving non-stop
reconfiguration of systems amid a dynamic environment, and at the same time meeting the
green and sustainable production needs, minimizing the production energy consumption.

Sustainability 2024, 16, 3234. https://doi.org/10.3390/su16083234 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16083234
https://doi.org/10.3390/su16083234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0004-7313-2028
https://orcid.org/0000-0002-4195-9475
https://doi.org/10.3390/su16083234
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16083234?type=check_update&version=1

Sustainability 2024, 16, 3234 2 of 26

Job shop scheduling is a classic NP-hard problem in the field of shop floor schedul-
ing [1]. For NP-hard problems, exact solutions cannot be computed in polynomial time, so
mathematical methods [2], rule-based methods [3,4], and metaheuristics [5] (e.g., genetic
algorithms (GA), particle swarm optimization (PSO) and ant colony optimization (ACO))
as well as artificial intelligence-based scheduling algorithms [6] are used to generate suffi-
ciently accurate solutions. The mathematical approach can compute the global optimum,
but in the complex and changing dynamic scheduling environment, the computational
complexity of the mathematical approach is staggering. The rule-based approach is easy
to implement, fast to solve, has a short response time, and has good generalization, but
rule generalization is a process that needs to be explored, and reasonable scheduling rules
depend on historical experience. The metaheuristic-based approach is highly accurate
and has good overall scheduling performance, but the process of rescheduling increases
computationally when the environment changes and it is easy to fall into a local optimum.

Currently, intelligent methods for data-driven scheduling have greatly improved the
performance of real-time scheduling in dynamic environments, especially those based on
deep reinforcement learning algorithms [7–11]. On large-scale production lines, with a large
number of tasks and potentially long execution times, traditional scheduling algorithms
are often difficult to effectively handle. Compared to this, deep reinforcement learning can
effectively handle large-scale task scheduling problems by utilizing the processing power
of neural networks, thereby achieving more efficient production scheduling. Reference [12]
proposes a deep reinforcement learning scheduling algorithm that can achieve efficient task
scheduling on large-scale production lines, taking into account factors such as equipment
failures, real-time task priorities, and resource utilization. In the scheduling of production
tasks, multiple optimization objectives and constraints need to be considered, such as
task completion time, machine utilization, processing sequence, personnel scheduling,
etc. Traditional scheduling algorithms usually handle these problems via greedy or rule-
based strategies, but they are difficult to solve complex problems with multiple constraints.
Compared to this, deep reinforcement learning is a more flexible and intelligent method
that can optimize task scheduling decisions via continuous learning while maximizing
production efficiency while satisfying multiple constraints, such as the adaptive operator
selection paradigm based on dual deep Q-network (DDQN) proposed in reference [13].
The scheduling decision of production tasks usually occurs in dynamic and uncertain
environments, and many traditional scheduling algorithms are difficult to handle in this
situation. Deep reinforcement learning can better adapt to changes in the environment by
continuously learning and adjusting strategies in practice. For example, intelligent agents
trained via deep reinforcement learning can quickly respond to faults and downtime events
on the production line while avoiding resource waste and production stagnation. Refer-
ence [14] indicates that task scheduling algorithms based on deep reinforcement learning
perform better than traditional task scheduling algorithms in industrial manufacturing
tasks. Based on the above, it can be seen that deep reinforcement learning algorithms have
various advantages in production task scheduling decisions, including handling highly
dynamic and uncertain environments, adaptive learning of optimal strategies, handling
multi-objective and multi-constrained optimization problems, and solving large-scale task
scheduling problems.

Moreover, in a large-scale data-driven environment, the scheduling methods currently
used are relatively complex in the problem design process, and the scheduling efficiency is
not high enough. In the actual production scheduling with dynamic disturbance, how to use
artificial intelligence algorithms to optimize resource energy consumption while improving
scheduling efficiency and realizing real-time dynamic scheduling requirements without
downtime still has the following challenges: (1) Real-time interaction with manufacturing
resources. In intelligent factories, it is necessary to quickly perceive and collect information
on manufacturing resources in the production system, thus requiring a reasonable dynamic
scheduling architecture. (2) Allocation decisions of production tasks. The production
scheduling process not only needs to consider the matching of the workpiece and the

Sustainability 2024, 16, 3234 3 of 26

machine but also the processing sequence of the workpiece. (3) Dynamic adaptability of
the scheduling algorithm. The scheduling algorithm not only needs to consider the whole
processing process and complete the scheduling goal but also needs to dynamically adapt
to different types of data input of different scales in different environments.

To address the aforementioned challenges, this study focuses on the limitations of
current intelligent learning scheduling algorithms in terms of scheduling quality and
stability under complex dynamic production conditions while targeting the dynamic job
shop scheduling problem in intelligent manufacturing. The main contributions of this
paper are as follows:

(1) A new distributed multi-agent scheduling architecture (DMASA) is proposed, where
each workpiece is treated as an intelligent agent. Using a reinforcement learning
algorithm, all agents cooperate with each other to maximize the global reward, en-
abling effective training and implementation of the scheduling algorithm to make
scheduling decisions.

(2) Based on the Markov decision-making formula, the representation of state, action,
observation, and reward is introduced. The use of heterogeneous graphs (HetG)
is proposed to represent states in order to encode the state nodes effectively. A
heterogeneous graph neural network (GE-HetGNN) based on graph node embedding
is used to compute policies, including machine-matching strategies and process
selection strategies.

(3) For the purpose of green dynamic workshop scheduling, the multi-agent proximal
strategy optimization algorithm (MAPPO) based on the AC architecture is employed
to train the network. This approach minimizes energy consumption in the scheduling
workshop while handling dynamic events, thereby achieving better rational resource
utilization. To validate the superiority and generalization of the proposed architecture
and algorithm, a large number of experiments were conducted on instances and
standard benchmarks, including large-scale problems.

The remaining sections of this paper are structured as follows. In Section 2, we present
an overview of deep reinforcement learning techniques applied to job shop scheduling.
Section 3 provides a comprehensive explanation of the relevant concepts related to the
problem at hand. Our multi-agent reinforcement learning scheduling algorithm and
network model, along with the establishment of the mathematical model, are detailed in
Section 4. The training process for the network architecture is discussed in Section 5, where
we also compare it with other algorithms and validate the effectiveness of our proposed
approach. Finally, in Section 6, we conclude this paper.

2. Literature Review

The “intelligence” of a factory can be improved from two aspects: architecture re-
design and scheduling optimization. On the one hand, many scholars have approached
the resource allocation problem from a multifaceted collaborative framework in order to
achieve factory intelligence; on the other hand, actual processing workshops often face
destructive events, such as machine failures and emergency operations that require un-
expected handling. These events may cause the rescheduling of existing plans, leading
to uncertainty in work release times, machine availability, and changes in operating pa-
rameters, which can result in dynamic fluctuations in workshop productivity and energy
consumption. Dynamic scheduling, as a vibrant research area, has garnered significant at-
tention from both academia and industry. Existing methods for solving dynamic workshop
scheduling problems primarily fall into two categories: traditional approaches and those
based on artificial intelligence (AI). In this article, we concentrate on the dynamic workshop
scheduling issues in intelligent factories and address them using artificial intelligence
methods. Consequently, the primary focus of scheduling optimization methods lies in
artificial intelligence approaches.

Sustainability 2024, 16, 3234 4 of 26

2.1. Dynamic Job Shop Scheduling Based on Conventional Methods

Advanced optimization algorithms play a crucial role in modern decision-making
problems. These algorithms solve complex and ever-changing problems by searching for
the best solution in the search space, which typically includes multiple objectives and/or
constraints. Compared with traditional optimization methods, advanced optimization
algorithms have better adaptability and robustness and can handle more complex and
real-world problems. At present, there is a considerable amount of research on algorithms
such as hybrid heuristics and metaheuristics, adaptive algorithms, self-adaptive algorithms,
island algorithms, polyploid algorithms, and hyper-heuristics. For dynamic production
scheduling problems, they can be merged into three categories of methods: heuristic algo-
rithms, meta-heuristic algorithms, and hyper-heuristics algorithms. The hybrid heuristic
and meta-heuristics algorithms, by combining multiple heuristic techniques, can better
balance the trade-off between local search and global search during the search process,
thereby increasing the possibility of finding the global optimal solution. This algorithm has
wide applications in many fields, including online learning, scheduling, multi-objective
optimization, and data classification. In workshop scheduling decision-making problems,
hybrid heuristics [15] and metaheuristic algorithms [16] can improve workshop produc-
tion efficiency and resource utilization by combining different scheduling strategies and
resource allocation methods. Adaptive algorithms [17] are another important type of
advanced optimization algorithms that can automatically adjust search strategies and pa-
rameters based on the characteristics and states of the problem in order to improve search
efficiency and quality. This algorithm has wide applications in scheduling, transportation,
and medical fields. In workshop scheduling problems, adaptive algorithms [18] can dy-
namically adjust production plans and resource allocation based on the actual situation
of the workshop to adapt to constantly changing needs and conditions. The islanding
algorithm [19] and the polyploid algorithm [20] are advanced optimization algorithms
based on swarm intelligence, which simulate collective behavior in biological systems and
achieve the search and optimization of collective intelligence. These algorithms can im-
prove the efficiency and capacity utilization of the entire workshop in workshop scheduling
problems by dividing the workshop into multiple independent subsystems and designing
unique scheduling strategies and resource allocation schemes for each subsystem. The
hyper-heuristics algorithm combines multiple optimization ideas and a comprehensive
approach of heuristic algorithms [21], which can provide better performance in solving
complex problems. This algorithm has wide applications in medicine and other fields,
which can improve the efficiency of medical resource utilization and the accuracy of medical
decision-making. In workshop scheduling problems, hyper-heuristics algorithms [22] can
improve workshop production efficiency and resource utilization by combining different
scheduling strategies and resource allocation methods.

Jing et al. [23] proposed two local search-based metaheuristic algorithms, i.e., itera-
tive greedy algorithm and iterative local search algorithm, to solve dynamic shop floor
scheduling problems with uncertain processing times. By harnessing some fundamental
heuristic algorithms, hyper-heuristics algorithms employ advanced strategies to generate
novel heuristic algorithms capable of effectively tackling diverse NP-hard problems. Luo
et al. [24] developed a dual heterogeneous island parallel genetic algorithm GA with an
event-driven strategy for job shops handling new urgent arrival tasks. This design, which
includes cellular genetic algorithms on GPUs and classical genetic algorithms on multi-core
CPUs, is fully compatible with a two-tier parallelized distributed architecture. To enhance
the performance of the genetic algorithm employed, the concurrent execution by the host
and devices notably reduces execution time, underscoring the significance of balancing
computational capabilities from both parties. It has been observed that the optimized
genetic algorithm yields competitive results. Xu et al. [25] introduced a novel heuristic
template and automatically evolved heuristic rules for dynamic workshop scheduling via
the genetic programming heuristic algorithm (GPHH). They evaluated the newly intro-
duced GPHH-DR with delayed routing on multi-objective dynamic scheduling problems,

Sustainability 2024, 16, 3234 5 of 26

optimizing both energy efficiency and average delay. Designing efficient scheduling rules
manually for production systems is obviously a laborious and time-intensive task. Ge-
netic programming-inspired scheduling rules are effective for intricate production systems;
however, the extensive heuristic search space may hinder genetic programming from iden-
tifying near-optimal scheduling rules. Nguyen et al. [26] proposed a new hybrid genetic
programming algorithm for dynamic job shop scheduling. Experimental results show that
this method can effectively improve the quality of evolutionary rules. Zhang et al. [27]
proposed a recombination mechanism based on correlation coefficients, which provided
guidance for super-narrow GP to generate progeny by efficient adaptive recombination
in DFJSP. This helps GPHH find better scheduling heuristic by improving the generation
quality and analyzing the performance of the proposed algorithm in terms of evolution
rules, convergence speed, and training time efficiency. Li et al. [28] proposed an energy
optimization method for flexible machining workshops that takes dynamic events into
account, as well as total energy consumption and completion time. The non-dominant
sorting Genetic algorithm II (NSGA-II) method was used to solve the problem. Aim-
ing at minimizing completion time and total carbon emissions, Li [29] focused on the
study of green scheduling in flexible job-shop systems. Considering energy consumption
and worker learning efficiency, an improved multi-objective sparrow search algorithm
(IMOSSA) is used to find the optimal solution. Shao et al. [30] proposed a green, flexible job
shop scheduling problem based on an evolutionary algorithm and variable neighborhood
search (VNS), taking total completion time and energy consumption as objective functions.
Afsar et al. [31] designed an improved Artificial bee colony algorithm (IABC) to solve a
multi-objective FJSP model that considered machine load, maximum completion time of all
tasks, and total carbon emissions. The above energy-saving optimization methods have not
simulated the influence of dynamic events on production planning. In summary, advanced
optimization algorithms play a crucial role in solving challenging decision problems, bring-
ing enormous value to various fields by providing efficient, accurate, and feasible solutions.
Especially in workshop scheduling decision-making problems, the application potential of
advanced optimization algorithms is enormous, which can further improve production
efficiency and resource utilization.

2.2. Dynamic Job Shop Scheduling Based on Artificial Intelligence (AI)

Against the backdrop of energy conservation and consumption reduction, an increas-
ing number of scholars are focusing on green scheduling, devising effective energy-saving
strategies, and fostering the harmonious development of intelligent manufacturing and
green production. Reinforcement learning (RL) and deep reinforcement learning (DRL) [32]
have been continuously employed to address scheduling issues. Akyol and Bayhan [33]
provided an in-depth review of artificial neural network (ANN) methods and highlighted
identified research trends. Weckman et al. [34] utilized neural networks to acquire predic-
tive knowledge related to operation position allocation in sequences generated by genetic
algorithms (GA). Gong et al. [35] introduced a two-stage memetic algorithm to reduce
machine restarts and devised a strategy that leverages operation block movement to further
optimize the overall energy consumption objective. Integrating reinforcement learning with
neural networks (NNs) has emerged as a promising approach for addressing scheduling
problems [36].

However, the learning complexity of neural networks rapidly increases with the
number of jobs and machines, making it challenging to effectively obtain high-quality
scheduling as a training dataset. Addressing large-scale scheduling problems with DRL-
based methods remains a challenge. Xiong et al. [37] proposed four new dynamic job
shop scheduling rules, aiming to minimize total delay time and extend the technical
priority constraints. Tao et al. [38] proposed a hybrid multiphase quantum particle swarm
optimization algorithm for solving dynamic scheduling problems under new job insertion
and machine failures. Baykasoğlu and Karaslan [39] proposed a greedy random adaptive
search approach to tackle issues arising from expiration date changes, dynamic order

Sustainability 2024, 16, 3234 6 of 26

insertion, machine failures, and order cancellations. Liu [40] proposed an integrated
architecture of DRL and MAS (DRL-MAS) to accomplish real-time scheduling in dynamic
environments. Yang [41] developed a DDQN method to solve the scheduling problem of
dynamic production lines. Luo [42] used DQN to integrate the dynamic, flexible job shop
scheduling problem (FJSP) using DQN to minimize total latency and solve the problem of
inserting new orders.

Liu et al. [43] introduced an actor–critic deep reinforcement learning approach grounded
on scheduling rules to determine actions. Zhang [44] presented an AI scheduler adaptive
learning strategy rooted in the proximal policy optimization (PPO) algorithm to enhance
decision-making capabilities amidst order and resource disruptions. Han [45] presented a
deep reinforcement learning (DRL) framework that leverages analytical graph scheduling to
navigate the complex and dynamic production environment inherent to dynamic job shop
scheduling problems. This framework integrates the real-time responsiveness and flexibility
of deep convolutional neural networks (CNNs) and reinforcement learning (RL), employing
deep CNNs to approximate state operational values, representing manufacturing states as
multi-channel images and feeding them into the network, employing various heuristic rules
as available actions. Huang [46] crafted a concatenated disjunctive graph representation for
DJSP and proposed a feature extraction architecture grounded in graph neural networks
(GNNs) to unearth state embedding throughout the problem-solving process.

In summary, current research on minimizing energy consumption mainly focuses on
metaheuristic algorithms. In the field of artificial intelligence, the focus of most articles
on workshop scheduling is on minimizing manufacturing span rather than considering
energy consumption. In the ever-changing production environment, there will be a fusion
of multiple factors, such as product diversification, frequent machine failures, and order
insertion; the current dynamic scheduling algorithm only solves the dynamic schedul-
ing problem in one to two dynamic environments. However, under complex dynamic
production conditions, the solution of dynamic scheduling for these situations is still not
perfect. On the one hand, it is difficult to ensure the quality and stability of production
scheduling under the demand of non-stop scheduling, or specific problems may not be
applicable to production and cannot be combined with practical production. On the other
hand, the optimal scheduling method may vary under different demands or scenarios, and
the existing intelligent scheduling algorithms cannot meet these demands.

3. Problem Formulation
3.1. Dynamic Job Shop Scheduling Problem Formulation

Consider a dynamic scheduling problem in a smart manufacturing environment,
where job shop operations involve order insertion, machine failure, job cancellation, and
variation in operation processing time. In this scenario, there are n continuously arriving
workpiece jobs J = {J1, J2, J3, . . . , Jn} on m machines equipment M = {M1, M2, M3, . . . , Mm},
and all machines are idle at the start of scheduling. Each workpiece job Ji consists of ni
processes that need to be prioritized, and the jth process of workpiece Ji is denoted as Oij.
Each process Oij can be performed on any compatible machine Mk chosen from the set of
compatible machines Mij(Mij ∈ M). The processing time of process Oij on machine Mk
is represented by tijk and the average processing time of processing Oij across available
machines is denoted by ti,j, calculated using Formula (1), and the arrival time and deadline
of workpiece Ji are Ai and Di, respectively. During execution, each operation must be
carried out by one machine at a time without interruption. We use Xijk as the decision
variable: it takes the value 1 if operation Oij is assigned to machine Mk and 0 otherwise. The
total idle time is tk,idle of machine Mk, tk,idle is the idle time of machine k between (t,t + 1).
Additionally, we have idle power is Pk,idle, representing the power consumed during idle
periods; Ek,t denotes the idle energy consumption of machine k during intervals (t,t + 1).
The total idle energy consumption is Ek,idle, the power allocated by operation Oij to machine
Mk for processing is Pijk, and the energy consumption is PEijk. The processing time of
operating Oij on machine Mk is represented by tijk. The total energy consumption for

Sustainability 2024, 16, 3234 7 of 26

processing is based on Formula (2). The overall energy consumption during idle periods for
all processing operations can be calculated using Formula (3). Formula (4) determines the
maximum position of machine k, with its corresponding sequence denoted as {1, 2, . . . pk},
Sk,t+1 represents the position of machine k at t + 1, and Fk,t indicates its position of machine
k at completion time t. The calculation of idle time is shown in Formula (5). Furthermore,
when two jobs share the same job type, they follow an identical sequence of operations.
To solve DFJSP effectively, it is crucial to select suitable processing machines for each task,
arrange the process sequence logically, and determine the start time Sij. This ensures
that the maximum completion time Cmax for all workpieces within a given deadline is
minimized, as depicted in Formula (6), while simultaneously minimizing the total energy
consumption. If Cij denotes the actual completion time of process Oij. Considering that
parallel processing of multiple artifact jobs will have competition for resources and increase
the total time cost, this paper contains the following problem model assumptions:

(1) It is available on every machine at zero moment;
(2) Only one operation can be processed on one machine at a time;
(3) Once an operation is processed on a machine, it cannot be interrupted;
(4) There are disruptions in production, such as machine failure, order insertion, and

job cancellation;
(5) All processing data, including processing time, idle power of the machine, etc.,

are determined;
(6) When two jobs have the same type of operation, they have the same and unique order

of operation;
(7) The transportation time and setup time of the job are negligible.

ti,j =

(
∑k∈Mij

tijk

)
/
(∣∣Mij

∣∣) (1)

PEijk = Pijk·tijk (2)

Ek,idle = ∑t∈pk−1
Pk,idle·tk,idle = ∑t∈pk−1

Pk,idle·(Sk,t+1 − Fk,t) (3)

pk = ∑ni
i ∑jn

j Xijk (4)

tk,idle = Sk,t+1 − Fk,t (5)

Cmax = Minimize∑n
i=1 maxCij (6)

The workshop’s energy consumption takes into account both the energy consumption
of machine tools and the energy consumption of the workshop itself. Thus, the total
energy consumption comprises three components: processing energy consumption Em, idle
energy consumption Eidle, and normal energy consumption E0. Idle energy consumption is
calculated by multiplying the idle time tidle by the machine idle power Pidle. Normal energy
consumption encompasses the energy used by workshop lighting, ventilation, heating,
and other facilities, with the power uniformly denoted as P0. As a result, the total energy
consumption associated with ordinary energy consumption is linked to the workshop’s
maximum processing time Cmax, and the final total energy consumption is depicted in
Equation (7). The primary objectives are to minimize both total energy consumption and
completion time.

The total energy consumption is the sum of processing energy consumption and idle
energy consumption, as shown in equation f 1(t), and makespan is the longest completion
time of the operation, as shown in equation f 2(t).

Etotal = Em + Eidle + E0 = Em + Pidle·tidle + P0·Cmax (7)

Min f 1(t) = ∑i ∑j ∑k

(
Pijk·tijk·Xijk

)
+ ∑k(Pk,idle·tk,idle) + P0·Cmax (8)

Min f 2(t) = ∑n
i=1 maxCij (9)

Sustainability 2024, 16, 3234 8 of 26

In actual processing workshops, unexpected situations can also affect the energy
consumption of the workshop system. In this study, we also considered two common
dynamic events, including order insertion and machine failures. When a single insertion
event occurs, the processing machine will be reassigned to emergency workpiece operations,
and the processing plan will change, which will affect the processing energy consumption of
the operation and the energy consumption of idle machines. When a machine malfunctions,
the production plan is more likely to be disrupted, and the machine needs repair or
maintenance. At this time, the workpiece must be transferred to a new machine for
processing, or the job can also wait for the machine to run again (delayed operation). Both
types of emergencies can affect production plans, and energy consumption may be affected.

3.2. Markov Decision Process Formulation

This article considers the dynamic job shop scheduling problem being solved as a
sequential decision-making process. Thus, it can be converted into a Markovian or semi-
Markovian decision problem by defining states, actions, rewards, and policies. At each
decision step t, the current system state st is intuitively observed, a decision is made,
the scheduling action at is iteratively selected, the workpiece process is allocated to the
equipment, the operation sequence in the dynamic environment is determined, and the
time is updated from 0 to T(t), transitioning the environment to the next decision point
t + 1.

System state. State features can describe the main characteristics and changes in the
scheduling environment, including global and local information; the selection of state
features should be relevant to the scheduling goal. Otherwise, it will lead to feature
redundancy; Brandimarte [47] used the destructive graph G = (V, C ∪ D) to represent the
scheduling state, but it is difficult to adapt this approach to the processing time of operations
on different compatible machines for large-scale problems, so this study improves the
destructive graph by adding machine nodes M and modifying the set of destructive arcs
D to an undirected set of arcs E connecting operation nodes and machine nodes M, and
the processing time tijk can be attached to Eijk as a feature. Thus, the conditions of all
machines and operations in this study constitute each state st, which can be represented
as a heterogeneous graph Gt = (V, M, C, E, OV , CE), as described in Section 4.2 for details.
After the action

(
Oij, Mk) is taken at step t, the start time Sij(t) = Sij + pijk. where the

initial state s0 is extracted from the FJSP instance. When a dynamic event occurs, E in the
parsing graph changes for each step t. Nt

(
Oij

)
is the neighboring machine of operation Oij,

and Nt(Mk) is the neighboring operation of machine Mk. For each process, the original
feature vectors uij ∈ R6, vij ∈ R3, λij ∈ R are defined to reflect the state of the machine and
the O m arc at step T.

Action. In an intelligent production line, shop floor data need to be extracted for
guiding production scheduling, and the system state reflected by the shop floor data
corresponds to the optimal scheduling rules and selection methods. In deep reinforcement
learning, a composite rule that considers both machine selection and job selection is used,
including subproblems of process allocation and machine allocation. This means that the
decision maker not only needs to determine the process selection rule at each decision
point but also needs to determine the machine allocation rule. Therefore, the action on
decision step t is represented by at, including qualified machine selection action am and job
operation pair action ao. The action of the homework operation depends on the intersection
of unfinished homework, and the machine selection action depends on the number of
compatible machines for the selected homework operation. Therefore, during the solving
process, as more homework is completed, the action at will decrease.

Reward. The definition of the reward function is closely related to the scheduling
objective. At time t, the reward function for selecting action a in state s needs to reflect
the real-time impact of the action and the optimization objective of the scheduling system.
Calculate the difference between the partial solutions of two consecutive time steps t and
t + 1 as the immediate reward for each time step; that is, in this study, the reward function

Sustainability 2024, 16, 3234 9 of 26

is designed as rt(st, at) = −(C(st+1)− C(st)), where C(.) represents the completion time
of the scheduled job process Oij, i.e., C(St) = Max

{
Cij

}
, and the ultimate goal of the agent

is to maximize the cumulative reward when the discount factor γ = 1. At that point, the
cumulative reward is Rt(St, at) = C(S0)− Cmax, and the cumulative reward is the negative
value of the terminal completion time when all operations are scheduled.

Transformation and strategy. The topology and features of the parsing graph are used
to represent the current state and the new state st+1 based on the transition to the current
environmental state st and the action at deterministic. There is a mapping relationship
between states and actions, where a state can correspond to an action or to the probability
of a different action. The transition process from a state to an action is then called a strategy
and is generally denoted by π. For state s at moment t, a stochastic policy π(at|st) is used to
output the action distribution, and the optimal solution is generated by the optimal policy
π∗(at|st). Therefore, the goal of this paper is to make the stochastic policy as close to the
optimal policy as possible.

4. Methodology
4.1. Proposed Framework

The architecture consists of an intelligent manufacturing environment module (IME), a
state feature embedding module, and an algorithm module. During the training process, at
each decision point, the scheduling problem is transformed into a sequential decision prob-
lem by defining the environment, state, action, reward, and policy, and then the scheduling
policy is trained using the MAPPO algorithm to iteratively pick and choose scheduling
operations to achieve the goal of assigning artifact processes to compatible idle The IME
module includes a large amount of historical/simulated data used to solve the scheduling
problem frequently, as well as data information at an unseen scale (represented as unknown
order information in real production). The state feature embedding module obtains the
state information of artifacts, machines, and processes from the IME, converts the schedul-
ing state into a heterogeneous graph structure (HetG), and then uses a heterogeneous graph
neural network model (HetGNN) to represent the learning of the heterogeneous graph and
obtain the node state feature embedding of job artifacts and machines. The last algorithm
module is used to make decisions and input the state feature embedding obtained in the
second module, thus generating the action probability distribution and completing the
sampling scheduling operation (Figure 1).

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 27

...

...

...

Job
Operation
features

Machine
features

Operation-
Machine arc

features

...

...

Job
Operation
embedding

Machine
embedding

GNN

State
embedding

Input Graph

st

MAPPO

Memory
（st,at,rt,st+1）

Importance
sample

st,st+1

Softnax
Probability

[P0,P1,P2…Pm]

Adavantage
At = Rt − v∅(st)

Discount reward
v=v*γ+rt

Loss
L=-∑（At）²

Update φ
-∑（At）²

Update parameters θ
Et[πθ(at|st)*At]

Action Mask

Joint Actions
J-O-M

Intelligent Manufacturing
Environment(IME)

Unseen
instances

FJSP
instances

Output
schedule

...

...

...

...

...

...

...

...

Actor Policy Network

πθ(at|st)

Agent 1

…

...

...

...

...

...

...

...

...

Actor Policy Network

πθ(at|st)

Agent n

...

............

...

...

...

...

...

Critic Predict Network

πω... ...

............

...

...

...

...

...

Critic Predict Network

πω

Figure 1. Architecture of the proposed method.

The specific flow is as follows:
Firstly, when the scheduling event is triggered, the workshop state 𝑠௧ is inputted

into the participant network, and then the q values of the action space are obtained. These
q values are then transformed into a probability distribution of action set a [𝑃଴, 𝑃ଵ … 𝑃௠]
using the softmax function, and the production process is then sampled based on this
probability distribution. The selected production action is executed in the workshop en-
vironment to direct the equipment in completing the task, followed by the receipt of re-
ward 𝑟௧ and the updated workshop state 𝑠௧ାଵ. Meanwhile, previous scheduling data is
stored in the sample pool. The process is repeated until a certain amount of operation data
has been stored.

Secondly, the workshop state 𝑠௧ sensed at the last time step T of the loop in the first
step is fed back to the critic network to obtain the state value 𝑣ఝ(𝑠௧). Then, the reward set
R is obtained via discount factor transformation.

Thirdly, the parameters θ are optimized by calculating the loss function, and then
the weight parameters of 𝜋ఏ(𝑠௧, 𝑎௧) are updated and optimized based on the backpropa-
gation method.

Finally, the above steps are repeated until all training sets are completed.
In practical situations, there are differences in the probability distributions of the ma-

chined workpiece tasks arriving at different equipment on the shop floor. If the network
is simply described by shared parameters, it does not reflect the differences between de-
vices, which may lead to problems such as difficulty in converging the results. Therefore,
the basic framework used for the MAPPO algorithm module is an improved AC architec-
ture that conforms to the multi-intelligence case by creating different actor networks for
different types of intelligence, each maintaining its own network parameters, constituting
a multi-actor and a critic architectural model. The process is divided into two main com-
ponents: centralized training and decentralized execution. During the centralized training
phase, each agent learns strategies from its own observations and actions in the environ-
ment. The critic neural network gathers current state, action, and environmental infor-
mation and conveys reward information to multiple participant neural networks. The ac-
tor neural network, considering the current state, action, and reward, determines the next
action to be executed. All agents communicate with each other, accessing global infor-
mation and sharing a common evaluation network to assess the value function of agent
decisions, aiming for seamless coordination of each agent’s strategy.

After learning, decentralized execution of the model can extract each agent’s local
policy from the global policy, making each agent act independently of the others, thus
achieving the goal of task assignment and reducing computation time. The output of the
policy network 𝜋ఏ in the figure represents the softmax distribution over the entire action

Figure 1. Architecture of the proposed method.

The specific flow is as follows:
Firstly, when the scheduling event is triggered, the workshop state st is inputted into

the participant network, and then the q values of the action space are obtained. These q
values are then transformed into a probability distribution of action set a [P0, P1 . . . Pm] using

Sustainability 2024, 16, 3234 10 of 26

the softmax function, and the production process is then sampled based on this probability
distribution. The selected production action is executed in the workshop environment to
direct the equipment in completing the task, followed by the receipt of reward rt and the
updated workshop state st+1. Meanwhile, previous scheduling data is stored in the sample
pool. The process is repeated until a certain amount of operation data has been stored.

Secondly, the workshop state st sensed at the last time step T of the loop in the first
step is fed back to the critic network to obtain the state value vφ(st). Then, the reward set R
is obtained via discount factor transformation.

Thirdly, the parameters θ are optimized by calculating the loss function, and then the weight
parameters of πθ(st, at) are updated and optimized based on the backpropagation method.

Finally, the above steps are repeated until all training sets are completed.
In practical situations, there are differences in the probability distributions of the

machined workpiece tasks arriving at different equipment on the shop floor. If the network
is simply described by shared parameters, it does not reflect the differences between devices,
which may lead to problems such as difficulty in converging the results. Therefore, the basic
framework used for the MAPPO algorithm module is an improved AC architecture that
conforms to the multi-intelligence case by creating different actor networks for different
types of intelligence, each maintaining its own network parameters, constituting a multi-
actor and a critic architectural model. The process is divided into two main components:
centralized training and decentralized execution. During the centralized training phase,
each agent learns strategies from its own observations and actions in the environment. The
critic neural network gathers current state, action, and environmental information and
conveys reward information to multiple participant neural networks. The actor neural
network, considering the current state, action, and reward, determines the next action to
be executed. All agents communicate with each other, accessing global information and
sharing a common evaluation network to assess the value function of agent decisions,
aiming for seamless coordination of each agent’s strategy.

After learning, decentralized execution of the model can extract each agent’s local
policy from the global policy, making each agent act independently of the others, thus
achieving the goal of task assignment and reducing computation time. The output of the
policy network πθ in the figure represents the softmax distribution over the entire action
space, which corresponds to the probability value of each production action. Subsequently,
the production actions are drawn from this probability distribution and executed within
the workshop environment. Afterwards, the environment provides the agent with the
next workshop state st and the corresponding reward rt to the agent. During model
training, data pertaining to states, actions, and rewards extracted from sample trajectories
are assembled into a single batch, enabling the policy network to undergo optimization
and updating. Upon the arrival of a new task, the intelligence of the same node will make
a unified decision regarding the processing task, selecting one machine to carry out the
actual matching action, thus mitigating task conflicts among matching decisions.

4.2. Stating Features Embedding

This study uses a graph structure to represent the MDP state, thus capturing the
complex relationships between workpiece processes and available equipment. The so-
lution to the job shop scheduling problem is modeled as a heterogeneous graph model
(HetG) [48,49], which contains rich information about the arcs between multiple types of
nodes and the unstructured content associated with each node. The shop floor graph in
Figure 2b can be represented as a heterogeneous graph, where the node types include ma-
chine, workpiece, and process as in Figure 2a, and the relationship types include machine–
production–workpiece, workpiece–containing–process, and machine–processing–process.
Workpieces contain various processes, and the same type of workpieces can be processed
on multiple machines of the same type, and machines, workpieces, and processes are
interrelated. Therefore a new state feature graph structure Gt = (V, M, C, E, OV , CE) is
defined, where V is a node of multiple operation types, which includes all operations and

Sustainability 2024, 16, 3234 11 of 26

two virtual operations indicating the start and end of production (with zero processing
time), machine nodes are M, each corresponding to a machine Mk, and C is a collection of
ensemble arcs, which are directed from the start to the end forming n paths arcs, which
represent each processing process of the job. The set of analytic arcs E is an undirected
arc that is a link connecting operation nodes and compatible machine nodes. OV denotes
the set of operation object types, and CE denotes the set of relationship types, and each
node is associated with heterogeneous contents, as shown in Figure 2c. Process correlation
constraints are also added to enrich the set of connected arcs C and to obtain the tuple form
of arc weights by considering inter-process transfer time, machine processing time, and
delivery time to represent the state information of the graph nodes.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 27

space, which corresponds to the probability value of each production action. Subse-
quently, the production actions are drawn from this probability distribution and executed
within the workshop environment. Afterwards, the environment provides the agent with
the next workshop state 𝑠௧ and the corresponding reward 𝑟௧ to the agent. During model
training, data pertaining to states, actions, and rewards extracted from sample trajectories
are assembled into a single batch, enabling the policy network to undergo optimization
and updating. Upon the arrival of a new task, the intelligence of the same node will make
a unified decision regarding the processing task, selecting one machine to carry out the
actual matching action, thus mitigating task conflicts among matching decisions.

4.2. Stating Features Embedding
This study uses a graph structure to represent the MDP state, thus capturing the com-

plex relationships between workpiece processes and available equipment. The solution to
the job shop scheduling problem is modeled as a heterogeneous graph model (HetG)
[48,49], which contains rich information about the arcs between multiple types of nodes
and the unstructured content associated with each node. The shop floor graph in Figure
2b can be represented as a heterogeneous graph, where the node types include machine,
workpiece, and process as in Figure 2a, and the relationship types include machine–pro-
duction–workpiece, workpiece–containing–process, and machine–processing–process.
Workpieces contain various processes, and the same type of workpieces can be processed
on multiple machines of the same type, and machines, workpieces, and processes are in-
terrelated. Therefore a new state feature graph structure 𝐺௧ = (𝑉, M, C, E, 𝑂௏, 𝐶ா) is defined,
where V is a node of multiple operation types, which includes all operations and two
virtual operations indicating the start and end of production (with zero processing time),
machine nodes are M, each corresponding to a machine 𝑀௞, and C is a collection of en-
semble arcs, which are directed from the start to the end forming n paths arcs, which rep-
resent each processing process of the job. The set of analytic arcs E is an undirected arc
that is a link connecting operation nodes and compatible machine nodes. 𝑂௏ denotes the
set of operation object types, and 𝐶ா denotes the set of relationship types, and each node
is associated with heterogeneous contents, as shown in Figure 2c. Process correlation con-
straints are also added to enrich the set of connected arcs C and to obtain the tuple form
of arc weights by considering inter-process transfer time, machine processing time, and
delivery time to represent the state information of the graph nodes.

J1M1

M2

M3

J2

J3

O11

O12

O13

O21

O22

O23

O31

O32

O33
Heterogeneous Graph

Aggregating

Type1

Type2

Type3

Encoding

Node Type1

Node Type2

Node Type3

Sampling

Pooling

Features
extraction

One-hot Feature
transform

Bi-LSTM

(a)Node Type (b)Job Shop Graph Instance

Machine

Job

Operation

J1M1

M2

M3

J2

J3

O11

O12

O13

O21

O22

O23

O31

O32

O33

Product

Include

conjunctive arcs

Agent1

Agent2

Agent3

(c)Job Shop Graph Solution

M1

M2

M3

O11

O12

O13

O21

O22

O23

O31

O32

O33

disjunctive arcs

conjunctive arcs

Agent1

Agent2

Agent3

Figure 2. Heterogeneous graph neural network.

In a real scheduling workshop, the inconsistent size of scheduling instances leads to
changes in the size of the state graph, and in order to facilitate the use of deep reinforcement
to learn the actual scheduling strategy, the neural structure must be able to operate on
state graphs of different sizes. To represent the learning of heterogeneous graphs, this
study proposes a new heterogeneous graph neural network model, HetGNN, to obtain
the state feature embeddings of nodes in heterogeneous graphs. The original graph neural
network approach [50,51], although it can achieve size-agnostic training, is not applicable
to solving the heterogeneous graph structure of this study, where any adjacent machine in
the heterogeneous graph structure can only be an operation connected by an undirected
arc, and operations can be connected to operations and machines by directed or undirected
arcs. And the features (i.e., processing time) on the O-M arcs are important. Existing GNNs
usually focus only on node features and do not consider arc features. The network model
in this study is shown in Figure 2. First, the nodes in HetG are sampled and grouped
according to the node types. Then, the feature information of the neighboring nodes
sampled in the previous step is aggregated using a heterogeneous graph neural network
structure, including machine node embedding and operation node embedding. Finally, a
multilayer perceptron is used to train the model. This network structure fully considers the
topological and numerical information (original features) of the graph to effectively encode
the parsed graph. The graph node embedding method simultaneously considers both node
and edge features, preserving different types of relational features in the graph. The node
embedding can be viewed as a feature vector, which can perform various final tasks. For

Sustainability 2024, 16, 3234 12 of 26

graph G = (V, E), node embeddings are calculated by iteratively applying embeddings,
and the p-dimensional embeddings of node v ∈ V are calculated by applying embeddings
k times. Each embedding layer represents the relationship between different nodes in
the graph, and the node v during iteration k is denoted as hk

v. The calculation method is
as follows:

hk
v = MLPk

θk

((
1 + ϵk

)
hk−1

v + ∑u∈N(v) hk−1
u

)
,

where MLPk
θk is the multilayer perceptron, hk−1

v is the previous node embedding used
to distinguish a specific node v from other nodes in the graph, and h0

v is the initial node
embedding used to consider the initial input features of the target node. ϵ is an arbi-
trary number, and N(v) is the neighborhood of V. A GNN is constructed by stacking k
embedding layers, and the p-dimensional vector hk

G of the global embedding graph G
can be computed from the input graph using the pooling function L after k embedding

iterations: hk
G = L

(
hK

v
)
= ∑v∈V hK

v
|V| . Since solving the dynamic job shop scheduling problem

is equivalent to choosing an analytic arc for each node and fixing the direction, that is, the
analytic graph Gt associated with each state st is a hybrid graph with directed arcs that
describe key features such as priority constraints and operation sequences on the machine.
The original GNN structure is used for undirected graphs, and the GNN structure needs to
be adapted to handle the problem of this study. In the initial state, the undirected analytic
arcs are ignored, and then approximate fully directed arcs are added GDt = (V, C ∪ Du),
and as the scheduling process proceeds, Du increases, implying that more directed arcs are
added to the set of approximate directed arcs and the graph is not too dense. At this point,
the neighborhood of node V is defined as N(v) = {u|(u, v) ∈ E(GDt} , where E is the set
of arcs of the graph. Finally, the original features of each node v ∈ V on state st are defined
as h0

v(st) = (I(v, st), C(v, st)), the node embedding obtained after k iterations is denoted as
hk

v(st), and the embedding of the graph is denoted as hG(st).
Action selection. The proposed graph neural network is used to select an optimal

scheduling action at at state st. In the MDP formulation of the job shop scheduling problem,
action at represents the assignment of the target task to the available machines, and state
st represents the information about the shop environment at the transition at step t. To
derive the scheduling policy, the actor network π(at, st) is introduced, and MLP is used
to obtain the scalar p(at) = MLPω

(
[h k

v(st), hG(st)
]
) for each action, where MLPω has

two hidden layers and tanh activation function. The probability distribution P(at, st) of
available (feasible) actions selected by the target machine is expected to be generated over
the action space, and the actions based on P(at, st) are sampled for training purposes. A
softmax function is used during training to calculate the probability of selecting each at:
π(at|st) =

exp(P(at ,st))
∑at ′

exp(P(at ′ ,st))
. In the process of testing, the sampling strategies are selected

using parallelism, and the actions are sampled according to the strategies in each state
as well as the greedy E to select the action with the maximum probability. For neural
strategies, this parallel approach reduces the additional overhead of sampling.

4.3. Reinforcement Learning Algorithm

As shown in Figure 1, an actor–critic structure is used to train the policy network in
the MAPPO algorithm. The actor is the policy network πω and the critic decision network
vφ shares the same graph neural network as the actor. The critic is designed as a case of
approximate MLP state values, and the state embedding hG(st) computed by the graph
neural network is used as input to obtain the approximate state value vφ(st).

Scheduling the initial state as s0 and the interaction time step T between the actor intelligence
and the environment, a series of sample trajectories sa = [(s0, a0, r0), (s1, a1, r1) . . . (sT, aT, rT)]
related to the state, action, and reward data are formed and deposited in the sample pool.
The cumulative reward is shown in Equation (10), and the probability of each sample
trajectory is shown in Equation (11), and the expected reward is R(πθ) = ∑sa R(sa)πθ(sa).

Sustainability 2024, 16, 3234 13 of 26

Equation (11) takes the logarithm combined with the expected reward to obtain the strategy
gradient of actor, which is calculated as shown in Equation (12):

Rt = rt + γrt+1 + γ2rt+2 + · · · γNrt+N , (10)

πθ(sa) = p(s0)∏T
0 πθ(at|st)p(st+1|st, at) (11)

∇R(πθ) = Eπθ(∇θ logπθ(st, at)V(st)) = Eπθ(∇θ logπθ(st, at)A(st, at)) (12)

In Equation (12), πθ(st, at) is the probability distribution of the corresponding action
at under the output state st of the actor, and A(st, at) is the dominance function at time
step t. It is the difference between the action value function and the state value function,
reflecting the relative dominance of the selected production action compared with other
optional actions. It is calculated as in Equation (13).

A(st, at) = r + γV(st+1)− V(st) = Rt − V(st) (13)

In the MAPPO algorithm, the off-policy approach is used to update the strategy, the
intelligent body interacts with the environment several times to generate a large amount of
data, and the sample trajectories are input to the actor network to obtain the probability
distribution of the corresponding action space before and after the state update, respectively,
expressed as πθ1(st, at) and πθ2(st, at), and the similarity between the parameters θ1 and
θ2 is expressed by the weight wt(θ), which is calculated as in Equation (14), and the final
update of the strategy network is updated in the way shown in Equation (15).

wt(θ) =
πθ2(st, at)

πθ1(st, at)
(14)

∇R(πθ) = Eπθ(wt(θ)A(st, at)) (15)

When updating, the gradient should try to ensure that the parameters θ1 and θ2 are
equal and limit the update range of the actor network to avoid large differences between the
output results due to inconsistent parameters, resulting in abnormal loss function values.
Using the clip function for restriction, ε is the hyperparameter of the (0.1,0.2) interval, and
the loss function of the actor is shown in Equation (16).

L(θ) = min∑(st,at) clip(wt(θ), 1 − ε, 1 + ε)A(st, at) (16)

For the critic network, the critic network loss is the squared loss of the actual state
value and the estimated state value in the form of the time difference updated parameter
as, as shown in Equation (17), where Vπ(st+1) = ∑ π(st, at)(rt+1 + γV(st+1)), so the loss
function of critic can also be expressed as the mean squared difference in the values of
the dominance function. Via the derivation of the above equation, the corresponding loss
function can be derived from the computational Equation (18) to update the agent network.

L(φ) = min∑
(

Vπ(st+1)− V(st))
2 = −∑T

t=0(A(st, at))
2 (17)

Lppo = L(θ)− L(φ) (18)

After initializing the network parameters of the intelligent agent and setting the
training hyperparameters, the intelligent agent starts to interact with the environment,
stores the data (st, at, rt, st+1), and completes an episode. Rewards are removed from the
storage pool, and the dominance function is constructed. Use the critic network input state
of the new agent and obtain the value function Vφ(st), calculate the dominance function
according to Equation (13), and finally use Equations (16)–(18) to calculate the total loss
function and the gradient algorithm to complete the policy update. The algorithm pseudo-
code is as follows, the original sampling is using the same batch of data; here, it is modified

Sustainability 2024, 16, 3234 14 of 26

to use N actors, where each participant solves a workshop scheduling instance extracted
from the distribution D to perform the update. First, I iterations are executed where the DRL
agent solves a batch of B instances in parallel (with one replacement every 20 iterations),
and then every 10 iterations, the policy is verified on a separate set of validation instances.

The specific Algorithm 1 pseudo-code is as follows.

Algorithm 1 pseudo-code: MAPPO algorithm

Input: set hyperparameters, actor network parameter πθ , critic network parameter vφ, epoch
update count R, discount factor γ
1 Sample N instances of workshop scheduling of size B from D
2 for iter = 1, 2. . ., I do
3 for b = 1, 2. . ., B do
4 Initialize st based on instance b;
5 while st is not a terminal do
6 extract the embedding using GNN;
7 sampling at in π(at, st);
8 receive the reward rt and the next state st+1;
9 finish updating state st to st+1;
10 compute the advantage function A for each step
11 compute the loss Lppo of PPO and optimize the parameters θ and φ for R epochs
12 update the network parameters;
13 if iter mod 10 = 0 then
14 verify the strategy
15 if iter mod 20 = 0 then
16 sample a new batch of scheduling instances of size B
17 return

5. Experimental Evaluation
5.1. Experimental Preliminaries

(1) Dataset

Benchmark was used for training and testing, and the datasets selected in this study
were as follows:

(i) Brandimarte moderately flexible problem instances [47].
(ii) Three distinct large-scale instance sets, “edata (where few operations can be dis-

tributed across more than one machine)”, “rdata (where most operations may be
distributed to certain machines)”, and “vdata (where all operations may be distributed
to several machines)”, were introduced by Hurink et al. [52].

(iii) Direct testing on larger instances demonstrates the method’s robust generalization. For
instance, the DMU instance [53] exhibits a broad range of operation processing times.

(2) Baseline

For each problem of a specific scale, the performance of the proposed method was
compared with well-known scheduling rules in the literature. For FJSP, job sorting and
disassembly rules and machine assignment scheduling rules are required to complete the
planned solution. The job shop scheduling problem, with hundreds of scheduling rules,
employs nine heuristic rules derived from pairs of three job scheduling rules and three
machine allocation rules as outlined in Reference [54]. These rules include the Shortest
Processing Time (SPT), the Shortest Remaining Processing Time (SRPT), the Least Number
of Remaining Operations (FOPNR) in the job scheduling rules, and the Earliest Finish
Time (EFT), Shortest Processing Time (SPT), and Shortest Processing Time Plus Machine
Work (SPTW) in the machine allocation rules. The performance of the proposed method is
benchmarked against the top-ranked five combinations, namely FOPNR + SPTW; FOPNR +
EFT; SRPT + EFT; SRPT + SPTW; SPT + EFT; and SPT + SPTW. All comparative methods are
implemented in Python. For the common benchmark FJSP instance, the gap value Gap uses
the latest lower bound UB in the literature [55], and the results of the proposed method are

Sustainability 2024, 16, 3234 15 of 26

compared with state-of-the-art metaheuristic algorithms, including the improved particle
swarm optimization algorithm (HLO-PSO) [56] and the improved genetic algorithm (2S-
GA) [57].

(3) Configuration setting

(i) For each problem size, the training strategy network undergoes 20,000 iterations,
with each iteration comprising four independent trajectories (i.e., instances), and all
original features are normalized to the same scale;

(ii) For the CNN architectures, the network is designed to estimate the Q-value pair
Q(s, a). Typical CNN architectures consist of convolutional layers, nonlinear activa-
tion layers, and fully connected layers. The convolutional layers used are uniformly
partially convolutional filters (1 × n). The convolutional layers use 16 filters with
kernel sizes (1,2), and 100 neurons are used in the fully connected hidden layers.
The neural network’s optimizer is Adam. Based on the size of the instances, the
hyperparameters beta of 0.9, ε of 1 × 10−8 and learning rate of 2 × 10−5. The number
of epochs ranges from 50 to 100, depending on the size of the instances. In model
design, efforts are made to prevent convergence to local optima during training;

(iii) For the graph neural network GNN with node embedding, for equation hk
v, the

number of iterations k is set to 2, and ϵ is set to 0. Each MLPk
θk has 2 hidden layers

with a dimension of 64. The action selection network θπ and state value prediction
network θv both have 2 hidden layers with a dimension of 32;

(iv) For DQN, the replay buffer size is set to 20,000, the batch size is set to 64, the discount
factor is set to 0.9, and the learning rate is set to 0.001;

(v) For MAPPO, set the epochs of the updated network to 1, set the clipping parameter
EPPO to 0.2, and set the policy loss L, value function V, and entropy coefficients to
2, 1, and 0.01, respectively. For training, adjust the discount factor γ to 1 and use an
Adam optimizer with a constant learning rate of 2 × 10−5. Other parameters remain
unchanged;

(vi) The hardware is a machine equipped with an Intel(R) Xeon(R) Gold 6130 CPU and a
single Nvidia GeForce 3080Ti GPU.

5.2. Experimental Result

In this section, comparative experiments are conducted to show the decision differ-
ences between the scheduling architecture proposed in this study and the single intel-
ligent scheduling architecture in terms of the overall scheduling optimization objective
makespan, the stability of the trained architecture, and the machine resource allocation
capability. The experimental results show that the method outperforms the manual design
rule and the RL-based single-intelligent scheduling architecture in terms of the overall
algorithm performance, the stability of the trained architecture, and the machine resource
allocation capability.

(1) Performance evaluation of algorithms

The comparison of the method proposed in this study with the manually designed
scheduling rules and other reinforcement learning algorithms, respectively, is statistically
presented, and the results of the algorithm on instances of different sizes are shown in
Tables 1 and 2 and Figure 3a,b. A scheduling capability of the method proposed in this
study and other reinforcement learning algorithms on unseen instances is compared as
shown in Table 3 for 10 DMU instances, which are divided into 2 groups according to their
sizes for the experiments. To highlight the effect, the generalization performance of 20 × 15
and 20 × 20 instances in Table 3 is presented.

Sustainability 2024, 16, 3234 16 of 26

Table 1. Comparison results with scheduling rules on medium and large-scale instances (The numbers
in the table represent the processing time of the dataset under each experimental method, while
bold numbers represent the results of our experimental method. The closer the distribution of bold
numbers, the stronger the effectiveness of our proposed method on large-scale datasets compared to
other methods in the table).

Instance LB FOPNR
+SPTW

FOPR
+EFT

SRPT
+EFT

SRPT
+SPTW

HLO-
PSO

2S-
GA Ours

Brandimarte_Data

Mk01 36 59 76 71 69 40 43 42

Mk02 24 80 69 60 71 28 37 28

Mk03 204 381 374 374 381 243 224 204

Mk04 48 111 123 120 120 63 71 59

Mk05 168 224 242 236 265 175 183 196

Mk06 33 162 149 126 178 71 106 38

Mk07 133 295 278 278 295 144 184 159

Mk08 523 717 661 643 728 523 523 633

Mk09 299 550 559 535 525 350 371 326

Mk10 165 460 404 373 414 238 235 200

Hurink_vata-la1-5
(10J10M)

la1 570 820 900 881 835 579 572 633

la2 529 799 970 807 870 541 532 611

la3 477 678 740 790 790 497 481 485

la4 502 775 848 830 804 519 506 530

la5 457 628 768 669 710 471 463 494

Hurink_vata-la11-15
(20J5M)

la11 1071 1422 1541 1590 1355 1077 1255 1072

la12 936 1135 1316 1471 1142 939 1091 937

la13 1038 1250 1403 1434 1266 1041 1102 1039

la14 1070 1299 1470 1228 1311 1077 1166 1071

la15 1089 1540 1521 1523 1478 1093 1196 1090

Sustainability 2024, 16, x FOR PEER REVIEW 18 of 27

Hurink_vata-la11-15
(20J5M)

la12 936 1047 1039 1092 1185 950 1091
la13 1038 1151 1171 1211 1315 1053 1102
la14 1070 1292 1292 1248 1355 1086 1166
la15 1089 1221 1266 1271 1379 1111 1196

Table 3. Comparison of scheduling results on DMU instances (The numbers in the table represent
the processing time of the dataset under each experimental method, and the bold numbers represent
the generalization of the results of our experimental method on invisible datasets).

 Instance LB DQN + CNN DDPG + CNN PPO + CNN PPO + GNN MAPPO + GNN Ours

Dmu (20J15M)

dmu01 2563 3520 3678 3609 3323 2796 2755
dmu02 2706 3765 3965 3811 3630 2954 2974
dmu03 2731 3953 4101 3846 3660 2965 2839
dmu04 2669 3521 3912 3759 3716 2989 2716
dmu05 2749 3990 3927 3872 3171 3015 2916

Dmu (20J20M)

dmu06 3244 3526 4082 3724 3358 3398 3131
dmu07 3046 4311 3855 3497 3671 3182 2997
dmu08 3188 4413 4035 3660 4048 3411 3127
dmu09 3092 4361 3913 3549 4421 3449 3079
dmu10 2984 4243 4777 3426 3621 3208 2904

(a) (b)

Figure 3. (a) Comparison with scheduling rules. (b) Comparison with reinforcement learning algo-
rithms.

(2) Energy consumption assessment
Consider evaluating the overall algorithm when dynamic events occur, and to facili-

tate the comparison effect, use the dataset 5J5M [59] for testing. The data include the op-
eration priority and available energy consumption of five jobs, as well as the assigned
machine numbers and the idle power of five machines.

In order to evaluate the different impacts of dynamic events on the overall algorithm
performance, two scenarios were considered, including insertion of orders and machine
failures. In the above sequence, workpiece 5 was added as an insertion order, using a se-
quential insertion method, considering that the production process can be interrupted. At
time point T = 20, it was used as an insertion point with a delivery time of 30, and the

Figure 3. (a) Comparison with scheduling rules. (b) Comparison with reinforcement learning algorithms.

Sustainability 2024, 16, 3234 17 of 26

Table 2. Comparison results with reinforcement learning algorithms on medium and large-scale
instances (The numbers in the table represent the processing time of the dataset under each experi-
mental method, and the bold numbers represent the effectiveness of our experimental method results
on medium to large-scale datasets).

Instance LB DQN
+CNN

DDPG
+CNN

PPO
+CNN

PPO
+GNN

MAPPO
+GNN Ours

Brandimarte_Data

Mk01 36 45 44 42 42 43 42

Mk02 24 28 28 32 28 28 28

Mk03 204 264 257 204 258 255 243

Mk04 48 62 74 78 61 60 59

Mk05 168 218 193 187 195 188 196

Mk06 33 157 123 90 42 41 38

Mk07 133 172 227 169 161 159 159

Mk08 523 679 581 531 634 607 633

Mk09 299 388 386 349 323 347 350

Mk10 165 351 337 279 207 200 200

Hurink_vata-la1-5
(10J10M)

la1 570 666 662 693 697 610 633

la2 529 655 645 643 647 555 611

la3 477 597 574 580 583 532 497

la4 502 609 635 610 613 530 530

la5 457 593 531 556 558 507 494

Hurink_vata-la11-
15 (20J5M)

la11 1071 1222 1222 1249 1356 1101 1255

la12 936 1047 1039 1092 1185 950 1091

la13 1038 1151 1171 1211 1315 1053 1102

la14 1070 1292 1292 1248 1355 1086 1166

la15 1089 1221 1266 1271 1379 1111 1196

Table 3. Comparison of scheduling results on DMU instances (The numbers in the table represent the
processing time of the dataset under each experimental method, and the bold numbers represent the
generalization of the results of our experimental method on invisible datasets).

Instance LB DQN +
CNN

DDPG +
CNN

PPO +
CNN

PPO +
GNN

MAPPO +
GNN Ours

Dmu
(20J15M)

dmu01 2563 3520 3678 3609 3323 2796 2755

dmu02 2706 3765 3965 3811 3630 2954 2974

dmu03 2731 3953 4101 3846 3660 2965 2839

dmu04 2669 3521 3912 3759 3716 2989 2716

dmu05 2749 3990 3927 3872 3171 3015 2916

Dmu
(20J20M)

dmu06 3244 3526 4082 3724 3358 3398 3131

dmu07 3046 4311 3855 3497 3671 3182 2997

dmu08 3188 4413 4035 3660 4048 3411 3127

dmu09 3092 4361 3913 3549 4421 3449 3079

dmu10 2984 4243 4777 3426 3621 3208 2904

Sustainability 2024, 16, 3234 18 of 26

The following conclusions are made:

(i) In all instances, DRL significantly outperforms the best rule, and the algorithm has
stronger generalization;

(ii) The performance of the scheduling rule is unstable on Hurink’s instances and Brandi-
marte’s instances. From the experimental results, it can be seen that on Hurink’s
instance, the scheduling rules with better performance are FOPNR + SPTW and
SRPT + SPTW, and from the mean value, FOPNR + EFT and SRPT + EFT on Brandi-
marte’s instance perform better; in contrast, the method proposed in this study shows
some stability for public instances.

(iii) It can be found that the DRL method significantly outperforms all scheduling rules
when trained on small-scale instances and generalized on large-scale instances, indi-
cating that the method proposed in this study is effective when dealing with high-
dimensional input space; and for the whole learning process, DMU is the data used
for testing, and it can be seen from the experimental data that the method proposed
in this study can effectively learn to generate better for invisible instances solutions.

(iv) Tested with the same parameters, the PPO algorithm [44] performs better on instances
than DQN [41] and DDPG [58] and performs about the same as the metaheuristic on
instances with a relatively small total number of JXMs but for larger instances, the
performance of the method proposed in this study is significantly better. However,
overall, regardless of the method used, the ability to solve large-scale problems is
worse than the ability to solve small-scale problems, and the training error increases
as the scale increases in comparison to DRL. The increase in problem size brings about
an increase in the scheduling state space, and the learning error increases when using
the same network structure, such as CNN, which requires more iterations and a more
optimized network structure to reduce the training error. So, it also reflects that using
an improved graph neural network structure can reduce the training error, adapt to
different sizes of data input, and improve the training speed.

(2) Energy consumption assessment

Consider evaluating the overall algorithm when dynamic events occur, and to facilitate
the comparison effect, use the dataset 5J5M [59] for testing. The data include the operation
priority and available energy consumption of five jobs, as well as the assigned machine
numbers and the idle power of five machines.

In order to evaluate the different impacts of dynamic events on the overall algorithm
performance, two scenarios were considered, including insertion of orders and machine
failures. In the above sequence, workpiece 5 was added as an insertion order, using a
sequential insertion method, considering that the production process can be interrupted.
At time point T = 20, it was used as an insertion point with a delivery time of 30, and the
inserted order processing was added to the overall scheduling process as a scheduling
interval. When considering machine failure, it is assumed that machine 1 breaks down
in 10 s, and the repair time is 20. The operations involved in the tasks that need to be
handled on the faulty machine can be directly transferred to other machines with equivalent
processing capabilities. This article proposes that after repair, there is no need to wait for
the faulty machine to continue processing the operations involved, greatly reducing the
completion time. As shown in Figure 4, it is a Gantt chart after inserting orders and
machine failures. To evaluate the performance of our proposed optimization method, we
compared the energy consumption of the proposed algorithm with optimization using
NSGA-II [28] and PSO [60] algorithms. From Figures 5 and 6, it can be seen that our
algorithm has an energy consumption advantage in the case of single insertion and machine
failure, respectively.

Sustainability 2024, 16, 3234 19 of 26

Sustainability 2024, 16, x FOR PEER REVIEW 19 of 27

inserted order processing was added to the overall scheduling process as a scheduling
interval. When considering machine failure, it is assumed that machine 1 breaks down in
10 s, and the repair time is 20. The operations involved in the tasks that need to be handled
on the faulty machine can be directly transferred to other machines with equivalent pro-
cessing capabilities. This article proposes that after repair, there is no need to wait for the
faulty machine to continue processing the operations involved, greatly reducing the com-
pletion time. As shown in Figure 4, it is a Gantt chart after inserting orders and machine
failures. To evaluate the performance of our proposed optimization method, we compared
the energy consumption of the proposed algorithm with optimization using NSGA-II [28]
and PSO [60] algorithms. From Figures 5 and 6, it can be seen that our algorithm has an
energy consumption advantage in the case of single insertion and machine failure, respec-
tively.

Figure 4. Gantt chart for inserting orders and machine failures.

Figure 5. Insertion situation.

Figure 4. Gantt chart for inserting orders and machine failures.

Sustainability 2024, 16, x FOR PEER REVIEW 19 of 27

inserted order processing was added to the overall scheduling process as a scheduling
interval. When considering machine failure, it is assumed that machine 1 breaks down in
10 s, and the repair time is 20. The operations involved in the tasks that need to be handled
on the faulty machine can be directly transferred to other machines with equivalent pro-
cessing capabilities. This article proposes that after repair, there is no need to wait for the
faulty machine to continue processing the operations involved, greatly reducing the com-
pletion time. As shown in Figure 4, it is a Gantt chart after inserting orders and machine
failures. To evaluate the performance of our proposed optimization method, we compared
the energy consumption of the proposed algorithm with optimization using NSGA-II [28]
and PSO [60] algorithms. From Figures 5 and 6, it can be seen that our algorithm has an
energy consumption advantage in the case of single insertion and machine failure, respec-
tively.

Figure 4. Gantt chart for inserting orders and machine failures.

Figure 5. Insertion situation. Figure 5. Insertion situation.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 27

Figure 6. Machine fault situation.

(3) Performance evaluation of the architecture
A single-intelligence architecture will contain all combined actions of all artifact or-

ders, resulting in a huge action space requiring deep neural networks with high complex-
ity. The multi-intelligence architecture can solve the drawback of large space by transfer-
ring the complexity of action space to the difficulty of collaboration among intelligence,
so this study builds a new distributed multi-agent scheduling architecture (DMASA) in
order to verify the advantage of the new architecture over single-agent In order to verify
the advantages of the new architecture over the single-agent scheduling architecture, it is
compared with the distributed single-agent architecture (DSASA) in terms of training sta-
bility. For the RL-based scheduling algorithm, the training stability reflects the repeatabil-
ity and reliability of the RL model. The PPO algorithms under both architectures are
trained independently, the average of 8 independent results is taken, the episode is eval-
uated every 100 training steps, and the average completion rate of the independent runs
is taken for comparison, with the vertical coordinate being the average completion rate.
For the convenience of viewing the comparison effect, the training experiment results of
MK01 (10J6M) and MK03 (15J8M) datasets are picked out as shown in Figure 7. The
DSASA variation is large, and the training is not as stable as MASA, although they both
converge to stable values after several episodes; it can be found that the MASA curve is
turbulent, and the MASA curve shows a stable upward trend. Thus, MASA is more stable
and reliable than DSASA, confirming that the multi-intelligence architecture used in this
study is advantageous.

(a) MK01 (10J6M) (b) MK03 (15J8M)

Figure 7. Training stability.

Figure 6. Machine fault situation.

(3) Performance evaluation of the architecture

A single-intelligence architecture will contain all combined actions of all artifact orders,
resulting in a huge action space requiring deep neural networks with high complexity. The
multi-intelligence architecture can solve the drawback of large space by transferring the
complexity of action space to the difficulty of collaboration among intelligence, so this study
builds a new distributed multi-agent scheduling architecture (DMASA) in order to verify

Sustainability 2024, 16, 3234 20 of 26

the advantage of the new architecture over single-agent In order to verify the advantages
of the new architecture over the single-agent scheduling architecture, it is compared with
the distributed single-agent architecture (DSASA) in terms of training stability. For the
RL-based scheduling algorithm, the training stability reflects the repeatability and reliability
of the RL model. The PPO algorithms under both architectures are trained independently,
the average of 8 independent results is taken, the episode is evaluated every 100 training
steps, and the average completion rate of the independent runs is taken for comparison,
with the vertical coordinate being the average completion rate. For the convenience of
viewing the comparison effect, the training experiment results of MK01 (10J6M) and MK03
(15J8M) datasets are picked out as shown in Figure 7. The DSASA variation is large, and the
training is not as stable as MASA, although they both converge to stable values after several
episodes; it can be found that the MASA curve is turbulent, and the MASA curve shows a
stable upward trend. Thus, MASA is more stable and reliable than DSASA, confirming that
the multi-intelligence architecture used in this study is advantageous.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 27

Figure 6. Machine fault situation.

(3) Performance evaluation of the architecture
A single-intelligence architecture will contain all combined actions of all artifact or-

ders, resulting in a huge action space requiring deep neural networks with high complex-
ity. The multi-intelligence architecture can solve the drawback of large space by transfer-
ring the complexity of action space to the difficulty of collaboration among intelligence,
so this study builds a new distributed multi-agent scheduling architecture (DMASA) in
order to verify the advantage of the new architecture over single-agent In order to verify
the advantages of the new architecture over the single-agent scheduling architecture, it is
compared with the distributed single-agent architecture (DSASA) in terms of training sta-
bility. For the RL-based scheduling algorithm, the training stability reflects the repeatabil-
ity and reliability of the RL model. The PPO algorithms under both architectures are
trained independently, the average of 8 independent results is taken, the episode is eval-
uated every 100 training steps, and the average completion rate of the independent runs
is taken for comparison, with the vertical coordinate being the average completion rate.
For the convenience of viewing the comparison effect, the training experiment results of
MK01 (10J6M) and MK03 (15J8M) datasets are picked out as shown in Figure 7. The
DSASA variation is large, and the training is not as stable as MASA, although they both
converge to stable values after several episodes; it can be found that the MASA curve is
turbulent, and the MASA curve shows a stable upward trend. Thus, MASA is more stable
and reliable than DSASA, confirming that the multi-intelligence architecture used in this
study is advantageous.

(a) MK01 (10J6M) (b) MK03 (15J8M)

Figure 7. Training stability. Figure 7. Training stability.

(4) Evaluation of machine resource allocation

A scheduling result Gantt chart is drawn to represent the processing during the
scheduling process to show the detailed results as shown in Figures 8 and 9. To facilitate
viewing the comparison results, the same data sets MK01 (10J6M) and MK03 (15J8M)
as in part (2) are used. The bars indicate the processing of the processes in the job, the
length indicates the processing time, and the vertical coordinate is the list of devices. The
Gantt chart in Figure 8 shows the order in which 10 tasks are assigned to 6 machines,
with different tasks represented by icons of different colors. The chart on the right shows
the situation of single agent scheduling, with two rows of scheduling sequences, upper
and lower. The completion time of the last process after processing can be seen as 42 on
the left and 46 on the right from the Gantt chart. Similarly, the completion time after the
completion of the last process in Figure 9 can be seen from the Gantt chart as 243 on the left
and 255 on the right. From the experimental results, it can be seen that under our method’s
scheduling architecture, machine allocation is relatively tight. In (a), the degree of machine
equipment differentiation is greater than in (b), and it has an advantage in completion time.
From the experimental results, we can see that under the scheduling architecture of our
method, the machines are assigned more closely, and in (a), the machines and devices are
equally divided than in (b). Our scheduling architecture considers the global state and the
single-intelligence scheduling architecture only considers the individual rewards of each
agent, which leads to poorer scheduling results.

Sustainability 2024, 16, 3234 21 of 26

Sustainability 2024, 16, x FOR PEER REVIEW 21 of 27

(4) Evaluation of machine resource allocation
A scheduling result Gantt chart is drawn to represent the processing during the

scheduling process to show the detailed results as shown in Figures 8 and 9. To facilitate
viewing the comparison results, the same data sets MK01 (10J6M) and MK03 (15J8M) as
in part (2) are used. The bars indicate the processing of the processes in the job, the length
indicates the processing time, and the vertical coordinate is the list of devices. The Gantt
chart in Figure 8 shows the order in which 10 tasks are assigned to 6 machines, with dif-
ferent tasks represented by icons of different colors. The chart on the right shows the sit-
uation of single agent scheduling, with two rows of scheduling sequences, upper and
lower. The completion time of the last process after processing can be seen as 42 on the
left and 46 on the right from the Gantt chart. Similarly, the completion time after the com-
pletion of the last process in Figure 9 can be seen from the Gantt chart as 243 on the left
and 255 on the right. From the experimental results, it can be seen that under our method’s
scheduling architecture, machine allocation is relatively tight. In (a), the degree of machine
equipment differentiation is greater than in (b), and it has an advantage in completion
time. From the experimental results, we can see that under the scheduling architecture of
our method, the machines are assigned more closely, and in (a), the machines and devices
are equally divided than in (b). Our scheduling architecture considers the global state and
the single-intelligence scheduling architecture only considers the individual rewards of
each agent, which leads to poorer scheduling results.

(a) Multi-agent scheduling architecture (b) Single-agent scheduling architecture

Figure 8. Gantt chart of scheduling results under two scheduling architectures (MK01 10J6M). Figure 8. Gantt chart of scheduling results under two scheduling architectures (MK01 10J6M).

Sustainability 2024, 16, x FOR PEER REVIEW 22 of 27

(a) Multi-agent scheduling architecture (b) Single-agent scheduling architecture

Figure 9. Gantt chart of scheduling results under two scheduling architectures (MK03 15J8M).

(5) Verification of actual processing workshop
Build a physical platform for processing specific products on actual production lines,

achieving connectivity, interaction, and real-time monitoring and retrieval of various
equipment. Three types of products, each containing multiple models, can be produced
on mixed production lines without stopping the machine. The products to be produced
include customizable Bluetooth selfies, customizable USB drives, and customizable
wooden carving handicraft pendants. Customers can choose the body and lid of the pack-
aging box used to package these products. Products that customers choose to process or
assemble can be placed in their own packaging boxes. The final product consists of three
types of products and packaging boxes of different colors, forming several types of gift
boxes. The two perspectives of the actual machining platform are shown in Figure 10.

Virtual display
screen

CNC workstation 1

CNC workstation 2
two-arm
robot

Cover
workstation

Box loading
workstation

Cutting
workstation

Conveyor belt

Perspective 1

Packaging
workstation

Cloud server

Laser marking
workstation

Box loading
workstation

Perspective 2

Figure 10. Product processing platform. The actual production line can achieve mixed production
of three types of products, each containing multiple models of products. The proposed products
include customizable Bluetooth selfies, customizable USB drives, and customizable wooden carving
handicraft pendants.

In the actual processing environment validation, using data from an actual produc-
tion line as shown in Appendix A, the same algorithm was used for model training. The
loss function changes during the training phase were visualized, as shown in Figure 11.
the change in the loss function reflects whether the algorithm model converges during the

Figure 9. Gantt chart of scheduling results under two scheduling architectures (MK03 15J8M).

(5) Verification of actual processing workshop

Build a physical platform for processing specific products on actual production lines,
achieving connectivity, interaction, and real-time monitoring and retrieval of various
equipment. Three types of products, each containing multiple models, can be produced
on mixed production lines without stopping the machine. The products to be produced
include customizable Bluetooth selfies, customizable USB drives, and customizable wooden
carving handicraft pendants. Customers can choose the body and lid of the packaging box
used to package these products. Products that customers choose to process or assemble
can be placed in their own packaging boxes. The final product consists of three types of
products and packaging boxes of different colors, forming several types of gift boxes. The
two perspectives of the actual machining platform are shown in Figure 10.

Sustainability 2024, 16, 3234 22 of 26Sustainability 2024, 16, x FOR PEER REVIEW 23 of 28

Virtual display
screen

CNC workstation 1

CNC workstation 2
two-arm
robot

Cover
workstation

Box loading
workstation

Cutting
workstation

Conveyor belt

Perspective 1

Packaging
workstation

Cloud server

Laser marking
workstation

Box loading
workstation

Perspective 2

Figure 10. Product processing platform. The actual production line can achieve mixed production
of three types of products, each containing multiple models of products. The proposed products
include customizable Bluetooth selfies, customizable USB drives, and customizable wooden carving
handicraft pendants.

In the actual processing environment validation, using data from an actual
production line as shown in Appendix A, the same algorithm was used for model training.
The loss function changes during the training phase were visualized, as shown in Figure
11. the change in the loss function reflects whether the algorithm model converges during
the training phase. Due to the instability that often occurs during the training phase of the
graph neural network used, attention needs to be paid to the change in the loss function.,
and the final scheduling result Gantt chart was created; the Gantt chart displays 1 and 2
indicating that different processes of the product are assigned to different processing
machines for processing. The final actual production line scheduling results are shown in
Figure 12, achieving the implementation of processing.

Figure 11. Visualization of loss function changes during the training phase.

Figure 10. Product processing platform. The actual production line can achieve mixed production
of three types of products, each containing multiple models of products. The proposed products
include customizable Bluetooth selfies, customizable USB drives, and customizable wooden carving
handicraft pendants.

In the actual processing environment validation, using data from an actual production
line as shown in Appendix A, the same algorithm was used for model training. The loss
function changes during the training phase were visualized, as shown in Figure 11. the
change in the loss function reflects whether the algorithm model converges during the
training phase. Due to the instability that often occurs during the training phase of the
graph neural network used, attention needs to be paid to the change in the loss function.,
and the final scheduling result Gantt chart was created; the Gantt chart displays 1 and
2 indicating that different processes of the product are assigned to different processing
machines for processing. The final actual production line scheduling results are shown in
Figure 12, achieving the implementation of processing.

Sustainability 2024, 16, x FOR PEER REVIEW 23 of 27

training phase. Due to the instability that often occurs during the training phase of the
graph neural network used, attention needs to be paid to the change in the loss function.,
and the final scheduling result Gantt chart was created; the Gantt chart displays 1 and 2
indicating that different processes of the product are assigned to different processing ma-
chines for processing. The final actual production line scheduling results are shown in
Figure 12, achieving the implementation of processing.

Figure 11. Visualization of loss function changes during the training phase.

Figure 12. Actual production line scheduling results.

6. Conclusions
In response to the current challenges and problems in the field of intelligent produc-

tion scheduling, this study focuses on solving the dynamic job shop scheduling problem
in intelligent manufacturing, scheduling and rescheduling received orders as quickly as
possible under the perturbation of orders and resources while satisfying the requirements
of multi-objective optimization, modeling the required problem as a multi-intelligent dy-
namic shop scheduling problem, in order to achieve a reasonable allocation of production
tasks and manufacturing resources to maximize The scheduling optimization objectives
such as minimizing completion time, reducing production energy consumption, and
achieving load balancing are accomplished to the maximum extent. In this study, each
workpiece is considered as an intelligent body, and a reinforcement learning algorithm is
used to realize the collaboration among all intelligent bodies, maximize the global reward,
effectively train and implement the scheduling algorithm, and complete the scheduling
decision. (DMASA), an end-to-end multi-agent deep reinforcement learning method
(MADRL) is proposed to solve the multi-intelligent dynamic shop floor scheduling prob-
lem, and the representation of states, actions, observations and rewards is introduced
based on the Markov decision formula, and an improved parsing graph is proposed to
represent the states, and a heterogeneous graph neural network (HGNN) is used to en-

Figure 11. Visualization of loss function changes during the training phase.

Sustainability 2024, 16, x FOR PEER REVIEW 23 of 27

training phase. Due to the instability that often occurs during the training phase of the
graph neural network used, attention needs to be paid to the change in the loss function.,
and the final scheduling result Gantt chart was created; the Gantt chart displays 1 and 2
indicating that different processes of the product are assigned to different processing ma-
chines for processing. The final actual production line scheduling results are shown in
Figure 12, achieving the implementation of processing.

Figure 11. Visualization of loss function changes during the training phase.

Figure 12. Actual production line scheduling results.

6. Conclusions
In response to the current challenges and problems in the field of intelligent produc-

tion scheduling, this study focuses on solving the dynamic job shop scheduling problem
in intelligent manufacturing, scheduling and rescheduling received orders as quickly as
possible under the perturbation of orders and resources while satisfying the requirements
of multi-objective optimization, modeling the required problem as a multi-intelligent dy-
namic shop scheduling problem, in order to achieve a reasonable allocation of production
tasks and manufacturing resources to maximize The scheduling optimization objectives
such as minimizing completion time, reducing production energy consumption, and
achieving load balancing are accomplished to the maximum extent. In this study, each
workpiece is considered as an intelligent body, and a reinforcement learning algorithm is
used to realize the collaboration among all intelligent bodies, maximize the global reward,
effectively train and implement the scheduling algorithm, and complete the scheduling
decision. (DMASA), an end-to-end multi-agent deep reinforcement learning method
(MADRL) is proposed to solve the multi-intelligent dynamic shop floor scheduling prob-
lem, and the representation of states, actions, observations and rewards is introduced
based on the Markov decision formula, and an improved parsing graph is proposed to
represent the states, and a heterogeneous graph neural network (HGNN) is used to en-

Figure 12. Actual production line scheduling results.

Sustainability 2024, 16, 3234 23 of 26

6. Conclusions

In response to the current challenges and problems in the field of intelligent produc-
tion scheduling, this study focuses on solving the dynamic job shop scheduling problem
in intelligent manufacturing, scheduling and rescheduling received orders as quickly as
possible under the perturbation of orders and resources while satisfying the requirements of
multi-objective optimization, modeling the required problem as a multi-intelligent dynamic
shop scheduling problem, in order to achieve a reasonable allocation of production tasks
and manufacturing resources to maximize The scheduling optimization objectives such
as minimizing completion time, reducing production energy consumption, and achieving
load balancing are accomplished to the maximum extent. In this study, each workpiece is
considered as an intelligent body, and a reinforcement learning algorithm is used to realize
the collaboration among all intelligent bodies, maximize the global reward, effectively train
and implement the scheduling algorithm, and complete the scheduling decision. (DMASA),
an end-to-end multi-agent deep reinforcement learning method (MADRL) is proposed
to solve the multi-intelligent dynamic shop floor scheduling problem, and the represen-
tation of states, actions, observations and rewards is introduced based on the Markov
decision formula, and an improved parsing graph is proposed to represent the states, and
a heterogeneous graph neural network (HGNN) is used to encode state nodes, thus effi-
ciently computing strategies, including machine matching strategies and process selection
strategies. Based on the improved graph neural network, the AC architecture is used,
and it is trained with MAPPO. Extensive experiments on common instances and standard
benchmarks show that the experimental results demonstrate that the proposed method
outperforms traditional scheduling methods, is reasonably efficient, and generalizes well
to larger-scale unseen instances and instances from public benchmarks.

This article validates the effectiveness of the proposed method on one’s actual produc-
tion line, and future work will focus on two aspects. (1) Although the DMASA architecture
has obvious effects and some techniques have been used in training, the training efficiency
still needs to be improved. HGNN requires high computational costs, and MARL train-
ing requires both CPU and GPU. Therefore, future work will be based on distributed
computing devices for experimentation and evaluation of scheduling performance when
scheduling dozens or hundreds of tasks. (2) Considering the changing environment of the
actual processing workshop, there will be more practical constraints, including waiting
time regulations, batch processing of workshop operations, etc. However, the formulas in
the current article have not taken into account more practical constraints. The constraint
conditions can be extended to the MDP formula for a state transition to comply with
additional constraints. The reward function can also be modified to cope with the extension
of the MDP formula. By adding terminal rewards that consider average delay or flow time
to the proposed reward settings, future research will expand the MDP formula by adding
constraints that are more in line with the actual workshop environment, providing a new
perspective for task decomposition and subtask learning in actual MARL.

Author Contributions: Y.P.: Conceptualization, Methodology, Software, Validation, Writing—First
Draft, Formal Analysis, Survey. F.L.: Conceptualization, Methodology, Validation, Writing—Review
and Editing, Supervision. S.R.: Resources, Writing standards, English verification—review and
editing, supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Natural Science Foundation of Guangdong
Province (2023A1515011173, 2021A1515012126), Guangzhou Science and Technology Plan Project
(202206030008), National Key R&D Project (No. 2018YFB1700500); Open Project Fund of the Key
Laboratory of Big Data and Intelligent Robot of the Ministry of Education (202101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Sustainability 2024, 16, 3234 24 of 26

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

DMASA Distributed Multi-Agent Scheduling Architecture
HGNN Heterogeneous Graph Neural Network
AC Actor–Critic
RL Reinforcement Learning
DRL Deep Reinforcement Learning
GE-HetGNN Graph Embedding–Heterogeneous Graph Neural Network
HetG Heterogeneous Graphs
MAPPO Multi-Agent Proximal Policy Optimization
MADRL Multi-Agent Deep Reinforcement Learning
GA Genetic Algorithms
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
ANN Artificial Neural Network

Appendix A

Table A1. Actual production line data.

Job Agent Operation Sequence
Processing Machines and Time Consumption

M1 M2 M3 M4 M5 M6

Wooden Crafts J1

O1,1 Upper box 11.44 13 14 - - -

O1,2 Feeding - 25.14 26 27 30 -

O1,3 CNC1, CNC2 240 242 238.46 - - -

O1,4 Packing 60 61 - 50.38 - -

O1,5 Upper cover 28 - 30 - 26.19 32

O1,6
Cutting materials - 28 36 - - 26.84

USB drives
J2

O2,1 Upper box 11.44 13 14 - -

O2,2 Feeding - 25.14 26 27 30 -

O2,3 Laser 19 24 18.21 - - -

O2,4 Packing 60 61 - 50.38 -

O2,5 Upper cover 28 - 30 - 26.19 32

O2,6
Cutting materials - 28 36 - - 26.84

References
1. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0.

J. Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]
2. Azemi, F.; Tokody, D.; Maloku, B. An optimization approach and a model for Job Shop Scheduling Problem with Linear

Programming. In Proceedings of the UBT International Conference 2019, Pristina, Kosovo, 26 October 2019.
3. Sels, V.; Gheysen, N.; Vanhoucke, M. A comparison of priority rules for the job shop scheduling problem under different flow

time-and tardiness-related objective functions. Int. J. Prod. Res. 2012, 50, 4255–4270. [CrossRef]
4. Park, J.; Chun, J.; Kim, S.H.; Kim, Y.; Park, J. Learning to schedule job-shop problems: Representation and policy learning using

graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360–3377. [CrossRef]
5. Nasiri, M.M.; Salesi, S.; Rahbari, A.; Salmanzadeh Meydani, N.; Abdollai, M. A data mining approach for population-based

methods to solve the JSSP. Soft Comput. 2019, 23, 11107–11122. [CrossRef]
6. Mao, H.; Schwarzkopf, M.; Venkatakrishnan, S.B.; Meng, Z.; Alizadeh, M. Learning scheduling algorithms for data processing

clusters. In Proceedings of the ACM Special Interest Group on Data Communication, Beijing, China, 19–23 August 2019;
pp. 270–288.

https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1080/00207543.2011.611539
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.1007/s00500-018-3663-2

Sustainability 2024, 16, 3234 25 of 26

7. Wang, J.; Zhang, Y.; Liu, Y.; Wu, N. Multiagent and bargaining-game-based real-time scheduling for internet of things-enabled
flexible job shop. IEEE Internet Things J. 2018, 6, 2518–2531. [CrossRef]

8. Wang, Z.; Gombolay, M. Learning scheduling policies for multi-robot coordination with graph attention networks. IEEE Robot.
Autom. Lett. 2020, 5, 4509–4516. [CrossRef]

9. Hu, H.; Jia, X.; He, Q.; Fu, S.; Liu, K. Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible
shop floor in industry 4.0. Comput. Ind. Eng. 2020, 149, 106749. [CrossRef]

10. Caldeira, R.H.; Gnanavelbabu, A.; Vaidyanathan, T. An effective backtracking search algorithm for multi-objective flexible job
shop scheduling considering new job arrivals and energy consumption. Comput. Ind. Eng. 2020, 149, 106863. [CrossRef]

11. Kong, M.; Xu, J.; Zhang, T.; Lu, S.; Fang, C.; Mladenovic, N. Energy-efficient rescheduling with time-of-use energy cost:
Application of variable neighborhood search algorithm. Comput. Ind. Eng. 2021, 156, 107286. [CrossRef]

12. Yin, S.; Xiang, Z. Adaptive operator selection with dueling deep Q-network for evolutionary multi-objective optimization.
Neurocomputing 2024, 581, 127491. [CrossRef]

13. Mangalampalli, S.; Karri, G.R.; Kumar, M.; Khalaf, O.I.; Romero, C.A.; Sahib, G.A. DRLBTSA: Deep reinforcement learning based
task-scheduling algorithm in cloud computing. Multimed. Tools Appl. 2024, 83, 8359–8387. [CrossRef]

14. Gui, Y.; Tang, D.; Zhu, H.; Zhang, Y.; Zhang, Z. Dynamic scheduling for flexible job shop using a deep reinforcement learning
approach. Comput. Ind. Eng. 2023, 180, 109255. [CrossRef]

15. Srinath, N.; Yilmazlar, I.O.; Kurz, M.E.; Taaffe, K. Hybrid multi-objective evolutionary meta-heuristics for a parallel machine
scheduling problem with setup times and preferences. Comput. Ind. Eng. 2023, 185, 109675. [CrossRef]

16. Kianfar, K.; Atighehchian, A. A hybrid heuristic approach to master surgery scheduling with downstream resource constraints
and dividable operating room blocks. Ann. Oper. Res. 2023, 328, 727–754. [CrossRef]

17. Chen, M.; Tan, Y. SF-FWA: A Self-Adaptive Fast Fireworks Algorithm for effective large-scale optimization. Swarm Evol. Comput.
2023, 80, 101314. [CrossRef]

18. Wang, G.; Wang, P.; Zhang, H. A Self-Adaptive Memetic Algorithm for Distributed Job Shop Scheduling Problem. Mathematics
2024, 12, 683. [CrossRef]

19. Cimino, A.; Elbasheer, M.; Longo, F.; Mirabelli, G.; Padovano, A.; Solina, V. A Comparative Study of Genetic Algorithms
for Integrated Predictive Maintenance and Job Shop Scheduling. In Proceedings of the European Modeling and Simulation
Symposium, EMSS, Santo Stefano, Italy, 18–20 September 2023.

20. Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021,
565, 390–421. [CrossRef]

21. Singh, P.; Pasha, J.; Moses, R.; Sobanjo, J.; Ozguven, E.E.; Dulebenets, M.A. Development of exact and heuristic optimization
methods for safety improvement projects at level crossings under conflicting objectives. Reliab. Eng. Syst. Saf. 2022, 220, 108296.
[CrossRef]

22. Singh, E.; Pillay, N. A study of ant-based pheromone spaces for generation constructive hyper-heuristics. Swarm Evol. Comput.
2022, 72, 101095. [CrossRef]

23. Jing, X.; Pan, Q.; Gao, L. Local search-based metaheuristics for the robust distributed permutation flowshop problem. Appl. Soft
Comput. 2021, 105, 107247. [CrossRef]

24. Luo, J.; El Baz, D.; Xue, R.; Hu, J. Solving the dynamic energy aware job shop scheduling problem with the heterogeneous parallel
genetic algorithm. Future Gener. Comput. Syst. 2020, 108, 119–134. [CrossRef]

25. Xu, B.; Mei, Y.; Wang, Y.; Ji, Z.; Zhang, M. Genetic programming with delayed routing for multiobjective dynamic flexible job
shop scheduling. Evol. Comput. 2021, 29, 75–105. [CrossRef]

26. Nguyen, S.; Mei, Y.; Xue, B.; Zhang, M. A hybrid genetic programming algorithm for automated design of dispatching rules. Evol.
Comput. 2019, 27, 467–496. [CrossRef] [PubMed]

27. Zhang, F.; Mei, Y.; Nguyen, S.; Zhang, M. Correlation coefficient-based recombinative guidance for genetic programming
hyperheuristics in dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 2021, 25, 552–566. [CrossRef]

28. Li, Y.; He, Y.; Wang, Y.; Tao, F.; Sutherland, J.W. An optimization method for energy-conscious production in flexible machining
job shops with dynamic job arrivals and machine breakdowns. J. Clean. Prod. 2020, 254, 120009. [CrossRef]

29. Li, Z.; Chen, Y. Minimizing the makespan and carbon emissions in the green flexible job shop scheduling problem with learning
effects. Sci. Rep. 2023, 13, 6369. [CrossRef] [PubMed]

30. Shao, W.; Shao, Z.; Pi, D. A multi-neighborhood-based multi-objective memetic algorithm for the energy-efficient distributed
flexible flow shop scheduling problem. Neural Comput. Appl. 2022, 34, 22303–22330. [CrossRef]

31. Afsar, S.; Palacios, J.J.; Puente, J.; Vela, C.R.; Gonzalez-Rodriguez, I. Multi-objective enhanced memetic algorithm for green job
shop scheduling with uncertain times. Swarm Evol. Comput. 2022, 68, 101016. [CrossRef]

32. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

33. Akyol, D.E.; Bayhan, G.M. A review on evolution of production scheduling with neural networks. Comput. Ind. Eng. 2007, 53,
95–122. [CrossRef]

34. Weckman, G.R.; Ganduri, C.V.; Koonce, D.A. A neural network job-shop scheduler. J. Intell. Manuf. 2008, 19, 191–201. [CrossRef]

https://doi.org/10.1109/JIOT.2018.2871346
https://doi.org/10.1109/LRA.2020.3002198
https://doi.org/10.1016/j.cie.2020.106749
https://doi.org/10.1016/j.cie.2020.106863
https://doi.org/10.1016/j.cie.2021.107286
https://doi.org/10.1016/j.neucom.2024.127491
https://doi.org/10.1007/s11042-023-16008-2
https://doi.org/10.1016/j.cie.2023.109255
https://doi.org/10.1016/j.cie.2023.109675
https://doi.org/10.1007/s10479-023-05395-2
https://doi.org/10.1016/j.swevo.2023.101314
https://doi.org/10.3390/math12050683
https://doi.org/10.1016/j.ins.2021.02.039
https://doi.org/10.1016/j.ress.2021.108296
https://doi.org/10.1016/j.swevo.2022.101095
https://doi.org/10.1016/j.asoc.2021.107247
https://doi.org/10.1016/j.future.2020.02.019
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.1162/evco_a_00230
https://www.ncbi.nlm.nih.gov/pubmed/29863420
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1016/j.jclepro.2020.120009
https://doi.org/10.1038/s41598-023-33615-z
https://www.ncbi.nlm.nih.gov/pubmed/37076558
https://doi.org/10.1007/s00521-022-07714-3
https://doi.org/10.1016/j.swevo.2021.101016
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.cie.2007.04.006
https://doi.org/10.1007/s10845-008-0073-9

Sustainability 2024, 16, 3234 26 of 26

35. Gong, G.; Chiong, R.; Deng, Q.; Gong, X.; Lin, W.; Han, W.; Zhang, L. A two-stage memetic algorithm for energy-efficient
flexible job shop scheduling by means of decreasing the total number of machine restarts. Swarm Evol. Comput. 2022, 75, 101131.
[CrossRef]

36. Park, I.B.; Huh, J.; Kim, J.; Park, J. A reinforcement learning approach to robust scheduling of semiconductor manufacturing
facilities. IEEE Trans. Autom. Sci. Eng. 2019, 17, 1420–1431. [CrossRef]

37. Xiong, H.; Fan, H.; Jiang, G.; Li, G. A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with
batch release and extended technical precedence constraints. Eur. J. Oper. Res. 2017, 257, 13–24. [CrossRef]

38. Ning, T.; Huang, M.; Liang, X.; Jin, H. A novel dynamic scheduling strategy for solving flexible job-shop problems. J. Ambient
Intell. Humaniz. Comput. 2016, 7, 721–729. [CrossRef]

39. Baykasoglu, A.; Karaslan, F.S. Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach.
Int. J. Prod. Res. 2017, 55, 3308–3325. [CrossRef]

40. Liu, Y.; Fan, J.; Zhao, L.; Shen, W.; Zhang, C. Integration of deep reinforcement learning and multi-agent system for dynamic
scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels. Robot. Comput.-Integr. Manuf. 2023,
84, 102605. [CrossRef]

41. Workneh, A.D.; Gmira, M. Learning to schedule (L2S): Adaptive job shop scheduling using double deep Q network. Smart Sci.
2023, 11, 409–423. [CrossRef]

42. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

43. Liu, C.; Chang, C.; Tseng, C. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access 2020,
8, 71752–71762. [CrossRef]

44. Zhang, Y.; Zhu, H.; Tang, D.; Zhou, T.; Gui, Y. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent
manufacturing systems. Robot. Comput. Integr. Manuf. 2022, 78, 102412. [CrossRef]

45. Han, B.; Yang, J. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 2020, 8,
186474–186495. [CrossRef]

46. Huang, J.; Gao, L.; Li, X. An end-to-end deep reinforcement learning method based on graph neural network for distributed
job-shop scheduling problem. Expert Syst. Appl. 2024, 238, 121756. [CrossRef]

47. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
48. Sun, Y.; Han, J.; Yan, X.; Yu, P.S.; Wu, T. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks.

Proc. VLDB Endow. 2011, 4, 992–1003. [CrossRef]
49. Sun, Y.; Norick, B.; Han, J.; Yan, X.; Yu, P.S.; Yu, X. Pathselclus: Integrating meta-path selection with user-guided object clustering

in heterogeneous information networks. ACM Trans. Knowl. Discov. Data (TKDD) 2013, 7, 1–23. [CrossRef]
50. Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Chi, X. Learning to dispatch for job shop scheduling via deep reinforcement

learning. Adv. Neural Inf. Process. Syst. 2020, 33, 1621–1632.
51. Ni, F.; Hao, J.; Lu, J.; Tong, X.; Yuan, M.; Duan, J.; Ma, Y.; He, K. A multi-graph attributed reinforcement learning based

optimization algorithm for large-scale hybrid flow shop scheduling problem. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021.

52. Hurink, J.; Jurisch, B.; Thole, M. Tabu search for the job-shop scheduling problem with multi-purpose machines. Oper.-Res.-
Spektrum 1994, 15, 205–215. [CrossRef]

53. Jain, A.S.; Meeran, S. Deterministic job-shop scheduling: Past, present and future. Eur. J. Oper. Res. 1999, 113, 390–434. [CrossRef]
54. Han, B.; Yang, J. A deep reinforcement learning based solution for flexible job shop scheduling problem. Int. J. Simul. Model. 2021,

20, 375–386. [CrossRef]
55. Behnke, D.; Geiger, M.J. Test Instances for the Flexible Job Shop Scheduling Problem with Work Centers. Arbeitspapier/Research

Paper/Helmut-Schmidt-Universitat, Lehrstuhl fur Betriebswirtschaftslehre, Insbes. Logistik-Management. 2012. Available online:
https://d-nb.info/1023241773/34 (accessed on 1 February 2024).

56. Ding, H.; Gu, X. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling
strategies for the flexible job-shop scheduling problem. Neurocomputing 2020, 414, 313–332. [CrossRef]

57. Rooyani, D.; Defersha, F.M. An efficient two-stage genetic algorithm for flexible job-shop scheduling. IFAC Pap. 2019, 52,
2519–2524. [CrossRef]

58. Lu, R.; Li, Y.-C.; Li, Y.; Jiang, J.; Ding, Y. Multi-agent deep reinforcement learning based demand response for discrete manufactur-
ing systems energy management. Appl Energy 2020, 276, 115473. [CrossRef]

59. He, Y.; Li, Y.; Wu, T.; Sutherland, J.W. An energy-responsive optimization method for machine tool selection and operation
sequence in flexible machining job shops. J. Clean. Prod. 2015, 87, 245–254. [CrossRef]

60. Nouiri, M.; Bekrar, A.; Trentesaux, D. Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop
Problem. IFAC-Pap. 2018, 51, 1275–1280. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.swevo.2022.101131
https://doi.org/10.1109/TASE.2019.2956762
https://doi.org/10.1016/j.ejor.2016.07.030
https://doi.org/10.1007/s12652-016-0370-7
https://doi.org/10.1080/00207543.2017.1306134
https://doi.org/10.1016/j.rcim.2023.102605
https://doi.org/10.1080/23080477.2023.2187528
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.1016/j.eswa.2023.121756
https://doi.org/10.1007/BF02023073
https://doi.org/10.14778/3402707.3402736
https://doi.org/10.1145/2500492
https://doi.org/10.1007/BF01719451
https://doi.org/10.1016/S0377-2217(98)00113-1
https://doi.org/10.2507/IJSIMM20-2-CO7
https://d-nb.info/1023241773/34
https://doi.org/10.1016/j.neucom.2020.07.004
https://doi.org/10.1016/j.ifacol.2019.11.585
https://doi.org/10.1016/j.apenergy.2020.115473
https://doi.org/10.1016/j.jclepro.2014.10.006
https://doi.org/10.1016/j.ifacol.2018.08.357

	Introduction
	Literature Review
	Dynamic Job Shop Scheduling Based on Conventional Methods
	Dynamic Job Shop Scheduling Based on Artificial Intelligence (AI)

	Problem Formulation
	Dynamic Job Shop Scheduling Problem Formulation
	Markov Decision Process Formulation

	Methodology
	Proposed Framework
	Stating Features Embedding
	Reinforcement Learning Algorithm

	Experimental Evaluation
	Experimental Preliminaries
	Experimental Result

	Conclusions
	Appendix A
	References

