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Abstract: The mutual optimization of a multi-microgrid integrated energy system (MMIES) can
effectively improve the overall economic and environmental benefits, contributing to sustainability.
Targeting a scenario in which an MMIES is connected to the same node, an energy storage coordination
control strategy and carbon emissions management strategy are proposed, and an adaptive step-size
method is applied to improve the distributed optimization of MMIESs based on the alternating
direction multiplier method (ADMM). Firstly, the basic framework of MMIESs is established, and a
coordinated control strategy limiting the time of charge and the discharge of the battery storage system
(BSS) is proposed. Then a multi-objective optimization model based on operating and environmental
cost is formulated. Considering that different microgrids may be managed by different operators
and a different convergence speed of multi-objective optimization iteration, an adaptive step-size
distributed iterative optimization method based on ADMM is used, which can effectively reduce the
cost and protect the privacy of each microgrid. Finally, a system composed of three microgrids is
taken as an example for simulation analysis. The results of distributed optimization are accurate, and
the proposed coordinated control strategy can effectively enhance the revenue of ESS, which verifies
the effectiveness of the proposed method.

Keywords: multi-microgrid integrated energy system (MMIES); energy storage coordination control
strategy; alternating direction multiplier method (ADMM); carbon emissions

1. Introduction

With the intensification of energy shortages and environmental degradation, there is
an urgent need for reasonable means to improve the utilization efficiency of various types
of energy and reduce carbon emissions. The issue of sustainable development in society
has become very important. The mutual coupling of cold, heat, electricity, and gas energy
in the integrated energy system (IES), is widely used in the electric power industry and has
become one of the most important ways to solve these problems [1].

The IES contains distributed wind power, photovoltaic and other renewable energy
power generation units, which have a certain randomness and uncontrollability. It may
be that some renewable energy generation of IES is more than the load demand, and
there might be a phenomenon of curtailing wind and solar power, resulting in a waste of
resources. Sometimes the IES is in short supply of energy and needs to purchase power
from the power grids. If a reasonable connection between two IESs is established, forming
a multi-microgrid integrated energy system (MMIES), the power exchange between each
of the microgrids can effectively solve the problem of balancing supply and demand, and
reducing the cost. Thus, how to optimize the scheduling of an MMIES has become an
important issue at present [2–4].
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The optimized MMIES scheduling models can be divided into two categories: cen-
tralized and distributed models [3]. Although the centralized optimization algorithm is
simple and fast, it needs to transmit a lot of data from all of the microgrids in the system to
the control center for unified scheduling, resulting in a huge amount of traffic, and weak
flexibility and stability [4]. As a result, distributed algorithms are used to ensure the density
and security of each microgrid. The mainstream distributed algorithms used are based
on the Lagrangian relaxation (LR) method, including optimal condition decomposition
(OCD) [5–7] and generalized benders decomposition (GBD) [8,9], which can realize a
completely distributed solution for multi-region scheduling problems. Other distributed
algorithms in use are based on the augmented relaxation description (ALD) method, in-
cluding the auxiliary problem principle (APP) [10–12] and analytical target cascading
(ATC) [13–15], which can improve the convergence performance of the high standard LR
method [16].

The alternating direction multiplier method (ADMM) is also a kind of ALD method.
Compared with other methods, ADMM can deal with complex models effectively, and its
convergence and convergence speed have been proven, providing the basic framework for
MMIESs. In the basic ADMM scheduling framework, Mohiti M et al. [17] took economic
cost as the scheduling objective function, Chen L et al. [18] established an optimal two-layer
multi-timescale scheduling model based on short-term forecast data, and Cheng S et al. [19]
put more emphasis on price policy, establishing a Nash bargaining cooperative game model
to minimize the operating cost of each microgrid.

The above studies considered the privacy and security of a single microgrid and
adopted a distributed algorithm for optimization, where most of them had economy as
the optimization target. In addition to the minimum operating cost, exergy optimization
takes the minimum amount of wind and light used [20], the minimum annual operating
cost of a shared battery storage system (BSS) [21], and the network losses and voltage
quality as the objective functions, while environmental considerations are rarely taken
into account. In addition, some scholars have studied BSS in MMIESs. Safari et al. [22]
studied the impact of the clean output of hydrogen storage systems and fuel cells on system
uncertainty. Chuanshen et al. [23] utilized the mobile energy storage characteristics of
electric vehicles to improve the performance of MMG systems. However, there are few
studies on the control of the charging and discharging frequency of energy storage devices
in MMIESs. If the optimization is directly based on the existing control strategy, there may
be frequent charging and discharging, which will adversely affect the service life of the
storage devices.

Therefore, on the basis of establishing the basic framework of MMIESs containing
cold, heat, electricity, and gas, this paper proposes an energy storage coordination control
strategy that limits the number of charging and discharging times and takes the operating
cost and the environmental cost based on carbon dioxide emissions as the optimization
targets. Considering that different microgrids may be managed by different operators and
to enhance the convergence speed of multi-objective optimization iteration, an adaptive
step-size solution method is proposed to improve ADMM distributed iterative optimization,
which can effectively reduce the cost and protect the privacy of each microgrid. Finally,
an MMIES composed of three microgrids is taken as an example for simulation analysis.
The simulation results show that the distributed optimization results are consistent with
the centralized optimization results, and the proposed coordinated control strategy can
effectively enhance the revenue of BSS, verifying the effectiveness of the proposed method.

2. Multi-Microgrid Integrated Energy Systems (MMIESs)
2.1. Architecture of MMIES Considering Carbon Emissions

The MMIES considered in this paper can be divided into two layers. The upper man-
agement system contains distribution points of electricity and natural gas and the carbon
emissions management system that sets the carbon emissions strategy. The lower system
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contains regional microgrids, the control system and the load under the management of
the regional operator.

The system consists of three microgrids connected at the same distribution point of
electricity and natural gas, but different microgrids are managed and controlled by different
regional operators to provide different regional users. Residential, commercial, industrial,
and other regional users have different load characteristics. When several microgrids
are connected, there are mutual benefits between them. They can make the surplus of
renewable energy power generation in one microgrid supply the power to other microgrids,
reducing the energy purchase from the power grid, thereby reducing the overall operating
cost and avoiding energy waste. Each microgrid is connected in pairs through power
channels. Considering that the distance between microgrids is generally several kilometers,
the heat pipeline will cause great heat loss when transmitting at this distance. Therefore,
the thermal energy interaction between microgrids is not considered. Each microgrid can
exchange power with an external distribution network. The natural gas required for each
microgrid is purchased from the external natural gas network, and the sale of natural gas
to the natural gas network is not considered. The power flow interaction of the system
established in this paper is shown in Figure 1.
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2.2. Models for Internal Structure of Single Microgrid Integrated Energy System (MIES)

The MIES is mainly composed of energy network, energy conversion link, energy
storage link, and end users. In the comprehensive model established in this paper, the
energy supply network includes electricity, gas, cooling, and heating networks. Through
the reasonable output of each piece of equipment in the system, the supply and demand
balance of electricity, gas, cooling, and heating is reached. The equipment for energy
conversion and storage and the energy-flow relationships are shown in Figure 2. The
specific device model formulas are as follows, sourced from Jianfeng et al. [24].



Sustainability 2024, 16, 3225 4 of 19

1. Gas Turbine (GT) {
PGT,t = ηGT × GGT,t × qlg
0 ≤ PGT,t ≤ Pmax

GT,t
(1)

where PGT,t is the power generation of GT; ηGT is the power generation efficiency
of GT; GGT,t is the consumption of natural gas; and qlg is the low calorific value of
natural gas.

2. Gas Boiler (GB) {
HGB,t = ηGB × GGB,t × qlq
0 ≤ HGB,t ≤ Hmax

GB,t
(2)

where HGB,t is the heat produced by GB; ηGB is operating efficiency; and GGB,t is the
natural gas consumption.

3. Absorption Chiller (AC)
CAC,t = COAC × HAC,t
HAC,t = (1 − ηGT)× GGT × qlg × αAC
0 ≤ CAC,t ≤ Cmax

AC

(3)

where CAC,t is the cooling capacity of AC; COAC is the refrigeration coefficient of AC;
HAC,t is the input heat power of AC; and αAC is the residual heat distribution coefficient.

4. Heat-recovery Boiler (HB) The HB recovers a portion of the heat from the GT to meet
the heating demand of users.

HHB,t = ηHB × HHB_in,t
HHB_in,t = (1 − ηGT)× GGT,t × qlg × (1 − αAC)
0 ≤ HHB,t ≤ Hmax

HB

(4)

where HHB,t is the heat produced by HB and HHB_in,t is the heat energy.
5. Electric Chiller (EC) {

CEC,t = COEC × PEC,t
0 ≤ CEC,t ≤ Cmax

EC
(5)

where PEC,t is the energy consumption of EC.
6. Ground Source Heat Pump (GSHP)

HGSHP,t = COGSHP_heat × PGSHP_heat,t
CGSHP,t = COGSHP_cool × PGSHP_cool,t
0 ≤ PGSHP_cool,t ≤ uGSHP × Pmax

GSHP_cool
0 ≤ PGSHP_heat,t ≤ (1 − uGSHP)× Pmax

GSHP_heat
(1 − uGSHP)uGSHP = 0

(6)

where HGSHP,t is the heat energy added by GSHP; CGSHP,t is the cooling energy added
by GSHP; PGSHP_heat,t is the electricity consumption for heating; and PGSHP_cool,t is
the electricity consumption for cooling.

7. Power to Gas (PtG) Equipment{
GPtG,t = ηPtG × PPtG,t/qhg
0 ≤ PGT,t ≤ Pmax

GT,t
(7)

where qhg is the high calorific value of natural gas.
8. Internal Power Balance of Microgrid

The MIES needs to meet the constraints of the energy balance of the four subsystems of
electrical, gas, cooling, and heating during operation, which means that the energy supply
of the subsystems reaches a real-time balance with the needs of users.

PPV,t + PWT,t + PSB_out,t + PGT,t + Pgrid,t − PSB_in,t − PEC,t − PGSHP_heat,t − PGSHP_cool,t − PPtG,t − Psold,t = Pload,t (8)
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GNG,t − GGT,t − GGB,t + GPtG,t = Gload,t (9)

CAC,t + CEC,t + CGSHP,t = Cload,t (10)

HGB,t + HHB,t + HGSHP,t = Hload,t (11)
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9. Power Interaction between Microgrid and Distribution Network

In order to ensure adequate safety and reliability, reasonable constraints should be
added to the process of purchasing electricity from the grid or selling electricity to the grid:

0 ≤ Pgrid,t ≤ ug × Pmax
grid

0 ≤ Psold,t ≤ (1 − ug)× Pmax
grid

(1 − ug)ug = 0
(12)

3. Energy Storage Coordination Control Strategy
3.1. Energy Storage Device Model

The energy stored in the energy storage link can be electricity, natural gas, cold energy,
and heat energy. In the model of this paper, the devices that store electricity are considered.
The technology of the battery storage system (BSS) is mature and widely used, so the use
of BSS as an energy storage device can play the role of peak cutting and valley filling,
providing an economic solution as well as environmental protection.

The state of the energy storage device is the state of the available energy in BSS, which
is described by the state of charge (SOC). The SOC can accurately display the remaining
capacity of BSS, and its mathematical model is:

SOC = EBSS/EBSS_r (13)

Charge:

SOCBSS,t = (1 − σBSS)× SOCBSS,t−1 + ηBSS_in × PBSS_in,t × ∆t/EBSS_r (14)

Discharge:

SOCBSS,t = (1 − σBSS)× SOCBSS,t−1 − ηBSS_out × PBSS_out,t × ∆t/EBSS_r (15)

which simultaneously needs to satisfy the following:



Sustainability 2024, 16, 3225 6 of 19


0 ≤ PBSS_in,t ≤ uBSS,in,t × Pmax

BSS
0 ≤ PBSS_out,t ≤ uBSS,out,t × Pmax

BSS
SOCmin

BSS ≤ SOCBSS,t ≤ SOCmax
BSS

uBSS,in,t + uBSS,out,t ≤ 1

(16)

where EBSS is the current energy storage capacity of BSS; EBSS_r is the maximum energy
storage capacity; SOCBSS,t and SOCBSS,t−1 are SOC at time t and time t−1; σBSS is the
power consumption rate of BSS; ηBSS_in is the conversion efficiency of the energy absorbed
by BSS; ηBSS_out is the conversion efficiency of the energy supplied by BSS; PBSS_in,t is the
power absorbed by BSS; and PBSS_out,t is the power supplied by BSS.

3.2. Cost Indicators for BSS Construction and Operation

In order to clearly determine the benefits of the coordinated control strategy for BSS
grouping on system operation, this paper proposes a cost indicator function that considers
the construction cost and the operation and maintenance cost of BSS.

fBSS = fBSS_INV + fBSS_OM (17)

fBSS_INV =
r(1 + r)y

365[(1 + r)y − 1]
(αECap

BSS + βPCap
BSS ) (18)

fBSS_OM = γ
T

∑
t=1

(PBSS,in,n,t + PBSS,out,n,t) (19)

where fBSS is the BSS cost indicator function; fBSS_INV and fBSS_OM, respectively, represent
the construction cost and the operation and maintenance cost of BSS; r is the discount rate;
y is the service life of BSS; ECap

BSS and PCap
BSS are the energy capacity and power capacity of

BSS; α and β are the unit energy capacity cost and the unit power capacity cost; and γ is the
unit cost for energy storage charging and discharging.

3.3. Energy Storage Coordination Control Strategy Modle

Energy storage devices can absorb renewable energy generation and play the role of
peak cutting and valley filling. Existing literature on BSS in MMIESs mainly focuses on
the impact of BSS on system uncertainty [22], or the improvement of system performance
by similar energy storage devices [23]. It is overlooked that in an MMIES, multiple BSSs
working together can bring benefits to both the multi-microgrid system and the BSSs. In a
single MIES, in order to minimize economic costs, energy storage is usually in a state of
repeated charge and discharge, which will adversely affect the capacity and service life
of energy storage devices. The price of energy storage equipment is high, and if it is not
fully utilized, it will further harm the economy and the environmental protection of the
entire system.

However, in MMIESs there can be multiple energy storage devices, and formulating
a reasonable energy storage coordination control strategy can effectively solve the above
problems. When multiple energy storage devices of the same type are used in parallel in
a system, they can be selectively allowed to participate in power and energy distribution
according to certain rules and the system’s forecast or real-time energy storage demand,
so as to improve the efficiency of the ESS. The life of a battery is related to the number of
charge and discharge cycles, peak current, and temperature.

In this paper, the MMIES contains multiple energy storage batteries. To prolong the life
of the batteries as much as possible, a control strategy for the charge and discharge of energy
storage equipment is developed for the system. Compared to a single microgrid system,
there is mutual power between microgrids in MMIESs. When a single microgrid system
lacks power, in addition to purchasing power from the grid, it can only be adjusted through
BSS charging and discharging. In MMIESs, when a certain microgrid lacks power, it can
also be adjusted through the mutual power provided by other microgrids. By combining
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with a charging and discharging strategy, the burden of BSS in MMIESs can be effectively
reduced. This strategy can control the number of single BSS charges and discharges per
day within a certain range, without repeated charging and discharging. In addition, the
state of charge at the beginning and end remains unified, so that the battery can be charged
and discharged according to the cycle. The specific implementation is as follows:

uBSS,in,n,t − uBSS,in,n,t−1 ≤ zBSS,in,n,t (20)

uBSS,out,n,t − uBSS,out,n,t−1 ≤ zBSS,out,n,t (21)

T

∑
t=1

zBSS,in,n,t ≤ N (22)

T

∑
t=1

zBSS,out,n,t ≤ N (23)

These simultaneously need to satisfy the following:

uBSS,in,n,t + uBSS,out,n,t <= 1 (24)

T

∑
t=1

PBSS,in,n,t −
T

∑
t=1

PBSS,out,n,t = 0 (25)

where uBSS,in,n,t represents the charging state of BSS in microgrid n and 1 represents
charging; uBSS,out,n,t represents the discharging state of BSS in microgrid n, 1 represents
discharging. zBSS,in,n,t and zBSS,out,n,t are 0–1 variables. N represents the maximum daily
charging and discharging conversion times.

4. Optimization Scheduling of MMIES
4.1. Objective Function of Optimization Scheduling

1. Economic Cost Objective Function

The optimal scheduling of an MMIES minimizes the sum of the operating costs of all
MIESs in the system through energy management, so the objective function is expressed
as follows:

min
N

∑
i=1

CMIES
i (26)

where N is the MIES assembly and CMIES
i is the operation cost of microgrid i, including the

cost of electric energy use Ci,grid and the cost of natural gas use Ci,gas. Income includes the
income of the MIES selling electricity to the power grid Ci,load:

CMIES
i = Ci,grid + Ci,gas − Ci,load (27)

Ci,grid =
T
∑

t=1
pgrid,tPi,grid,t∆t

Ci,gas =
T
∑

t=1
pgas,tGi,NG,t∆t

Ci,sold =
T
∑

t=1
psold,tPi,sold,t∆t

(28)

2. Environmental Cost Objective Function

In response to the strategic goal of carbon peaking and carbon neutrality, environ-
mental factors should also be considered in the operation optimization goal of MIES. The
overall environmental and economic penalty objective function of MMIES is expressed
as follows:

minD = λD

(
Dgrid + DGT + DGB

)
(29)
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
Dgrid = ∑T

t=1 εgridPgrid,t∆t
DGT = ∑T

t=1 εGT(PGT,t + HAC,t + HHA_in,t)∆t
DGB = ∑T

t=1 εGBHGB,t∆t
(30)

where λD is the penalty factor of CO2 emission; Dgrid is the amount of CO2 produced
by power grid; DGT is the amount of CO2 produced by GT; DGB is the amount of CO2
produced by power GB; εgrid is the CO2 emission coefficient of power grid; εGT is the CO2
emission coefficient of GT; and εGB is the CO2 emission coefficient of GB.

4.2. Optimization Scheduling Constraints

1. MMIES Energy Transmission Network Constraints

Based on the mathematical model of the energy transmission network above, the network
constraints in the MIES optimization problem are as outlined in Equations (8)–(11).

2. MMIES Power Balance Constraints

In the MMIES scheduling optimization problem, to make full and reasonable use of
the electric energy and natural gas resources of each microgrid while minimizing the total
cost as much as possible, the overall power balance between MIESs should be achieved.
For each microgrid to carry out their own distributed optimal scheduling, the mutual
power among microgrids is introduced, where Pi,exc,t represents the mutual power received
or sent by microgrid i. Positive values imply received power and negative values imply
sent power. After each microgrid is mutualized, the power balance of electric energy will
become the following:

Pi,PV,t + Pi,WT,t + Pi,BSS_in,t + Pi,GT,t + Pi,grid,t − Pi,BSS_out,t − Pi,EC,t − Pi,GSHP_heat,t − Pi,GSHP_cool,t − Pi,PtG,t − Pi,sold,t + Pi,exc,t = Pi,load,t (31)

Among them, the mutual power of each microgrid should also achieve real-time balance:

∑
i∈N

Pi,exc,t = 0 (32)

3. MIES Internal Device Constraints

The types of equipment used in each MIES are roughly similar, and they all need
to meet the requirements, respectively. The output of all of the equipment in the energy
exchange link and the energy storage link has a certain range, and its power needs to meet
the inequality constraints of the upper and lower limits of the equipment output. The
formula for specific constraints has been previously described in Equations (1)–(7).

5. Distributed Scheduling Based on ADMM

In the scheduling optimization of MMIESs, distributed optimal scheduling archi-
tecture is often used to solve the problem of privacy autonomy for each microgrid and
complex information interaction among microgrids. The basic architecture for the opti-
mal scheduling established in this paper is shown in Figure 1. Each microgrid belongs
to a different decision-making body with autonomy, and optimizes energy resources in
the microgrid through the regional control system. The carbon emissions of the entire
MMIES are controlled by the overall carbon emissions management system, forming a
two-tier scheduling architecture for the economic scheduling of each microgrid at the lower
level and for the carbon emissions scheduling of the overall system at the upper level.
Through the information exchange between the management systems, the joint coopera-
tive optimization scheduling and control of each microgrid is realized, thus, realizing the
distributed cooperative control and joint dispatching of MMIESs with internal autonomy
for each subject.

5.1. ADMM Distributed Optimal Scheduling

According to the ADMM standard model [25], the constraints between the modular
objective function and the subproblems are first determined, and then the optimization
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problem is formulated. In actual operation, to ensure independent scheduling and in-
formation privacy, each microgrid will not disclose its objective function and equipment
operation parameters to other microgrids, so distributed iterative optimization is adopted
to achieve the optimal overall economic operation cost. The overall objective expression is
as follows: 

min ∑
i∈N

CMIES
i

s.t. ∑
i∈N

Pi,exc,t = 0
, ∀t ∈ T (33)

By adding consistency constraints and using ADMM algorithm decomposition tech-
nology, the multi-agent cooperative optimization problem can be decomposed into each
microgrid’s autonomous scheduling sub-problems. The objective function of a single
microgrid can be expressed as follows:

minCPIES
i + ∑

t∈T
[λi,t(Pi,exc,t + ∑

j∈N,j ̸=i
P̂CO2

j,exc,t) +
ρ

2
(Pi,exc,t + ∑

j∈N,j ̸=i
P̂CO2

j,exc,t)
2
] (34)

where λi,t is the Lagrangian multiplier; ρ > 0 is the penalty parameter; and P̂j,exc,t is the
coordinating variable.

Then, the environmental cost in the carbon emissions management system is opti-
mized, and the overall objective expression is as follows:

min ∑
i∈N

CMIES
i + ∑

i∈N
DMIES

i

s.t. ∑
i∈N

Pi,exc,t = 0
, ∀t ∈ T (35)

Its distributed iteration form is as follows:

min ∑
i∈N

DPIES
i + ∑

i∈N
∑
t∈T

[λi,t(Pi,exc,t − P̂i,exc,t) +
ρ

2
(Pi,exc,t − P̂i,exc,t)

2
] (36)

5.2. Improved ADMM Distributed Optimal Scheduling Process with Adaptive Step-Size

The MMIES established in this paper contains three microgrids, each of which un-
dergoes an iterative optimization of economic objectives. Before and after the iterative
optimization of the three microgrids’ economic objectives, the carbon emissions manage-
ment system optimizes the overall environmental objectives of MMIES, ultimately forming
a nested iterative optimization process for the three microgrid economic optimizations in
small cycles, and the overall MMIES economic and environmental optimization in large
cycles. Compared to single optimization, the iterative interaction of multiple optimizations
may affect the computational speed and convergence. Therefore, this paper proposes an
adaptive step-size method, which improves the previously used constant penalty parame-
ter ρ to a moderately variable quantity (Figure 3).

The specific solution steps are as follows:

1. Raw data and equipment parameters, including load data, distributed power output,
CHP unit operating parameters, Lagrange multipliers λi,t, penalty parameters ρ, etc.,
were inputted.

2. Each MIES subsystem solved the autonomous optimization problem independently
and in parallel for operation optimization. The optimization result Pi,exc,t was obtained
by solving Equation (34). According to the result, the coordination variable was
updated, P̂i,exc,t = Pi,exc,t and the obtained coordination variable P̂i,exc,t was used for
communication with other MIES and energy nodes.

3. Considering the influence of carbon emissions generated at the energy node on the
overall economy of the region, Equation (36) was solved to obtain the optimiza-
tion result Pi,exc,t, and the coordinating variable was updated according to the re-
sult P̂CO2

i,exc,t = Pi,exc,t. The resulting coordination variable P̂CO2
i,exc,t was used to communi-

cate with other MIES.
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4. The coordination variables P̂CO2
i,exc,t are updated according to the optimization results

of each MIES. The Lagrange multiplier was then updated with the latest coordina-
tion variable:

λi,t
[k+1] = λi,t

[k] + ρ
(

P̂CO2[k]
i,exc,t − P̂i,exc,t

[k]
)

(37)

5. The step size was updated:

ρ[k+1] =


ρ[k]

1+log(δdual/δpri)
δdual < 0.1δpri

ρ[k][1 + log(δpri/δdual)] δdual > 10δpri

ρ[k] otherwise

(38)

6. If the above was satisfied, then the following was true:
∥∥∥P̂CO2[k]

i,exc,t − P̂[k]
i,exc,t

∥∥∥
2
≤ δpri

ρ
∥∥∥P̂CO2[k]

i,exc,t − P̂CO2[k−1]
i,exc,t

∥∥∥
2
≤ δdual
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In this case, the optimal policy scheduling was achieved and δpri and δdual are the
original and dual residuals. Otherwise, let k = k + 1, and return to Step 2.

6. Example Analysis

The following will be based on the distributed optimal scheduling method based
on ADMM proposed in this paper, and the results are compared with the traditional
centralized algorithm to verify the calculation accuracy of the distributed ADMM algorithm.
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The program calculation is carried out on the MATLAB R2021a platform, using the Yalmip
toolbox and Gurobi solver.

6.1. Example Basic Data

Based on the operation data and comprehensive energy load data of three MIESs in
Zhejiang Province in China, which are the Dongyang residential MIES, Yiwu commercial
MIES and Yongkang industrial MIES, this paper constructs an MMIES simulation model,
as shown in Figure 1, through the interconnection of energy and gas networks to analyze
the operation of the interconnected system. There are slight differences in the capacity of
the equipment and the upper limit of the interactive energy of the large grid among the
three MIESs. The forecast values of photovoltaic, wind power, and load for each MIES are
shown in Figure 4.
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The equipment parameters of the MIESs are shown in Table 1.
The prices of electricity and natural gas in this region are different at different times

of the day, and peak–valley electricity price and peak–valley natural gas price can play a
good role in peak cutting and valley filling. The specific prices adopted by the three MIESs
are shown in Tables 2 and 3.

In terms of BSS cost calculation, α = 1000 yuan/(kWh), β = 3500 yuan/kW,
γ = 0.1542 yuan/kW, r = 8%, and the BSS life is 10 years.
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Table 1. Capacity and efficiency of equipment in MIES.

Equipment Energy (kWh) and
Efficiency of MIES1

Energy (kWh) and
Efficiency of MIES2

Energy (kWh) and
Efficiency of MIES3

GT 200 0.4 100 0.4 100 0.4
GB 500 0.8 500 0.8 500 0.8
AC 100 0.7 100 0.7 100 0.7
HA 500 0.8 500 0.8 500 0.8
EC 100 3 / / / /

GSHP 100
4.5 (cool)

100
4.5 (cool)

100
4.5 (cool)

3.5 (heat) 3.5 (heat) 3.5 (heat)
PtG 100 0.55 100 0.55 100 0.55
SB 100 0.95 200 0.95 100 0.95

Grid 200 300 500

Table 2. Electricity price.

Time (h) 1–7 8–10 11–22 23–24

Electricity price (Yuan/kWh) 0.41 0.74 1.2 0.74

Table 3. Natural gas price.

Time (h) 1–8 9–22 23 24

Natural gas price (Yuan/m3) 2.63 2.05 2.63 2.05

6.2. Distributed Optimal Scheduling Results of Each MIES

The operating costs for each MIES are calculated using the distributed algorithm and
the centralized algorithm, as shown in Table 4. It shows that for the MMIES established in
this paper, the calculation results of the ADMM distributed algorithm and the centralized
algorithm are basically consistent, and the error is only 0.0029%. This means that, without
sacrificing economic benefits, the decision-making autonomy of MIESs can be realized
through the ADMM distributed algorithm, which has almost the same benefit as the
centralized scheduling.

Table 4. Distributed and centralized optimization results.

Algorithm MIES1 MIES2 MIES3 CO2 Sum

Centralized (Yuan) 1647.72 1102.38 974.32 806.05 4530.47
Distributed (Yuan) 1647.70 1102.29 974.34 806.01 4530.34

The distributed iteration results of each MIES are shown in Figure 5a, where the
convergence condition is reached after the 65th iteration. The change trend of the results
in each microgrid is first rising and then decreasing, and finally tends to the result of
centralized optimization. This is because during the initial optimization, the mutual
energies Pi,exc,t are all close to the direction that is most conducive to the minimum operating
cost, and the equilibrium constraint among them ∑

i∈N
Pi,exc,t = 0 has not been reflected, so

the initial optimization results are all too small. In the later stage, due to the consideration
of equilibrium constraints, which are embodied in the objective function in the distributed
optimization iteration, there is a temporary increase in the results of each microgrid. In
each iteration, the balance between the minimum operating cost of the microgrid and the
equilibrium constraint is gradually reached in line with each other. The results converge,
the iteration stops, and the target is optimized.

The iteration of the economic cost and carbon emissions-based environmental cost
of the entire MMIES are shown in Figure 5b. Through the iterative calculation results, it
can be seen that both the optimization results of a single MIES and the overall results of a
multi-objective problem converge effectively, indicating the accuracy and reliability of the
ADMM in solving this optimization problem.
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6.3. Energy Interaction between Microgrids

The energy interaction among each microgrid is shown in Figure 6. The mutual energy
obtained by the microgrid is positive, and the mutual energy sent out is negative. After
iterative convergence, the total mutual energy of each microgrid is basically zero, and the
balance is reached. At the same time, due to the constraints of DC power flow and voltage
on the lines connecting each microgrid, there are upper and lower limits of mutual energy
between microgrids, and very high-power energy interaction does not take place because
of cost reduction.
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6.4. Energy Injection of Each MIES

Figure 7 shows the electric energy injection and gas energy injection of each period,
respectively. Due to the transmission energy constraints of the electrical and gas interfaces
shown before, the electrical and gas energy are kept within the constrained level, which
effectively ensures the safety and stability of the system. The internal energy and gas
pipeline constraints in each subregion are similar in the whole system, and the electric
energy and gas energy constraints in each subregion also meet their own constraint levels
shown in Figure 7. The electricity price is higher at 4:00–8:00, but the user’s electricity
demand is larger, and the electricity price is lower at 9:00–11:00, 19:00, and 24:00, so the
energy obtained by each subregion from the grid is higher during these periods, and
most of the other periods are supplied by natural gas to maintain the balance of supply
and demand.
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6.5. Energy Storage System Operation of Each MIES

Figure 8 reflects the changes in the state of charge of BSSs under different energy
storage coordination control strategies. According to different strategies, the final operating
costs of microgrids and energy storage construction vary, as shown in the Table 5.
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Table 5. Cost changes with different strategies.

Energy Storage Coordination Control Strategy Microgrids Cost (Yuan) BSS Operation Cost (Yuan) Total Cost (Yuan)

Without strategy 4525.47 246.34 4771.87
One charge and discharge per day 4561.57 181.72 4743.29
Two charge and discharge per day 4526.06 219.77 4745.83

Free strategy per day 4530.34 210.65 4740.99

It can be seen that when there is no strategy for charging and discharging, although the
operating cost of microgrids is lower, the uncontrolled charging and discharging behavior
of BSS leads to large equipment losses, resulting in higher operating costs and overall costs
for energy storage construction. Under the strategy of one charge and one discharge or
two charges and two discharges of energy storage equipment within a day, the operating
cost of microgrids is increased to varying degrees, and the operating cost of energy storage
construction is reduced. The free strategy of BSS within each microgrid refers to different
devices being able to develop n charging and n discharging strategies according to their
own microgrid needs. In this example, the optimization results show that BSS1 executes a
one charge one discharge strategy, while BSS2 and BSS3 execute a two charge two discharge
strategy, ultimately achieving the lowest total cost of the multi-microgrid system. Compared
to being without a strategy, the free strategy per day increased microgrids’ cost by 4.87 yuan,
an increase of 0.1076%, while BSS operation cost decreased by 35.69 yuan, a decrease of
14.49%, resulting in an overall improvement in the system’s economy.

It can be seen in Figure 8 that the charge and discharge of energy storage devices in
each MIES is affected by the real-time electricity price and is also related to the renewable
energy generation and load demand in the system at the same time. Without the energy
storage control, if the wind power and photovoltaic power generation are greater than the
load demand from 12:00 to 14:00, the energy storage devices in each MIES start to carry
out heavy charging, and the SOC gradually rises from the lowest 0.1 to the highest 0.9. In
the following hours, each micro-grid, respectively, carries out small-scale charging and
discharging in response to its own load demand to meet the balance of the supply and
demand of electric energy in the MIES. Until around 20:00–23:00, the electricity price is
at the highest level all day, and the load demand is large, and the energy storage devices
begin to discharge on a large scale, reducing the cost of electricity purchase and improving
economic benefits.

Under the strategy of two charges and two discharges, the energy storage system
can basically complete the initial charging and discharging plan, but the main body of
completion may change. For example, when there is no strategy, BSS3 first charges and
discharges from 5 to 8 o’clock, and when there is a strategy, BSS2 can replace BSS3 to charge,
thereby reducing the overall charging and discharging frequency through cooperation.

Under the strategy of one charge and one discharge, some of the initial charging and
discharging plans of the BSS will not be completed, and a small portion of benefits will be
sacrificed. However, each BSS only needs to complete one charging and discharging within
a day, which can greatly extend the lifespan of the energy storage equipment. Without
the energy storage control, such as 13:00–14:00 and 18:00–20:00, there will be some battery
charging and some battery discharging phenomena. With the energy storage control some
battery charging status is unchanged, while some other batteries charge and discharge on
demand, which can not only meet the balance of supply and demand and does not affect
the economy of the system, but also avoids unnecessary battery charging and discharging
phenomena. Reducing the frequency of charge and discharge is beneficial to the operation
of the system.

Based on the differences in optimization results achieved by these different strategies,
each microgrid entity can choose different strategies according to their own needs, making
the overall optimization of microgrid clusters more flexible.
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6.6. Effect of Carbon Emissions Weight on Overall Optimal Scheduling of MMIES

In order to further explore the relationship between the two objective functions and
explain the impact of the penalty factor λD of the CO2 emissions on the system low-carbon
economy, λD was set as 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 times, respectively, and the changing
trends of operating cost and carbon emissions environmental cost under different weights
are obtained in Figure 9. It can be clearly seen that with the increase of the penalty on
CO2 emissions in the upper coordination system, CO2 emissions gradually decreased and
the environmental cost of carbon emissions gradually decreased, while the operating cost
increased. After 2.5 times the weight, the trend slowly decreased until it no longer changed.
This is because the reduction of CO2 emissions was achieved by changing the ratio of
electricity and gas energy supply, but under the constraints of various energy supplies in
the system, the ratio of the two had reached the limit, so it could not be further changed
to meet the load demand of the system. For different systems, the penalty factor can be
reasonably selected according to local carbon emissions policies and the needs of decision
makers to achieve different overall scheduling optimization effects.
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As can be seen from Figure 9b, with the increase in the carbon emissions penalty
factor λD, the purchase of electricity gradually decreased, while the purchase of gas grad-
ually increased. This is because the carbon emissions caused by grid energy generation
are more damaging to the environment than gas turbines and gas boilers in MIES, so for
different needs of the system’s carbon emissions regulation, the system can choose its own
equipment capacity.

Through these comparisons, it can be seen that adding a carbon emission system to
MMIES has a significant impact on both cost and the proportion of electricity and natural
gas purchases, which also changes the degree of the environmental impact of the system.
The carbon emissions system can effectively monitor the carbon emissions of the system,
make changes in punishment strategies based on the environment, and greatly improve
the environmental friendliness without excessively conceding benefits, which contributes
to sustainable development issues.

6.7. Convergence Analysis Based on Adaptive Step-Size

To solve the problem of increasing computational difficulty, this paper improved the
model based on single-objective distributed iterative calculation and proposed a distributed
iterative optimization method based on the adaptive step-size method. Based on an
unchanged original step size, the step size would be trimmed to a certain extent according
to the calculation situation to improve the computational efficiency and reduce the number
of iterations as much as possible. Figure 10 shows the convergence properties of distributed
optimization with and without the adaptive step-size method. Table 6 provides the specific
convergence time and convergence frequency.



Sustainability 2024, 16, 3225 17 of 19

Sustainability 2024, 16, x FOR PEER REVIEW 19 of 22 
 

 
 

(a) (b) 

Figure 9. Cost, electricity, and natural gas purchase changes under different penalty factors. (a) Cost 
changes. (b) Electricity and natural gas purchase changes. 

Through these comparisons, it can be seen that adding a carbon emission system to 
MMIES has a significant impact on both cost and the proportion of electricity and natural 
gas purchases, which also changes the degree of the environmental impact of the system. 
The carbon emissions system can effectively monitor the carbon emissions of the system, 
make changes in punishment strategies based on the environment, and greatly improve 
the environmental friendliness without excessively conceding benefits, which contributes 
to sustainable development issues. 

6.7. Convergence Analysis Based on Adaptive Step-Size 

To solve the problem of increasing computational difficulty, this paper improved the 
model based on single-objective distributed iterative calculation and proposed a distributed 
iterative optimization method based on the adaptive step-size method. Based on an un-
changed original step size, the step size would be trimmed to a certain extent according to 
the calculation situation to improve the computational efficiency and reduce the number of 
iterations as much as possible. Figure 10 shows the convergence properties of distributed 
optimization with and without the adaptive step-size method. Table 6 provides the specific 
convergence time and convergence frequency. 

 
Figure 10. Iterative residual variation. Figure 10. Iterative residual variation.

Table 6. Iterative residual variation.

Step Constant Step Adaptive Step-Size

Calculate the number of iterations (time) 96 65
Calculation time (s) 1316 1181

Dashed lines show the iterative convergence of distributed computing for each MIES
without using the adaptive step-size method. Here, the maximum residual limit is taken to
be 10−2. The original residual decreases faster, and at the 40th calculation, the convergence
condition lingers at the edge of the convergence condition, while the dual residual decreases
more slowly. Finally, at the end of the 96th calculation, the dual residual of the original
residual meets the convergence condition at the same time, and the final optimization result
is obtained after the calculation is completed.

Solid lines show the iterative convergence of distributed computing for each MIES
using the adaptive step-size method. Compared to iterating at the rated step-size, the
descent speed of the original residual has been significantly improved, and the overall
convergence condition has been reached after the 65th iteration, reducing the number of
iterations by 32.3%, and the calculation time reduced by 10.3%. The improved adaptive
step-size distributed iteration method in this paper can effectively reduce the number of
iterations and improve computational efficiency.

7. Conclusions

In this paper, several methods of distributed iterative optimization for MMIESs are
analyzed, and the ADMM method based on adaptive step-size was selected for compu-
tational efficiency. In this paper, the basic framework of MMIESs containing cold, heat,
electricity, and gas energy was established, and a coordinated control strategy limiting the
frequency of the charge and discharge of energy storage devices was proposed. Then a
multi-objective optimization model based on operating cost and environmental cost for
carbon emissions was established. Considering that different microgrids may be managed
by different operators and the convergence speed of multi-objective optimization iteration,
an adaptive step-size distributed iterative optimization method was used based on ADMM,
which can effectively reduce the cost and protect the privacy of each microgrid. Finally, a
system composed of three microgrids was provided as an example for simulation analysis,
and the following conclusions can be drawn from the analysis:

For the MMIES established in this paper, the simulation results of the ADMM dis-
tributed algorithm and the centralized algorithm are basically consistent, and the error



Sustainability 2024, 16, 3225 18 of 19

is only 0.0029%, which means that the decision-making autonomy of the MIES can be
realized through the ADMM distributed algorithm without sacrificing economic bene-
fits, and the benefits of the distributed scheduling are almost the same as those of the
centralized scheduling.

In the multi-objective optimal scheduling results, the interactive energy and energy
injection between each microgrid meet the constraints, and the energy storage is also
utilized under the constraints of the control strategy, which can not only cut the peak and
fill the valley, with BSS operating cost decreasing by 14.49%, but also does not cause too
much damage to the energy storage devices, ensuring a stable, economic, low-carbon, and
environmentally friendly operation of the system.

Considering the multi-objective optimization of the environmental cost of carbon emis-
sions, with an increase in the penalty factor, carbon emissions can be effectively reduced,
but operating costs will also increase, which can provide a reference for decision makers.

The improved adaptive step-size distributed iterative optimization method will trim
the step-size according to the calculation situation based on the original step-size, so as to
improve the calculation efficiency and reduce the number of iterations as much as possible,
reducing the number of iterations by 32.3%, and reducing the calculation time by 10.3%.

In follow-up research, MMIESs should also take into account the volatility of dis-
tributed renewable energy generation and the uncertainty of various regional loads, and
take such factors into consideration in the model and method for optimization so as to
improve the optimal scheduling problem. The current MIESs are connected to the same
voltage node, and in the future, addressing the power flow problem for cases in which
MIESs are connected to different voltage nodes would be an interesting research direction.
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