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Abstract: Bike-sharing systems (BSS) have emerged as an increasingly important form of transporta-
tion in smart cities, playing a pivotal role in the evolving landscape of urban mobility. As cities
worldwide strive to promote sustainable and efficient transportation options, BSS offer a flexible,
eco-friendly alternative that complements traditional public transport systems. These systems, how-
ever, are complex and influenced by a myriad of endogenous and exogenous factors. This complexity
poses challenges in predicting BSS activity and optimizing its usage and effectiveness. This study
delves into the dynamics of the BSS in Hamburg, Germany, focusing on system stability and activity
prediction. We propose an interpretable attention-based Temporal Fusion Transformer (TFT) model
and compare its performance with the state-of-the-art Long Short-Term Memory (LSTM) model.
The proposed TFT model outperforms the LSTM model with a 36.8% improvement in RMSE and
overcomes current black-box models via interpretability. Via detailed analysis, key factors influencing
bike-sharing activity, especially in terms of temporal and spatial contexts, are identified, examined,
and evaluated. Based on the results, we propose interventions and a deployed TFT model that can
improve the effectiveness of BSS. This research contributes to the evolving field of sustainable urban
mobility via data analysis for data-informed decision-making.

Keywords: bike-sharing system; bike-sharing activity; demand prediction; machine learning; Temporal
Fusion Transformer; Long Short-Term Memory

1. Introduction

Since its inception in 1990, bike-sharing systems (BSS) have gained widespread pop-
ularity in urban settings, significantly contributing to the shift towards non-motorized
urban mobility. These systems are integral to the concept of smart cities, fostering social
inclusion [1], reducing carbon emissions [2], and enhancing urban mobility [3]. Modern
BSS, functioning as networks of intelligent vehicles, provide valuable real-time data on
mobility and transport in smart cities via the Internet of Things (IoT) and advanced sensor
technologies. These innovations include the recent adoption of geofencing for virtual BSS
stations, as highlighted by Caggiani and Camporeale [4]. It enhances the management of
bike-sharing services by defining specific zones for bike pick-up and return.

The significant role of BSS in augmenting city efficiency and its synergistic interaction
with public transportation is supported by various studies [5–8], which have demonstrated
an expansion in mobility networks and improved connectivity between BSS and public
transport. Empirical findings also suggest that BSS contribute to reducing traffic conges-
tion [9,10]. For instance, Cheng et al. [11] discovered a notable increase in bike-sharing
usage in Washington, D.C., during public transport disruptions, with a 10.1% rise in central
areas and an 11.4% increase in peripheral regions. Furthermore, Adnan et al. [12] concluded
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that BSS in smaller cities effectively bridge the first or last-mile gap in public transportation
networks. This issue arises when the distance between an individual’s home and the
nearest public transport stop, or between the public transport stop and their workplace,
exceeds one kilometer.

BSS promote community bonding via their collective usage [13] and also mitigate con-
cerns about bike theft via the use of shared bikes [14]. However, improving bike availability
remains a critical challenge, as user acceptance depends heavily on the system’s reliability.
Surveys have shown that ease of access (e.g., pick-up and drop-off) and system familiarity
are key determinants of user satisfaction [15,16]. In contrast, insufficient availability can
reduce user retention, whereas reliable BSS ensure better bike utilization and long-term
value. For effective bike-sharing, balancing supply and demand is a crucial sustainability
metric for BSS [17].

Some research suggests that balanced station utilization can be achieved via infras-
tructure modifications, user incentives, and strategic bike distribution in order to maximize
station usage and minimize downtime [18,19]. Still, identifying suitable intervention
strategies remains challenging, particularly when the cause of the imbalance is unclear.
Understanding the moderating factors in bike-sharing activity is therefore essential for
predicting BSS performance and enhancing system stability.

The objective of our study is to identify and analyze the key factors influencing station-
based bike-sharing, assess their relevance, and contextualize them within the broader
mobility and social framework. Therefore, we used collected data from the BSS in the city
of Hamburg in Germany as a case study.

Acknowledging the significance of key factors, the subsequent objective of this study is
to devise a method for predicting BSS activity. Predicting BSS activity poses challenges for
multiple reasons. Firstly, the factors correlated with BSS activity demonstrate considerable
variability, introducing fluctuations in bike ridership. Secondly, various factors are interde-
pendent, leading to multicollinearity. Unlike simple linear relationships, BSS activity also
engages in nonlinear interactions. Thirdly, certain correlating attributes remain unknown
until the future (e.g., meteorological), compounding the complexity of accurate prediction.
This confluence of factors culminates in modeling inaccuracies and uncertainties surround-
ing BSS activity predictions. Machine learning (ML), as an advanced statistical approach,
has demonstrated its proficiency in accurately generalizing across various challenges and
addressing these, including multicollinearity [20], non-linear learning [21], and learning of
subsequential variance [22].

Building upon this foundation, we utilized ML to develop predictive models for
BSS activity, aiming to assist operators, users, and policymakers. As a result, our study
introduces an interpretable attention-based Temporal Fusion Transformer (TFT) model, a
novel approach in the realm of bike-sharing research. We compare its performance with
the Long Short-Term Memory (LSTM) model, which is considered the state-of-the-art
technology for predicting BSS activity. Altogether, our study addresses the following
research questions (RQ):

RQ1. What are the key factors influencing bike-sharing system activity in Hamburg, and how do
these align with recent findings and trends globally?

RQ2. How does the performance of an interpretable TFT model compare with the existing state-of-
the-art LSTM model in predicting bike-sharing system activity?

As there is a high number of abbreviations, we want to draw attention to Table A1 in
Appendix A, which contains a list for better understanding and readability of our study.
The structure of the study is outlined as follows: Section 2 presents an overview of related
literature and research on the relevant core concepts and technologies. Section 3 details our
approach, the environment, and the timeframe of the case study, outlines the methodologies
employed and explains the execution of a comparative ML model experiment involving the
proposed TFT model. Thereby, Sections 3.1–3.4 delve into the significance of various factors
influencing the observed BSS activity. Sections 3.5–3.9 describe the ML model and the
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experiment’s methodology. The ensuing Section 4 evaluates the influence of various factors
on BSS activity in Hamburg. Section 5 presents the ML model experiment, which consists
of a comparative performance evaluation and an interpretability analysis. In Section 6, we
contextualize and discuss the key factors of BSS activity and performance of the TFT model,
enumerating interventions deduced from the experimental findings. Finally, Section 7
succinctly summarizes the key findings of this paper, and Section 8 outlines potential future
directions for research in this field.

2. Related Research
2.1. Factors Mediating Bike-Sharing Activity

Recent studies indicate that a variety of factors influence bike ridership [23]. Table 1
presents an array of determinants, factors, and expected impacts on BSS activity identified
by Eren and Uz [23]. Within this framework that we used as groundwork, endogenous
determinants have a direct interaction with BSS, whereas exogenous determinants influence
BSS activity from external sources. Often, exogenous factors are immutable, unpredictable,
and fall outside the scope of direct control. Given the spatio-temporal nature of BSS, each
factor influences bike-sharing activity both spatially and temporally. The magnitude and
nature of these impacts can be conceptualized as an interplay between spatial accessibility
and temporal availability.

Table 1. A framework of scope, determinants, and factors influencing BSS activity [23].

Scope Determinants Factors Expected Impacts

Endogenous

BSS

Age of BSS NC—for non-member

Number of docks on station PC—high trip volume

Number of available bikes PC

Station buffer distance Mixed

Built environment

Bike pathways PC

Population density SPC

Recreation PC

Residence PC—high trip volume

Commercial PC

Public transportation
network

Proximity of station NC

Number of stations PC

Travel distance NC

Use of smart cards SPC

Exogeneous

Meteorological

Season Winter: SNC, else: PC

Precipitation NC

Wind speed NC

Humidity SNC

Temperature PC

Socio-demographic Younger age (>16) PC

Higher income PC

Holding driving license NC

Male gender PC

COVID-19 pandemic PC
Legend: strongly positive correlation (SPC); positive correlation (PC); strongly negative correlation (SNC); negative
correlation (NC).
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Concerning station-related factors, the number of docking stations and available bikes
have been shown to positively correlate with bike rental activity [14,24]. Research by
Buck and Buehler [25] shows that the placement of bike stations near public transport
hubs significantly enhances user engagement. Additionally, the frequency of bike usage
is associated with areas with a high concentration of workplaces, food establishments,
and universities [14]. The spatial distribution of bikes is also positively related to the
urban public transport system [26,27]. Proximity to bus and metro stations, particularly
within 500 m and 1.5 km, respectively, has been identified as crucial for the distribution
of shared bikes. Furthermore, neighborhood characteristics such as population density,
retail employment density, and median income correlate with bike rental activity [24].
However, a statistical analysis conducted in Houston identified that at least 32% of the
variance in pick-up and drop-off locations remained unexplained by linear models, which
were inadequate in capturing these complexities [28]. This limitation has necessitated the
adoption of non-linear modeling techniques, such as ML, to discern critical variables amidst
the intricate interdependencies existing among them.

Examining individual motivations, research suggests a distinction in bike-sharing
usage between leisure and commuting purposes. Leisure trips during weekends tend
to increase demand in the afternoon [29], while commuting trips on weekdays are more
prevalent during peak working hours, typically involving short journeys from residential
to commercial areas [30]. Meteorological conditions also affect cycling activity. Studies
consistently show a negative correlation between rainy days and bike ridership [31], with
heavy rainfall [32] and lower temperatures reducing usage [33]. Seasonally, bike ridership
declines in winter and peaks in summer and autumn [33].

In addition, the COVID-19 pandemic and related measures have impacted BSS ac-
tivity [34]. Bergantino et al. [35] report a significant increase in cycling during and after
COVID-19 restrictions, including a 67% surge in demand for New York’s bike-share pro-
gram. Schwedhelm et al. [36] show a doubling of ridership in Chicago’s program compared
to 2019 during that time. Xin et al. [37] outline changes in ridership flow and its spatio-
temporal distribution patterns in New York during the pandemic, observing a substantial
negative effect on BSS stability. In contrast, Jiao et al. [38] did not find any adverse impact
on the stability of BSS in Seoul.

2.2. Evolution of Prediction Models of Bike-Sharing Activity

There is an increasing interest in developing mobility prediction models, as high-
lighted by recent research [39]. The prediction of spatio-temporal activity in this domain is
complicated and involves the mentioned endogenous factors of station-related and indi-
vidual motivation, but also a variety of exogenous factors like socio-demographical and
meteorological ones. Conventional supervised learning algorithms, such as decision trees,
often struggle with this complexity.

In response, the exploration of artificial neural networks (ANNs), known for their
ability to decipher complex linear and non-linear relationships, is gaining momentum.
ANNs are also more adept at managing noise compared to traditional regression analysis, a
finding supported by several studies in the field of bike-sharing activity prediction [40–42].
In particular, deep neural networks (DNNs) have demonstrated proficiency in capturing
intricate relationships within datasets [43]. Their effectiveness, coupled with adaptability
to large-scale data, presents a significant advantage, especially when considering the
integration of expansive open datasets. These datasets, encompassing traffic, weather, and
event data from smart cities, contribute to the development of digital twins. Digital twins
are real-time virtual replicas of physical entities, systems, or processes updated via sensor
data [44].

While various forms of recurrent neural networks (RNNs), as subtypes of DNNs,
have been extensively studied in bike-sharing, there is a noticeable gap in the exploration
of attention-based DNNs. For instance, a study by Lee and Ku [45] on a dual attention-
based RNN demonstrated superior short-term bike-sharing prediction performance over
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other DNNs. Similarly, research by Wang et al. [46] showed enhanced performance via
the integration of attention mechanisms and convolutional neural networks. In traffic
flow analysis, attention-based DNNs like the TFT outperformed both LSTM and Gated
Recurrent Unit (GRU) models [47]. In comprehensive comparisons with alternative models,
as shown by Lim et al. [48], the TFT model outperforms others in the BSS superordinate
field of traffic. Specifically, it surpasses DeepAR by 69%, ARIMA by 135%, and ETS by
148% in terms of performance.

The architecture of TFT is particularly conducive to time series prediction, offering
three pivotal advantages for the mobility sector. First, it adeptly incorporates future-
unknown covariates and heterogeneous time series features, allowing for a more compre-
hensive consideration of relevant factors, which can lead to improved prediction accuracy.
Second, its multi-horizon quantile forecasting provides detailed forecasts with quantified
confidence levels. This feature allows operators, users, and policymakers to establish
an acceptable range of uncertainty for the practical application of the prediction model.
Third, the architecture of TFT offers interpretability, addressing the limitations of ‘black-box’
models. This transparency allows ML developers to verify the model’s reliability over time
and highlights opportunities for refinement and enhancement to practitioners.

3. Method and Data

In our study, we examined the trips of the BSS in Hamburg, Germany, over two years
from 2021 to 2022. Since 2022, Hamburg has been designated as a federal model region
for urban mobility [49]. The national aim is to innovate and establish a new, digitalized,
and interconnected form of urban mobility by 2023 [50]. This focus makes Hamburg an
especially pertinent location for mobility research, offering unique insights into the field. As
an overview, Figure 1 shows our study design in three thematic blocks and the associated
activities sequentially.
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3.1. Study Area and Timeframe

The case study was conducted in the city of Hamburg, Germany, home to approx-
imately 1.8 million residents. Known for its rich historical heritage and vibrant urban
landscape, Hamburg is recognized as a significant port city and a pioneer in developing
sustainable urban mobility solutions [51]. Among various transportation options, there is
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a notable emphasis on promoting bike usage, aligned with the city’s broader strategy to
enhance the urban environment and foster sustainability [52].

In pursuit of advancing sustainable transportation, Hamburg has launched several
initiatives. Our study builds on the Call a Bike program initiated by Deutsche Bahn [53]
and operated in Hamburg since 2009. This BSS operates in conjunction with the public
transport network, effectively integrating its infrastructure with bus, suburban train, and
subway stations. This integration provides residents with an eco-friendly transportation
alternative, enhancing connectivity and reducing reliance on motor vehicles.

The dataset for our study was sourced from the Deutsche Bahn, encompassing a
critical period of two years: 2021 and 2022. This timeframe is particularly significant due to
the global disruptions caused by the COVID-19 pandemic, which profoundly impacted
human behaviors and mobility patterns. In Hamburg, various bike-sharing stations are
strategically located at key public transportation hubs. Considering the city’s extensive
area and the numerous bike stations, our study categorizes specific zones of interest for a
detailed analysis. Further details are described in the data exploration Section 4.2.

3.2. Datasets

The dataset for shared bikes comprises empirical booking data from all trips in 2021
and 2022. Each booking record includes a rental or pick-up timestamp, a start station ID, a
return or drop-off timestamp, and an end station ID. Although the bikes are equipped with
individual communication technologies, such as local radio, enabling individual tracking,
the dataset does not contain bike IDs. The communication stack facilitates interaction with
the base station for both pick-ups and drop-offs. Typically, shared bikes are secured with an
external bolt at the docking station. When all docks are full, the system permits additional
drop-offs in the vicinity of the base station. This infrastructure is maintained by Deutsche
Bahn Connect (DB Connect) as part of the Call a Bike program [54]. The analyzed dataset
includes a total of 3,639,055 records. A supplementary meteorological dataset encompasses
various features sourced from OpenWeatherMap [55], including temp, visibility, dew_point,
feels_like, temp_min, temp_max, pressure, sea_level, grnd_level, humidity, wind_speed, wind_deg,
wind_gust, rain_1h, rain_3h, snow_1h, snow_3h, and clouds_all.

Furthermore, to encompass the social participation aspect of mobility, we extracted
an additional feature. This involved gathering data on popular visitation hours to major
attractions in Hamburg, identified as Points of Interest (PoIs). These PoIs include event
venues, museums, and heavily frequented public transport stops, providing valuable
insights into the patterns of social mobility within the city. In total, we compiled popular
hours for 250 PoIs from the social network Foursquare [56]. Subsequently, we merged the
PoIs based on their proximity to individual BSS stations. In cases where a PoI was close to
multiple stations, it was associated with a few of them.

3.3. Bike-Sharing System Stability

The primary issue addressed in this research is the impediment to enhancing urban
mobility and sustainability due to instability in BSS. To explore and quantify this aspect,
Section 4.1 employs a tailored method that accounts for the unique activity patterns of
each station. The data visualization is specifically designed to reflect these patterns over
time. Initially, the dataset was organized by station, with bike-sharing pick-ups and drop-
offs aggregated daily. Then, the average balance between pick-ups and drop-offs was
calculated to quantify the BSS stability trend for each station as a metric value. Prior studies
have underscored the significance of diurnal patterns in bike-sharing activities [57,58].
Consequently, our analysis also examines BSS stability throughout the day. For this purpose,
pick-up and drop-off data were categorized by hour of the day and then averaged. The
hourly balance was determined by subtracting the number of drop-offs from pick-ups per
timestep, providing an accurate insight into the stability trend of each station.
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3.4. Data Exploration and Factor Analysis

The volatility and complexity inherent in BSS data have been highlighted in similar
studies focused on various cities, such as Melbourne and Brisbane in Australia [59], Fargo
in the United States [60], and Marrakech in Morocco [61]. In our case study in Hamburg, we
employ data visualization and statistical techniques to uncover characteristics, relationships,
and initial patterns in the dataset. Additionally, we aim to contextualize the relationships
within the ML model introduced in this study, tailored to Hamburg’s unique environment,
thereby facilitating reproducibility in future research.

Accordingly, in our analysis, we investigate the relationship of bike-sharing activity to
meteorological, temporal, and spatial dimensions. As the sampling rate of the meteorologi-
cal data was hourly, our resampled bike-sharing data matched up well with them. Initially,
we explored the impact of meteorological changes on bike-sharing activity. Therefore, we
employed pairwise Pearson correlation analysis. To ensure the reliability of the meteoro-
logical dataset, we replicated the experiment using precipitation data from the German
Weather Service [62] of the observation station Hamburg-Fuhlsbüttel. Subsequently, we
utilized a diagonal correlation heatmap matrix to display the pairwise correlations.

The temporal analysis investigates how bike-sharing activity concentrations change
over time, focusing on the number of trips per weekday, hourly trends, seasonality, and
long-term trends. Numerous studies have differentiated between the commuting motives
of bike-sharing on weekdays and recreational use on weekends [23,63]. Hence, our data
visualizations of bike-sharing activities are categorized accordingly. The analysis of sea-
sonality and trends was conducted using Seasonal-Trend decomposition with Loess (STL),
a method preferred over classical decomposition due to its enhanced accuracy, outlier
reliability, and granularity. Unlike classical decomposition, STL employs locally fitted
regression models to derive smooth estimates of the three components: seasonal, trend, and
residual. We used a seasonal smoother of five and a trend smoother of 47 as parameters.
The impact of COVID-19 measures on temporal patterns was integrated and evaluated
using the ZPID Lockdown Measure Dataset for Germany [64].

In our study, we also conducted an examination of the spatial dimension of bike-
sharing activity. By utilizing Python and packages such as Plotly and Mapbox, we devel-
oped a geographical map of Hamburg with BSS stations depicted as dot markers, positioned
accurately by latitude and longitude. The level of BSS activity was computed based on
the number of pick-ups and drop-offs at each station, with the balance calculated as the
difference between these two metrics per hour. The code for our ML models and methods
is provided as open source in the reference list [65].

3.5. Feature Selection

The judicious selection of features is crucial not only for the performance of the
ML model but also for optimizing training time. The meta-study by Eren and Uz [23]
highlighted the significance of meteorological factors in mediating BSS activity. Contrary to
this, our factor analysis surprisingly did not identify a correlation between BSS activity and
meteorological elements like rainfall, snowfall, and wind speed. To ensure that potentially
beneficial non-linear relationships were not overlooked, we assessed the predictive value
via the interpretability of TFT in various test models. The feature importance analysis
revealed a minimal impact, leading us to exclude rainfall, snowfall, and wind speed from
our experimental model. However, temperature and humidity exhibited a strong positive
correlation and were consequently incorporated as features.

We also included known temporal factors to capture diurnal, weekly, and seasonal
patterns. Specifically, the is_weekday feature aids in distinguishing between weekday
commuting and weekend recreational activities. To facilitate the model’s capacity for data
extrapolation, a relative time index was introduced. Moreover, we applied data lagging to
enhance the learning of seasonal characteristics. The optimal lagging values, determined
in Section 4.2.2, are six (24 h), 42 (seven days), and 2190 (one year). Additionally, the
dataset was enriched with logarithmic activity, average activity per station, activity scale,
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and dynamic encoder length. Lastly, the PoI dataset was incorporated using a binary
representation of is_public_hour, corresponding to the popular hours at these PoIs. An
overview of all features of the ML models can be found in Table 2.

Table 2. All features of the ML models.

Variable Unit Source Type Characteristic

station Metric DB Connect Static, known Categorical
temperature ◦C OpenWeatherMap Time-varying, unknown Continuous
humidity % OpenWeatherMap Time-varying, unknown Continuous
is_public_hour Binary Foursquare Time-varying, known Continuous
activity Metric DB Connect Time-varying, unknown Continuous
activity_lagged_by_6 Metric DB Connect Time-varying, unknown Continuous
activity_lagged_by_42 Metric DB Connect Time-varying, unknown Continuous
activity_lagged_by_2190 Metric DB Connect Time-varying, unknown Continuous
average_activity_by_station Metric DB Connect Time-varying, unknown Continuous
log_activity Metric DB Connect Time-varying, unknown Continuous
activity_scale Metric DB Connect Time-varying, unknown Continuous
weekday Metric Computed value Time-varying, unknown Categorical
is_weekend Binary Computed value Time-varying, known Categorical
time_of_day Metric Computed value Time-varying, known Categorical
month Metric Computed value Time-varying, known Categorical
time_idx Metric Computed value Time-varying, known Continuous
relative_time_idx Metric Computed value Time-varying, known Continuous
encoder_length Metric Computed value Time-varying, known Continuous

3.6. Indices of Performance

To accurately assess the predictive capabilities of the bike-sharing activity model,
we considered various performance metrics. One key aspect was accounting for the
frequent instances of zero values in bike-sharing activity, particularly during nighttime
hours. Given that the Mean Absolute Percentage Error (MAPE) becomes infinite if actual
values or predictions are zero, it was deemed unsuitable as a metric. Therefore, as indices
of performance, we employed the Mean Absolute Error (MAE), Symmetric Mean Absolute
Percentage Error (sMAPE), and Root-Mean-Square Error (RMSE). These metrics were
chosen for their ability to meaningfully interpret the model’s accuracy, even in the presence
of zero values. The calculations for these metrics are detailed as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (1)

sMAPE =
1
N

N

∑
i=1

|yi − ŷi|
|yi + yi|/2

(2)

RMSE =

√√√√ N

∑
i=1

(ŷi − yi)
2

N
(3)

Please note: Here, N represents the number of testing samples, y denotes the actual
data, and ŷ refers to the corresponding prediction.

3.7. Individual ML Models

Bike-sharing activity prediction fundamentally relies on time series analysis. LSTM
networks are widely utilized for predictions involving various types of sequential data,
primarily due to their proficiency in capturing long-term dependencies. Thereby, in the
realm of bike-sharing, several studies have demonstrated the superior performance of
LSTM models in comparative experiments [42,66]. Recently, some novel studies have
introduced other attention-based models [45,46]. However, LSTM continues to be the
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prevalent state-of-the-art model for predicting bike-sharing activities due to its widespread
acceptance and proven effectiveness. Therefore, in our study, we employed LSTM as a
baseline for comparison against our proposed model, an interpretable attention-based TFT.
This approach allowed us to evaluate the effectiveness of the TFT model in the context of
established LSTM performance benchmarks.

3.7.1. Long Short-Term Memory (LSTM)

LSTM networks are an enhancement of RNNs specifically designed to capture long-
term dependencies in sequential data. While standard RNNs suffer from two major issues,
namely vanishing gradients and exploding gradients, which hinder their ability to process
long sequences effectively, LSTMs are purposefully engineered to circumvent the long-term
dependency problem [67].

The basic architecture of an LSTM includes a cell state and four interactive layers:
an input gate, a forget gate, an output gate, and a cell update mechanism. These gates
are instrumental in managing the information flow into and out of the cell state. This
structure allows the network to maintain and utilize information over extended sequences,
effectively addressing the long-term dependency issue. The cell state acts as the network’s
long-term memory, capturing dependencies across time intervals. Consequently, LSTMs
have been extensively applied to time series prediction problems, demonstrating their
usefulness in various application scenarios.

3.7.2. Temporal Fusion Transformer (TFT)

TFT is an interpretable DNN specifically designed for analyzing temporal dynamics
and is adept at integrating heterogeneous features for multi-horizon forecasting [48]. The
architecture of the TFT model comprises five main components: gating mechanisms,
variable selection networks, static covariate encoders, temporal processing, and prediction
intervals. The effectiveness of the model is fundamentally attributed to this intricate
architectural design, which is illustrated in Figure 2.
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A TFT implements time-series interpretability via multi-head attention mechanisms.
These mechanisms pinpoint salient aspects of the input for each time step by defining the
magnitude of attention weights. The orchestration of multiple attention heads facilitates
the learning of diverse long-term temporal patterns. Additionally, a sequence-to-sequence
layer is utilized to grasp the context of local patterns. As a result, the attention weights
generated contribute to the model’s comprehensive interpretability, enabling practitioners
to detect anomalies and discern trends with the time series.

Furthermore, the TFT model incorporates type-exclusive variable selection networks.
These networks select relevant input values for each time step while preserving the unique
characteristics of the respective variable types. Each variable is assigned a selection weight,
interpretable as an indicator of feature importance. TFT also effectively integrates static
variables with temporal dynamics via context vector encoding. Continuous inputs are
processed by an LSTM Encoder–Decoder mechanism, ensuring the integration of hetero-
geneous input types. Another distinctive feature of TFT is its ability to simultaneously
predict various percentiles at each time step, enabling the generation of quantile forecasts
and prediction intervals.

3.8. Data Preprocessing

To prepare for the ML models, the data underwent a preprocessing phase. The bike-
sharing dataset was initially resampled to align with other datasets at an hourly frequency
for data analysis. However, this dataset exhibited a low density for the nighttime hours
due to reduced BSS activity. This sparsity could lead to an ML model bias skewed towards
BSS idling values. To address this issue, the dataset was further resampled into four-hour
intervals specifically for ML purposes, resulting in denser groupings and minimizing
data distortion. Consequently, each day is represented by six intervals, with each interval
encapsulating a four-hour interval.

In the process of aggregation, the datasets were adjusted to meet their respective
empirical expectations. Meteorological features and PoI values were averaged, temporal
features were computed based on their initial occurrence, and the BSS activity values were
summed. Given the limitations of a singular LSTM model in handling future-unknown
covariates, certain features such as average_activity_by_station, log_activity, humidity, and
temperature had to be excluded.

3.9. ML Model Training Procedure

We partitioned the dataset into three subsets: training, test, and validation. During
the training phase, each encoding sequence in the dataset was normalized using a scale
individually fitted for it. This method of encoding normalization was chosen to prevent the
look-ahead bias commonly induced by other normalization techniques. Before that, values
were transformed using a softplus function to ensure non-negative inputs. A consistent
seed was set and used to provide the highest level of reproducibility and comparability
across all experimental trials.

Identifying the optimal hyperparameters was carried out using Optuna [68], which
combined relative and independent sampling in an extensive study of 50 trials. To early
stopping unproductive trials, a SuccessiveHalvingPruner was employed. Each trial was
executed for a maximum of 50 epochs, with a limit of 30 training batches. Following this,
the final model was trained on the entire span of training batches using the identified
optimal hyperparameters. In the TFT model configuration, the learning rate was set to
reduce by a factor of ten after a patience period of four epochs. The sampler in the proposed
TFT model and compared LSTM model undertook a search across the ranges shown in
Table 3.

The best configuration for the proposed TFT model and compared LSTM model was
found with the hyperparameters displayed in Table 4.
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Table 3. Search ranges of the sampler of the proposed TFT model and compared LSTM model.

TFT Model LSTM Model

Parameter Value Range Parameter Value Range

Learning rate 0.0001–0.1 Learning rate 0.0001–0.1
Max. gradient norm 0.01–1.0 Max. gradient norm 0.01–1.0
Num. Heads 1–4 LSTM layers 1–10
Dropout rate 0.1–0.5 Dropout rate 0.1–0.5
State size 8–320 Hidden size 8–128
Hidden continuous size 8–64

Table 4. Optimal configuration details for the proposed TFT model and compared LSTM model.

TFT Model LSTM Model

Parameter Value Parameter Value

Minibatch size 128 Minibatch size 128
State size 90 (15 days) State size 90 (15 days)
Tmax 42 (7 days) Tmax 42 (7 days)
Learning rate 0.001 Learning rate 0.06
Max. gradient norm 0.02 Max. gradient norm 0.02
LSTM layers 2 LSTM layers 1
Dropout rate 0.11493 Dropout rate 0.46659
Hidden size 51 Hidden size 79
Hidden continuous size 31
Attention head size 4

3.9.1. Loss Functions

The LSTM model underwent training using an MAE loss function (see Equation (1)),
whereas the proposed TFT model was trained using a QuantileLoss function. This involved
minimizing the cumulative loss across all quantile outputs.

QuantileLossτ =
1
N

N

∑
i=1

max(τ(yi − ŷi), (τ − 1)(yi − ŷi)) (4)

When looking at the QuantileLoss formula, it is evident that the MAE loss is equivalent
to the QuantileLoss when τ (tau) is set to 0.5. Therefore, in our study, the QuantileLoss,
serving as the native loss function for the TFT model, remains comparable to the MAE loss
function utilized in the LSTM model.

QuantileLossτ = 1
N

N
∑

i=1
ωτ(yi, ŷi)|yi − ŷi|

where :

ωτ(yi, ŷi)

{
1 − τ f or yi < ŷi

τ f or yi ≥ ŷi

(5)

3.9.2. Optimizer

Both models were trained using the Ranger Optimizer, as outlined by Wright and De-
meure [69]. The Ranger Optimizer integrates the LookAhead and Rectified Adam (RAdam)
techniques to enhance efficiency [70,71]. RAdam is known for its usefulness in stabiliz-
ing the initial phase of training, while LookAhead contributes to ongoing progress and
supports convergence during training. Additionally, the Ranger Optimizer incorporates
Gradient Centralization, a feature that can enhance the generalization performance of
DNNs by regularizing weights and output features.
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4. Results of the Case Study on the Bike-Sharing System in Hamburg
4.1. Stability Evaluation

The subsequent section delves into the key metric stability of BSS, which is pivotal
in assessing the system’s effectiveness. Effectiveness in this context is conceptualized as
a zero-centered scale, where the optimal state is zero. A zero value indicates an ideal
equilibrium between demand and supply at a station, whereas positive and negative values
signify an overflow and underflow of shared bikes, respectively. Given that only bikes at
well-positioned stations are likely to be rented, the stability of the BSS is inherently linked
to its sustainability. Hence, enhancing stability is a direct route to improving the system’s
overall sustainability.

Figure 3 illustrates the stations in our case study that are underperforming in terms
of BSS stability in 2021. The top and bottom five stations depicted in the figure exhibit a
significant imbalance, with the former group showing a higher discrepancy in bike drop-offs
(demand) and the latter group in bike pick-ups (supply). Notably, the Hauptbahnhof /Heidi-
Kabel-Platz station (in the direct vicinity of the central train station) experiences the most
substantial imbalance, with an average daily underflow of 11.27 bikes per day, indicating
higher demand than supply. In contrast, the S+U Landungsbrücken/Johannisbollwerk station
faces an overflow, with an excess supply over demand of 5.55 bikes per day. This imbalance
is not merely transient but persists over a significant period, suggesting that its cause
extends beyond exogenous factors like weather and socio-demographic motives. We infer
that these imbalances are predominantly due to endogenous factors. A more detailed
view of the issues caused by endogenous factors is presented from a spatial perspective in
Section 4.2.3.
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Figure 3. Average daily underflow/overflow of bikes at the top and bottom five stations in 2021.

Figure 4 depicts the imbalance between shared bike pick-ups and drop-offs at Gold-
bekplatz/Semperstraße throughout the day. This analysis, averaged hourly, reveals that
until 14:00 (24 h clock), the demand for bike trips exceeds the supply. From 14:00 to 22:00,
however, the supply surpasses the demand, as indicated by the blue line. Additionally,
Goldbekplatz/Semperstraße ranks as the fifth-highest overflow station, as shown in Figure 3.
Located in a residential area and equipped with 28 docks, it is considered a medium-sized
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station. Typically, residential docking stations experience a morning peak in demand and
an evening rise in supply, correlating with commuting patterns.
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Figure 4. Average daily pick-ups and drop-offs per hour at Goldbekplatz/Semperstraße station.

The increased demand observed from 15:00 to 18:00, however, extends beyond typical
commuting times. The station’s vicinity offers convenient access to various amenities
like pharmacies, cafes, and supermarkets frequented by both customers and commuting
employees. Notably, amenities such as cafes and shops often remain open past regular
working hours, with 15:00 to 18:00 marking a common period for the end of the workday.
While this sustained high demand between 6:00 and 18:00 deviates from standard commuter
traffic, it could be influenced by further endogenous factors like social interaction, as well
as recreational and commercial interests.

Understanding all social influences on BSS activity is inherently complex. Nevertheless,
as this observation aligns with existing research, it is advisable for operators, policymakers,
and urban planners to thoroughly consider all related aspects affecting BSS stability within
a temporal context [72,73].

4.2. Data Analysis

This subsection situates the proposed ML model within the specific socio-political and
geographic context of the dataset used in this case study. Due to unexpected findings, the
first subsection is specifically designated to meteorological factors. Further, we conducted
a comprehensive examination of the dataset, focusing primarily on various factors from
a temporal and spatial perspective. The analysis encompasses standard practices such as
factor analysis, seasonality, and trend analysis, as well as exploratory analyses specific to
the domain of bike-sharing. The findings from this section are particularly relevant and
insightful for mobility researchers, policymakers, and operational stakeholders.

4.2.1. Meteorological Factors

The relationship between meteorological factors and BSS activity from our case study
is depicted in Figure 5. Among all the meteorological factors examined, only temperature
and humidity showed a significant correlation with bike-sharing activity, with coefficients
of 0.48 and −0.49, respectively. Contrary to findings in several existing studies that report a
strong negative correlation between wind, rainfall, and snowfall with bike-sharing activity
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(e.g., Refs. [72,74,75]), our case study did not find a correlation here. Other research
suggests that BSS activity returns to normal after the experience of heavy precipitation after
three hours (e.g., Ref. [32]).
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Consequently, we undertook two approaches: (1) assessing the impact of anticipated
rainfall by adjusting the rainfall feature’s timing in our dataset and (2) repeating the
experiment with an alternative precipitation data source. However, no correlation was
observed, even when the rainfall feature was shifted by three hours earlier or later. The lack
of correlation also persisted when correlating BSS activity with a different precipitation
data source. Thus, contrary to our expectations, our results indicate no empirical evidence
of a relationship between bike-sharing activity and wind speed, rainfall, or snowfall
in Hamburg. One study states that cycling is less deterrent to precipitation in places
accustomed to rain and snow [76], which could apply to Hamburg, as wind speed and
rainfall frequently occur. Figure A1 in Appendix B includes boxplots that provide a detailed
overview of the dataset used in this study.

4.2.2. Temporal Perspective

Figure 6 illustrates the seasonal variation in bike-sharing activity, with an uptrend
during the warmer spring and summer months and a decline in autumn and winter. This
pattern aligns with the observed correlation between temperatures and bike-sharing activity.
Peak activity in bike-sharing during summer corresponds to the lowest idle times, whereas
in autumn and winter, as the activity diminishes, idle times increase. Research indicates
that bike-sharing activity is more sensitive to lower temperatures than higher ones (e.g.,
Ref. [33]).

In Hamburg, average temperatures in summer typically range from 20 to 23 ◦C, with
occasional highs reaching up to 39 ◦C. Autumn sees a drop to an average of 12 ◦C, and
winter daytime temperatures average around 5 ◦C, dipping to 0 ◦C at night. Despite
Hamburg’s relatively mild climate, with an annual average temperature of 13.6 ◦C, the
dataset reveals a strong correlation between BSS activity, temperature, and seasonality.
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The trend chart also sheds light on annual usage patterns. Notably, total BSS activity
declined from 2021 to 2022. This decrease may be partly attributed to the social distancing
measures implemented during the COVID-19 pandemic. After lifting these measures in
October 2021, an average of 231 were booked daily. However, in the corresponding period
of the following year (January 2022 to October 2022), the average booking rate dropped
to 206 bikes per day. Contrary to Bergantino et al. [35], who reported a sustained increase
in bike-sharing activity post-COVID-19 measures, Hamburg experienced a significant
decrease. The seasonal component isolates seasonal fluctuations by excluding the trend,
thereby normalizing the data to a baseline that omits long-term variations in BSS activity.
Notably, the data reveal enhanced volatility in the seasonal aspect prior to September 2021,
in contrast to the corresponding period in 2022. This variation may be ascribed to changes
in COVID-19 measures.

Table 5 presents the total number of trips for each weekday, revealing that the activity
from Tuesday to Saturday is relatively uniform, exhibiting a monotonous pattern. Notably,
Monday shows a significant decrease in demand, with only 490,011 trips recorded. The
data does not exhibit any distinct monthly trends. Demand reaches its lowest point on
Sundays, which can be attributed to the nationwide closure of shops and supermarkets in
Germany, resulting in reduced mobility needs. Our study reveals an unexplained reduction
of 7.76% in trip count on Mondays compared to other weekdays, a notable discrepancy that
remains unaccounted for within the scope of our research. To our knowledge, this anomaly
has not been reported in other research.

Table 5. Accumulated BSS activity from our case study by weekday.

Weekday Number of Trips

Monday 490,011
Tuesday 538,949

Wednesday 544,717
Thursday 527,477

Friday 555,043
Saturday 541,778
Sunday 441,079

The temporal distribution of trips throughout the day varies considerably between
workdays and weekends. As previously mentioned, the number of trips on workdays and
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Saturdays, representing a weekend day, is comparable. Figure 7 illustrates that the overall
higher percentage of trips on workdays is due to there being five workdays compared to
only two weekend days. During the weekend, activity begins to rise from 08:00, reaching
a peak at 13:00, and then gradually declines until 22:00. Notably, the decrease in activity
during the evening is more gradual, resulting in sustained bike-sharing activity levels.
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Conversely, on workdays, there is a noticeable increase in demand starting from 03:00,
which then plateaus at around 06:00. This is followed by a decline over the next three
hours until 09:00. From this point, activity rises almost linearly until reaching its daily peak
at 17:00, after which it sharply decreases until 19:00 and continues to drop steadily until
midnight. The hours from 00:00 to 03:00 are characterized by minimal bike-sharing activity,
with less than 0.3% usage.

These observations align with studies that highlight distinct usage patterns between
workdays and weekends (e.g., [77]). The data corroborate the notion that weekends excite
more leisure trips, with peaks in activity during typical leisure hours. Additionally, the
morning and evening peaks on workdays support the hypothesis that BSS are predomi-
nantly used for commuting during these times.

4.2.3. Spatial Perspective

Numerous studies have underscored the importance of proximity to surrounding
stations in a BSS influencing bike-sharing activity. These studies cover a range of aspects,
including the built environment [78,79], neighborhood [80,81], and the availability of public
transportation [82,83]. In Figure 8, stations of our case study are depicted as circles, where
the circle size reflects the level of bike-sharing activity; larger circles indicate higher activity,
while smaller circles represent lower activity. The circle color denotes the balance degree,
with white symbolizing perfect balance, blue suggesting a tendency towards overflow, and
red indicating a propensity for underflow, as the legend on the right displays.
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Spatially, the analysis reveals underflow at major Hamburg train stations like Altona,
Dammtor, and Hauptbahnhof, all of which are significant transit hubs with regional and
national connections. Similarly, underflow is observed at busy public transport stations
with multiple lines, such as U+S Barmbek and U+S Berliner Tor. These patterns imply that
shared bikes are more frequently used for departing from rather than arriving at these
busy stations. Conversely, two clusters and some scattered stations exhibit high overflow:
Landungsbrücken, U Baumwall, and, to a lesser degree, Auf dem Sande und Am Kaiserkai in
the Hafencity district. The second cluster comprises S+U Jungfernstieg, Neuer Jungfernstieg,
Gustav-Mahler-Platz, and Axel-Springer-Platz, which are predominantly characterized as
recreational areas. The first cluster is located in the harbor area, popular among tourists
and locals for its attractions, while the second is a touristic zone near the town hall, old
town, and several upscale shops adjacent to the Alster (a tributary in Hamburg).

The Goldbekplatz station, near Stadtpark (a large park), a well-frequented green space
with a planetarium, also shows high activity. This area, poorly serviced by public transport,
experiences significant congestion during rush hours with limited car parking, resulting in
high bike-sharing activity. Many bus routes are intended to meet the transportation needs
of the area that is not served by rail. Referring to Table 1, the combination of a challenging
public transportation network, a well-established built environment, and strategically
located BSS stations can account for the heightened levels of bike-sharing activity observed.
The proximity of Goldbekplatz and nearby amenities like supermarkets, shops, and cafes
offer recreational opportunities, which emphasize the contribution of high overflow to the
endogenous factor of recreation. As outlined in Section 4.2.2, focusing on bike-sharing

https://seb.astian.eu/bss_activity_stability_map.html
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activity from a temporal perspective, this station consistently experiences a higher level of
pick-ups and an increased number of drop-offs in the evening. The brief duration when
high drop-offs lead to overall overflow suggests a scarcity of alternatives to road transport.
In this context, BSS play a crucial role in alleviating congestion and reducing the need
for parking.

U Burgstraße also exhibits a slight overflow, yet it is not situated in a recreational area,
leaving the cause of this overflow unexplained from a spatial perspective. Meanwhile, a
few other stations display high levels of balance, with most stations showing little or no
imbalance. Therefore, it can be inferred that bike-sharing imbalance is not a widespread
issue across the entire infrastructure. Rather, it is localized in specific areas, often following
a repetitive temporal pattern. Comparatively, the issue of imbalance is more pronounced in
terms of overflow quantity at stations in a BSS, whereas the degree of imbalance is more
acute in stations experiencing underflow.

5. Machine Learning Model Experiment

This section details the evaluation of the ML model used in our study. We employed
the TFT model in the context of bike-sharing and compared its performance against the
state-of-the-art LSTM model. Both the TFT and LSTM models were developed using Python
3.8. The computational analysis was conducted on a system equipped with an Intel(R)
Xeon(R) Silver 4110 CPU @ 2.10 GHz, 84 GB RAM, and four Nvidia GeForce GTX 1080 Ti
11 GB graphics cards, running on Ubuntu 20.04.6 LTS (Focal Fossa).

5.1. Performance Evaluation

Table 6 presents the performance outcomes for both the TFT and LSTM models. The
TFT model demonstrated superior performance over the LSTM model across all metrics.
Specifically, the TFT model achieved a remarkable 29.8% improvement in MAE, registering
0.98 compared to the LSTM’s 1.40. Furthermore, the RMSE for the TFT model was 1.51,
indicating a reliable approximation of the model’s predictions. This RMSE value represents
a 36.8% improvement over the LSTM model, showcasing the TFT model’s enhanced
capability in minimizing error variance. The sMAPE of the TFT model was 0.90, signifying
a 17.5% improvement compared to the LSTM model. Overall, the TFT model not only
reduced the total error but also decreased the variance of the error.

Table 6. Performance evaluation of the proposed TFT model and comparison of the LSTM model.
Description: The best value and percentage indicating the improvement are shown in bold.

Model RMSE MAE sMAPE

TFT 1.514 (36.8%) 0.9824 (29.8%) 0.9069 (17.5%)
LSTM 2.397 1.401 1.099

Our experiment design is comparable to that of Roussel et al. [84], who used the same
dataset and similar preprocessing techniques. Their study, which employed a decision-
tree model with PoIs as a predictive factor, achieved an RMSE of 3.2. As predictive
models for BSS activity in Hamburg have not been extensively explored in other research,
further comparative and independent analysis of our model’s performance is limited.
Subsequently, the predictions of the TFT model across different stations are underscored
by common patterns identified throughout all stations. Each time index in the following
figures corresponds to a four-hour interval.

Figure 9 shows the BSS activity prediction of our case study by the TFT model at a
representative station selected for its typical past observations among all samples. However,
the observed MAE loss of 0.55 at this station is lower than the overall average MAE of 0.9824
across all samples. The gray line in the figure indicates the model’s attention weight for
each timestep, following significant patterns from past timesteps. The ground truth values
in the prediction timeframe show only minimal divergence from the learned patterns,
leading to the model’s above-average accuracy in this instance.



Sustainability 2024, 16, 3230 19 of 32

Sustainability 2024, 16, x FOR PEER REVIEW 19 of 33 
 

 

capability in minimizing error variance. The sMAPE of the TFT model was 0.90, signifying 
a 17.5% improvement compared to the LSTM model. Overall, the TFT model not only 
reduced the total error but also decreased the variance of the error. 

Table 6. Performance evaluation of the proposed TFT model and comparison of the LSTM model. 
Description: The best value and percentage indicating the improvement are shown in bold. 

Model RMSE MAE sMAPE 
TFT 1.514 (36.8%) 0.9824 (29.8%) 0.9069 (17.5%) 

LSTM 2.397 1.401 1.099 

Our experiment design is comparable to that of Roussel et al. [84], who used the same 
dataset and similar preprocessing techniques. Their study, which employed a decision-
tree model with PoIs as a predictive factor, achieved an RMSE of 3.2. As predictive models 
for BSS activity in Hamburg have not been extensively explored in other research, further 
comparative and independent analysis of our model’s performance is limited. Subse-
quently, the predictions of the TFT model across different stations are underscored by 
common patterns identified throughout all stations. Each time index in the following fig-
ures corresponds to a four-hour interval. 

Figure 9 shows the BSS activity prediction of our case study by the TFT model at a 
representative station selected for its typical past observations among all samples. How-
ever, the observed MAE loss of 0.55 at this station is lower than the overall average MAE 
of 0.9824 across all samples. The gray line in the figure indicates the model’s attention 
weight for each timestep, following significant patterns from past timesteps. The ground 
truth values in the prediction timeframe show only minimal divergence from the learned 
patterns, leading to the model’s above-average accuracy in this instance.  

 
Figure 9. Visualized prediction on exemplary station #1 of the BSS. Description: the blue and orange 
lines represent BSS activity, plotted against the left axis; attention metrics are annotated in gray on 
the right axis. The array of quantiles is illustrated in varying shades of orange, while the MAE loss 
is prominently displayed in the chart’s title. 

Figure 10 presents a pattern in another station where past inputs closely mirror future 
predictions. Alongside the standard level of BSS activity observed in previous timesteps, 
there is a notable spike at the 30th timestep. Compared to the last sample, this instability, 
akin to autocorrelation, results in a less accurate approximation and a higher prediction 
error. Moreover, the model tends to overestimate BSS activity in both samples. 

Figure 9. Visualized prediction on exemplary station #1 of the BSS. Description: the blue and orange
lines represent BSS activity, plotted against the left axis; attention metrics are annotated in gray on
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Figure 10 presents a pattern in another station where past inputs closely mirror future
predictions. Alongside the standard level of BSS activity observed in previous timesteps,
there is a notable spike at the 30th timestep. Compared to the last sample, this instability,
akin to autocorrelation, results in a less accurate approximation and a higher prediction
error. Moreover, the model tends to overestimate BSS activity in both samples.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 33 
 

 

 
Figure 10. Visualized prediction on exemplary station #2 of the BSS. Description: the blue and or-
ange lines represent BSS activity, plotted against the left axis; attention metrics are annotated in gray 
on the right axis. The array of quantiles is illustrated in varying shades of orange, while the MAE 
loss is prominently displayed in the chart’s title. 

The next two samples illustrate challenges faced by the proposed TFT model and 
offer insights for potential enhancements. Figure 11 shows a scenario with minimal overall 
BSS activity, where the model’s predictions idle without convergence with the observa-
tions. This indicates that low data expressiveness hinders accurate predictions, particu-
larly at infrequently used stations. Despite this, the model maintains a low accuracy error 
of 0.159, which is negligible in terms of the model’s general applicability. 

 
Figure 11. Visualized prediction on exemplary station #3 of the BSS. Description: the blue and or-
ange lines represent BSS activity, plotted against the left axis; attention metrics are annotated in gray 
on the right axis. The array of quantiles is illustrated in varying shades of orange, while the MAE 
loss is prominently displayed in the chart’s title. 

Figure 12 exhibits the sample with the highest prediction error, at 4.729. In this in-
stance, the model substantially underestimates the BSS activity. The actual activity in the 
prediction timeframe (>0th timestep) resembles the pattern observed before the −25th 
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Figure 10. Visualized prediction on exemplary station #2 of the BSS. Description: the blue and orange
lines represent BSS activity, plotted against the left axis; attention metrics are annotated in gray on
the right axis. The array of quantiles is illustrated in varying shades of orange, while the MAE loss is
prominently displayed in the chart’s title.

The next two samples illustrate challenges faced by the proposed TFT model and offer
insights for potential enhancements. Figure 11 shows a scenario with minimal overall BSS
activity, where the model’s predictions idle without convergence with the observations.
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This indicates that low data expressiveness hinders accurate predictions, particularly at
infrequently used stations. Despite this, the model maintains a low accuracy error of 0.159,
which is negligible in terms of the model’s general applicability.
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Figure 12 exhibits the sample with the highest prediction error, at 4.729. In this instance,
the model substantially underestimates the BSS activity. The actual activity in the prediction
timeframe (>0th timestep) resembles the pattern observed before the −25th timestep. How-
ever, the model erroneously focuses on the downturn in the 25 subsequent timesteps. Al-
though considering the most recent timesteps to be crucial for capturing progressive change
may seem intuitive, in this particular sample, this approach leads to misguided predictions.
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Subsequently, Figure 13 enumerates the 25 most accurate and inaccurate predictions
made by the model for each sample. It is observed that the model consistently overestimates
BSS activity across all samples. Furthermore, inaccurately predicted samples exhibited
lower normalized actual BSS activity compared to those predicted with high accuracy.
The values in the normalized distribution indicate that the model’s predictions are most
inaccurate in scenarios where bike-sharing idling leads to data sparsity.
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5.2. Model Interpretability

This subsection utilizes the distinctive interpretability afforded by the attention-based
architecture of the TFT, which surpasses conventional DNNs. The analysis is structured
into two subsections: (1) temporal patterns and (2) feature importance of static covariates,
encoder variables, and decoder variables.

5.2.1. Temporal Patterns

The self-attention mechanism in the TFT enables the model to focus simultaneously on
information from different representational subspaces, thereby highlighting crucial features
that are relevant at specific times. The TFT’s multiple attention heads allow it to focus on
multiple points in the time sequence, facilitating the learning of diverse long-term patterns.
The implementation of TFT in this study involved integrating numerous heterogeneous
inputs, leading to the creation of complex temporal and gated input context vectors. Based
on an automated hyperparameter search, it was determined that the most effective TFT
configuration for this complexity involves four attention heads, which is explained in
further detail in Section 3.9.

Figure 14 shows the mean applied attention trend across all samples by timestep.
The model intuitively prioritizes the most recent observations to inform the subsequent
development towards the prediction timeframe. Notably, the TFT attention peaks at the
−15th timestep, which is equivalent to 2.5 days before the prediction timeframe. Earlier,
at 7 to 10 days before the prediction timeframe (−42nd to −60th timesteps), the attention
maintains a sustained high level, emphasizing the significance of weekly patterns. Near the
end of the encoding length, we observe several spikes of high importance before the 13-day
timestep (−78th timestep). In summary, these various phases and the observed magnitude
of attention in the context of recognized temporal patterns indicate the model’s capability
to learn multiple long-term patterns and local temporal contexts.
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5.2.2. Feature Importance

The feature importance within the TFT is determined by the selection weights com-
puted by the Variable Selection Network (VSN) module. This module identifies the most
salient features based on the input and modulates the information flow as a residual unit.

Static Variables Importance

Static covariates, which are non-temporal external variables, can significantly enhance
model accuracy when harmoniously integrated with the temporal dynamics of other inputs.
In our experiment, the model incorporated four static covariates. Figure 15 underscores
the notable importance of the unnormalized activity_center feature, a result of the dynamic
normalization method employed. The EncoderNormalizer is tailored to fit each encoding
sequence individually, thereby creating independently normalized encoding sets. The
activity_center feature addresses the challenge of comparability between encoding sets by
providing a consistent reference value across the normalized dataset.
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Encoder Variables Importance

In the TFT, all non-static features function as encoder variables, which are crucial for
generating a decoder hidden state representation. This hidden state is then used by the
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decoder to extrapolate future unknown inputs, such as temperature (temp) and humidity.
This underscores the vital role of pertinent encoder variables.

Figure 16 showcases the encoder variables and their respective importance as com-
puted by the TFT model in this ML experiment. Notably, the model assigns the greatest
importance to the is_public_hours feature, highlighting the link between popular hours
at PoIs and BSS activity. The next three features—activity_lagged_by_6, time_of_day, and
is_weekend—also demonstrate high importance, each accounting for approximately 11–13%
of the model’s attention.
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Among the three lagged BSS activity features, the diurnal (six timesteps) feature ac-
tivity_lagged_by_6 shows the most significant impact. The weekly lagged BSS activity also
maintains moderate importance, surpassing regular BSS activity with a 7% relative impor-
tance. Subsequently, the features relative_time_idx, log_activity, and avg_activity_by_station
each hold around 5% importance. Intriguingly, relative_time_idx—which represents the
consecutive index within the encoding period—has, therefore, higher importance than
meteorological features and the month. Given the typically ideal weather conditions during
the summer prediction timeframe, we propose that the distribution of importance may
vary for other episodes, influenced by the high variability of features about BSS activity.

Decoder Variables Importance

The decoder utilizes the hidden state representation to extrapolate encoder inputs
and calculate future known decoder variables. These variables are enriched with static
covariates and processed via temporal self-attention for making predictions. Essentially,
decoder variables are those features for which future values are ascertainable at the time
of prediction.

Figure 17 illustrates the relative importance of each decoder variable employed in
this experiment. Notably, the relative_time_idx feature achieved the highest significance,
accounting for 27% of the model’s attention. This feature was also moderately important
within the encoder variables, highlighting the significance of sequential order in encoding
sequences. The time_of_day feature also received considerable emphasis, underscoring the
importance of temporal dynamics. Remarkably, the is_public_hours feature, contributing
17% to the decoder variables and an additional 24% within the encoder variables, emerges
as one of the most impactful features. This underscores the relevance of popular hours at
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PoIs. Moreover, the combined importance of time_of_day and is_public_hours contributes
a total of 38% to the model’s effectiveness. This significant weight reflects the dynamic
interplay between endogenous factors, represented by is_public_hours, within the temporal
dynamics of time_of_day.
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Furthermore, it is notable that is_weekend holds greater importance than the weekday
feature, despite the latter’s richer expression due to its higher granularity, representing all
seven days a week. This could indicate multicollinearity, but it might also emphasize the
efficacy of the binary is_weekend feature in distinguishing between BSS activity patterns
during workdays and weekends.

6. Discussion

Surging BSS are an increasingly prominent form of sustainable transportation that
reduces carbon emissions, expands the public transportation network, and promotes
community bounding [4,5,11,13,82]. Thereby, the functioning of the BSS is impacted
by various volatile heterogeneous endogenous and exogenous factors [8,23,29,38]. Data
exploration and machine learning techniques with enforced interpretability can help to
develop robust predictive algorithms (e.g., [39,43,66]), revealing the complex interplay of
factors and ultimately creating inventions that support urban transportation problems,
such as congestion, system failures, and instability.

This study contributes to this field via an in-depth analysis of the bike-sharing activity
in the city of Hamburg, Germany, presenting a novel case study in terms of BSS factors
and utilizing and explaining a predictive ML model. We focused on quantifying the
stability of BSS, a critical aspect of the system’s effectiveness and a key metric for its
sustainability, as defined by Yahya [17]. Additionally, our research explored the underlying
causes of BSS imbalances. In this context, we investigated the principal factors influencing
bike-sharing activity from temporal and spatial perspectives. Furthermore, our study
demonstrated that TFT, as a new proposed machine learning model in the realm of bike-
sharing, significantly surpassed the performance of the existing state-of-the-art models
while enabling full interpretability.

Theoretical and empirical research consistently illustrates that targeted interventions
can enhance BSS stability [85–87]. However, a challenge is to select the right interventions
and implement them appropriately. Inadequate interventions can inadvertently lead to
further BSS instability, and neglecting to intervene may hinder progress in smart cities in
general and mobility innovation in specific [88]. Our study suggests that special attention
should be paid to specific contexts. In particular, we found a spatial correlation between
underflow at BSS stations adjacent to busy train stations and overflow at BSS stations
in recreational areas. These results should be considered when developing a city’s BSS
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and mobility network. Consequently, effective interventions should aim to increase bike
drop-offs at busy train stations and bike pick-ups in recreational areas, especially during
weekend peaks.

In the following, we discuss four types of interventions to improve BSS stability that
serve as an inspiration for initial measures:

• Incentivization of shared-bike trips: Encouraging users to balance stations suffering
from underflow or overflow can be an effective intervention strategy. While the current
model of offering 30 min free of charge provides limited incentives, introduction
rewards such as reservations for cargo bikes or pre-booking privileges could have a
greater impact. These incentives could be integrated into existing apps to reward users
for helping to meet BSS stability needs. The study of Fricker and Gast [89] highlights
the exponential improvement potential of incentivization techniques.

• Manual rebalancing by operators: Efficient rebalancing, involving the timing, amount,
and destination of bike redistribution, can maintain BSS balance. Studies on re-
balancing algorithms provide valuable insights into this process [90]. Integrating
predictions from the proposed TFT model can further refine the efficiency of these
rebalancing interventions.

• Implementation of temporary pop-up stations in the BSS: Particularly during periods
of increased activity, such as summer in recreational areas, temporary pop-up stations
can help distribute BSS activity more evenly. Although the implementation of these
stations can be challenging due to the need for IoT devices that are able to perform
local radio communication and installed base stations, the advent of new-generation
bikes equipped with GPS communication offers a promising solution. These advanced
bikes can enable geofenced returns without the need for installed stations, simplifying
the establishment of temporary pop-up stations. Thereby, pop-up stations can con-
ceptually unite the unique advantages of free-floating BSS in addition to the present
station-based BSS [91].

• Dynamic pricing models: A pricing model that varies according to temporal and
spatial factors such as time of days, location, and demand is implemented. This
includes offering discounts for picking up bikes from areas with an excess of bikes or
for dropping off bikes in areas with an underflow [92]. In contrast, a slight premium
is applied for renting bikes from areas of high demand or during peak hours. This
strategy is designed to motivate users to naturally contribute to balancing the BSS.

By considering these interventions, operators and policymakers can enhance the
functionality and sustainability of BSS, thereby contributing to the overall efficiency and
evolution of urban mobility solutions. Furthermore, interventions can be specifically
tailored to address particular issues:

• Offer discounted regional train tickets: Discounts on regional train tickets for those
arriving at train stops via bike rides are provided. This approach is aimed at increas-
ing the supply of bikes at busy train stations, thus addressing underflow issues at
these locations.

• Relocate bike stations in a BSS closer to train boarding areas: The relocation of stations
within a BSS closer to train boarding areas is undertaken to augment the unique
advantage of the arrival with shared bikes. This move ensures improved connectivity
over other transport modes, therefore offering a solution of bike-to-train connection
for time-sensitive BSS users.

This study introduces a TFT model to predict bike-sharing activity on the basis of
various heterogeneous factors. When compared to other ML models, TFT offers three key
advantages for the application scenario of bike-sharing and BSS: (1) support for future-
unknown covariates, (2) increased certainty, and (3) enhanced interpretability. However, it
should be noted that the TFT model has higher (4) computational requirements.
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1. Support for future-unknown covariates: The model can include inputs affecting bike-
sharing that are typically uncertain in the future, such as meteorological and volatile
traffic flow data, thereby improving model performance.

2. Certainty: By adding an array of quantiles to the model output, TFT enables reliable
predictions for critical projects. This aspect is particularly valuable for long-term
forecasting, essential in fields like urban planning, including BSS, as it provides a
definitive probabilistic outcome.

3. Interpretability: The model sheds light on temporal patterns and feature importance,
opening new avenues for feature engineering. It also allows BSS operators to identify
significant changes in mobility activity, supporting the assessment of bike-sharing
mobility adoption trends and the detection of anomalies, such as defects in the
BSS infrastructure.

4. Computational requirements: The model features a more sophisticated architecture,
encompassing numerous parameters, necessitating substantial hardware resources
and computation time. These requirements are distributed across both model inter-
faces, affecting the interference and prediction times.

The selection of the most suitable model is greatly influenced by the specific applica-
tion, its environment, and its prerequisites. In this context, Table 7 provides a compressed
comparison, showcasing how these criteria are supported across various models.

Table 7. Compressed comparison of functional support by ML models. Description: The compu-
tational requirements range from the least demanding (denoted as “o”) to the most demanding
(indicated by “+++”).

Model Future-Unknown Covariates Certainty Interpretability Computational Requirements

TFT X X X +++
LSTM +

DeepAR X ++
ARIMA o

ETS X o

The comparative analysis of the performance between the state-of-the-art LSTM model
and the newly proposed TFT model demonstrated the superior prediction capabilities of
the latter, achieving an accuracy of 1.51 RMSE compared to the LSTM model’s 2.39. The
accuracy of this approach exceeds the RMSE of 3.2 obtained using decision trees in a similar
study [84]. The introduction of a multi-day forecasting window and the implementation
of resampled four-hour intervals in the study’s design enable this research to provide
preliminary data for benchmarking purposes.

The level of accuracy renders the TFT model suitable for practical applications. Pre-
dictions of this model can support city planners and policymakers in enhancing bike
infrastructure, strategically planning BSS stations, and facilitating the transition to sus-
tainable transportation. Furthermore, these predictions can be integrated into navigation
algorithms for BSS users, providing valuable estimates of bike availability at train sta-
tions. This feature is particularly relevant in the context of multimodal mobility, where
adaptive navigation based on anticipated bike-sharing activity can ensure bike availability.
Conversely, a lack of bike availability will likely result in user disengagement.

The deployment of accurate bike-sharing activity predictions supports data-informed
decision-making for proactive BSS stability interventions. Consequently, these predictions
can enhance BSS stability, leading to increased user retention and more efficient utilization
of the distributed infrastructure. Collectively, these actions contribute significantly to the
development of a resilient and sustainable mobility system.

This study also presents the interpretability of the TFT model, highlighting the relative
importance of various factors affecting a BSS. These interpretability results offer insights for
further enhancing model performance. The public hours of PoIs emerged as a significant
feature in our model despite the simplicity of social participation modeling and feature
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extraction used. In light of other research findings, refining this feature with more precise
sampling and sophisticated feature extraction appears fruitful. A promising methodology
for geospatial feature extraction tailored to bike-sharing activity in Hamburg is discussed
in the study of Roussel et al. [84], offering a pathway for further development.

This research is not without limitations. One notable is its specific focus on the city of
Hamburg, which may limit the generalizability of the findings as the key factors for BSS
stability to other urban environments with different socio-economic dynamics, cultural
factors, and infrastructure layouts. Therefore, the unique characteristics of Hamburg
may not be representative of other cities. Consequently, the applicability of the derived
interventions may vary when applied to different urban contexts with distinct bike-sharing
patterns and user behaviors. Also, the configuration of the proposed TFT model specific to
the dataset found in Hamburg should be carefully finetuned in other environments, which
may end in diverging performance results.

Another constraint is the reliance on historical data patterns, which inherently assume
that future behavior will mirror past trends. This assumption may not hold in scenarios
where sudden changes occur, such as new urban development projects, changes in public
transportation schedules and infrastructure, or significant shifts in user behavior due to
external factors like pandemics or policy changes. However, this study shows that the
novel interpretability stack can be utilized for reasoned model alignment.

7. Conclusions

In this study, we developed an interpretable TFT model to enhance the understanding
of DNN performance in predicting bike-sharing activity. Additionally, the study conducted
a thorough analysis, comparison, and contextualization of the key factors influencing
bike-sharing activity, using Hamburg, Germany, as a novel case study.

The advancement of the TFT model compared to the LSTM model is attributed to
the TFT model’s built-in interpretability, which effectively addresses the limitations of
traditional black-box models. In terms of local bike station activity prediction, the TFT
model achieved an RMSE of 1.514, marking a 36.8% improvement over the LSTM model.
The study’s use of a naive geospatial public hours feature garnered high importance in the
model, underscoring the critical role of PoIs in BSS activity modeling.

Regarding key factors, our findings indicate that humidity and temperature are signif-
icant predictors of BSS activity. However, in contrast to existing research that commonly
reports a strong negative correlation, our study found no correlation between BSS activity
and factors like snowfall, wind speed, and precipitation. This divergence from prevalent
research findings suggests that the response to weather conditions in bike-sharing usage
may vary across different geographical locations. Additionally, contrary to trends observed
in other studies, bike-sharing activity in Hamburg did not sustain its post-COVID-19 levels
but instead experienced a decline. This could potentially be influenced by initiatives like
Germany’s 9 Euro ticket. This highly affordable public transportation offer, introduced
in 2022, provided unlimited travel on regional and local public transport across Germany.
Such an attractive and cost-effective alternative to bike-sharing could have led many poten-
tial bike-sharing users to opt for public transportation, thus contributing to the observed
decrease in bike-sharing activity in Hamburg during this period. This outcome highlights
the potential impact of local factors and circumstances on bike-sharing usage patterns.
Additionally, our analysis revealed a surprising 7.76% reduction in trip counts on Mondays
compared to other weekdays.

In addressing BSS stability, we observed underflow at stations near busy train stations
and overflow in recreational areas. Generally, the issue of imbalance is more pronounced
with a higher occurrence of overflow than underflow at BSS stations, although the degree
of imbalance is more acute in stations experiencing underflow.
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8. Outlook

However, the findings of this study invite further exploration. Unlike the TFT model,
LSTM lacks the capability to incorporate future inputs as unknown covariates, leading
to the exclusion of some features. Future research could benchmark the TFT model with
other (interpretable) attention-based models. Furthermore, exploring the application of
the TFT model for real-time monitoring and dispatching in productive BSS operations
could provide new valuable insights as well as enhance operational efficiency and user
satisfaction. Expanding the analysis to include more datasets in comparative environments
could improve results, particularly in scenarios with sparse BSS activity observations.
Additionally, examining key factors by clustering stations could yield more precise station
profiles. Future investigations might also clarify the unexpectedly absent correlation
between bike-sharing activity and meteorological factors like rainfall, snowfall, and wind
speed. Moreover, a comprehensive analysis of BSS activity beyond October 2021, once a
substantial dataset covering an extended period has been compiled, may uncover novel
usage patterns. This is particularly pertinent when examining the transition from the
COVID-19 era to the post-COVID-19 period. Further studies should also delve into the
cost–benefit analysis of different intervention types within BSS to ascertain their efficacy in
promoting system stability. Understanding the economic and operational implications of
these interventions will be critical in optimizing the BSS management strategies in smart
cities and ensuring their sustainability in the urban mobility landscape.

Historically, the accessibility of bike-sharing data has spurred developments in mo-
bility software. The novel case study and the TFT model presented here contribute to the
broader goal of enhancing general mobility prediction, taking into account the diverse
facets of sustainable urban mobility.
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Appendix A. List of Abbreviations

Table A1. List of abbreviations of our study.

Abbreviation Definition

Adam Adaptive Moment Estimation
ANN Artificial Neural Network
ARIMA Auto-Regressive Integrated Moving Average
BSS Bike-Sharing System
COVID-19 Coronavirus SARS-CoV-2
DB Deutsche Bahn
DNN Deep Neural Network
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Table A1. Cont.

Abbreviation Definition

ETS Error Trend and Seasonality, or exponential smoothing
GRU Gated Recurrent Unit
LOESS Locally estimated scatterplot smoothing
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
NC Negative correlation
PC Positive correlation
Radam Rectified Adam
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RQ Research Question
sMAPE Symmetrical Mean Absolute Percentage Error
SNC Strong negative correlation
SPC Strong positive correlation
STL Seasonal-Trend decomposition using Loess
TFT Temporal Fusion Transformer
VSN Variable Selection Network
ZPID Leibniz-Institut für Psychologie

Appendix B. Boxplots of Meteorological Data Distribution

Figure A1 depicts the distribution of four meteorological variables that unexpectedly
exhibited no correlation with BSS activity.
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