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Abstract: To satisfy the interests of multiple agents and those of comprehensive indicators such as
peak-to-valley differences and load fluctuations occurring on the network side, this paper presents a
flexible load demand-side response optimization method that considers the benefits of peak-to-valley
smoothing. First, load aggregation modelling of air conditioning and electric vehicles was conducted,
and the complementarity of the power consumption behavior of different types of flexible loads
was used to improve the responsiveness of the load aggregator. Second, considering demand-side
responses and taking into account the interests of both supply and demand, the load fluctuation
and peak-to-valley difference on the network side are reduced, and a flexible load double-layer
optimization model incorporating the peak-to-valley smoothing benefit is established. Finally, the
effectiveness of the proposed optimization model is verified by using the KKT condition and the big
M method to evaluate this two-layer optimization problem as a single-layer optimization problem.
Comparative examples show that the proposed two-layer optimization method can take advantage
of the complementarity of air conditioning and electric vehicles to improve the income of load
aggregators. Moreover, the proposed method can effectively reduce the load peak-to-valley differ-
ence and load fluctuation of the distribution network by introducing the peak-to-valley smoothing
benefit model.

Keywords: air conditioning load; demand response; double-layer optimization; electric vehicle load;
KKT conditions; peak-to-valley smoothing benefits

1. Introduction

Under the goal of “double carbon”, the construction of a new type of power system
that adapts to the gradual increase in the proportion of new energy that is renewable is the
key to building an energy system of the future [1]. As the output of renewable energy is
significantly affected by weather factors, there is volatility and stochasticity, related power
systems face an increased risk of double imbalances of short-term power and long-term
power [2]. Energy users have a large number of adjustable flexible load resources, and
relying on demand response (DR) and related means can promote power grid peak cutting,
valley filling, and renewable energy consumption. Therefore, the use of demand-side
flexible loads to achieve source–load interaction is an important development direction for
new power systems to achieve supply–demand balance.

Air conditioning (AC) and electric vehicles (Evs) are typical flexible loads that have
great potential for being adjusted. During high summer temperatures, air conditioning
system loads can reach more than 30% of the grid peak load. Simultaneously, the number
of electric vehicles in China has exceeded 14.01 million [3–5]. Because air conditioning and
electric vehicle loads are large, reasonable regulation measures can effectively alleviate
the power supply tension incurred by using such equipment and ensure the safe and
stable operation of the power grid. Working on efficient energy management solutions in
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buildings, especially for HVAC systems, leads to significant economic, social, and environ-
mental improvements [6,7]. For example, aiming at the problem that direct load control
of temperature-controlled loads usually affects customer comfort and makes itdifficult to
consider responsiveness, the authors of [8] proposed a method of air-conditioning load
aggregation operation control and demand response for power sales companies. From
the perspective of the power sales company, a temperature-controlled load compensation
mechanism is constructed to promote user participation in demand response. Reference [9],
based on the pricing strategy of electric vehicle charging based on the quality of service,
designed a package model with different quality of service, which effectively reduces the
user’s charging cost. Due to diversity in types and decentralized integration of AC load, the
dispatch center faces challenges in directly accessing its aggregated power and conducting
scheduling control, limiting the full potential of its response. To address this issue, the
authors of [10] proposed a dual-layer control framework that combines multiple types of
resources, considering the aggregation response potential of air conditioning load, and
integrates precise control into the scheduling process. Reference [11] divided the user group
into five groups according to the different sensitivities of different users to the temperature
to propose an air conditioning scheduling strategy based on the user’s differentiated com-
fort, and finally verified the strategy through arithmetic example analysis to complete the
new energy consumption based on the new energy and, at the same time, to ensure the
comfort of the users.

Reference [12], considering the specific models of heat load and battery degradation,
proposed practical and flexible MEBM operation model which rigorously models the in-
terdependence between EV load and household appliances. Reference [13] introduces a
rolling optimization scheduling mechanism based on real-time data collection, processing,
and analysis. This allows our approach to deal with the uncertain availability of electric
vehicles. Reference [14] introduces a dynamic carbon emission factor to integrate the total
cost of the system (including electricity and carbon emission costs) and user comfort as
multiple objectives to optimize air conditioning operation with a single objective. Refer-
ence [15] establishes a polymeric model of air conditioning to increase the potential of
users to participate in demand response by changing the temperature rise compensation
factor. Reference [16], considering interactions with Distribution System Operators (DSOs)
and EV users, developed a novel multi-phase joint tendering and pricing strategy for
EVA. Reference [17] proposes a dynamic dual-level distribution network optimization
scheduling method based on carbon emission factor considering friendly interaction with
electric vehicles, which effectively reduces carbon emissions and improves the income of
electric vehicle load aggregators. There have been studies on the demand-side response of
air conditioning loads and electric vehicle loads, but most of these studies only model and
regulate a single flexible load, and few studies have considered the complementarity of the
joint optimization of different flexible loads.

The optimal operation of grid flexible loads usually Involves the participation of
multiple subjects, and the interests of multiple subjects need to be considered. Reference [18]
proposed a tri-level optimization problem that seeks the maximization of revenues from
Distributed Energy Resources, the optimization problem considers Electric Vehicles, Battery
Energy Storage Systems and Heating, and Ventilation and Air Conditioning in national and
local markets. Reference [19] describes a home energy-management system incorporating
HVAC and EV that optimally schedules behind-the-meter resources under a tariff with an
export rate and analyzes the operation of each behind-the-meter resource and the impact on
homeowners’ costs and comfort levels. In Reference [20], a two-stage energy management
strategy for the contribution of PEVs in demand response programs of commercial building
microgrids is addressed to reduce the on-peak demand, improve the economic efficiency,
and increase the environmental sustainability. In reference [21], EV and HVAC aggregator
models are developed to represent the fleet of grid-interactive efficient buildings, then a tri-
Ievel bidding and dispatching framework is established based on competitive distribution
operation with distribution locational marginal price, which satisfies the interests of load
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aggregators and distribution network operators simultaneously. The above literature
mainly focuses on the interests of multiple subjects in the demand-side response process,
but fails to consider peak shaving and valley filling on the distribution network side, which
may lead to the phenomenon of “adding peaks to peaks” [22].

In summary, the existing demand-side response studies for user flexible loads are still
mainly focused on the modelling and analysis of single flexible loads; although the interests
of the upper and lower layers are considered in the constructed two-tier optimal operation
model, comprehensive indicators such as peak-to-valley differences and load fluctuations
on the distribution network side are lacking. Therefore, this paper presents a flexible load
demand-side response optimization method that considers the benefits of peak–valley
smoothing. First, the loads of the air conditioner and electric vehicle are modelled to
improve the response ability of the load aggregator by using the complementary nature
of different types of flexible loads. Second, taking into account the benefits of both the
supply and demand sides in the process of demand-side response, the load fluctuation and
the peak–valley difference on the network side are reduced, and a two-layer optimization
model of flexible load is established considering the benefits of peak–valley smoothing.
Finally, the two-layer optimization problem is transformed into a single-layer optimization
problem by the KKT condition and large M method, and the effectiveness of the proposed
optimization model is verified.

2. Flexible Load Demand Side Response Architecture

The operational architecture of the proposed two-tier optimization model for distribu-
tion networks with flexible loads constructed is shown in Figure 1. The load aggregator
enters into an agreement with the platform users who can participate in load regulation.
This load aggregator controls air conditioning loads and electric vehicle charging loads
through terminal equipment connected to the air conditioner, electric vehicle charging posts,
etc. The multiple subjects involved in the two-tier model for flexible load optimization are
defined as follows:

(1) Distribution system operator (DSO).
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Figure 1. Flexible Load Demand Side Response Architecture. 

3. Flexible Load Resource Aggregation Models 
3.1. Aggregation Modelling of the Air Conditioning Load 

Air conditioning load modelling currently uses the equivalent thermal parameter 
model (ETP). The ETP model can be divided into first-order and second-order models. 
[23,24] To simplify the model complexity, this paper adopts the first-order ETP model to 
describe the thermodynamic process of the air conditioning unit, and the relationship be-
tween the air conditioning power and the indoor and outdoor temperatures is shown in 
Equation (1) [25]: 

( )
t t t

tin out in
ac ac

dT T TC u t P
dt R

η−
= −  (1)

where 
t
inT  and 

t
outT  are the indoor temperature and outdoor temperature at moment t, 

respectively; 
t
acP  is the electric power of air conditioning at moment t; R is the equivalent 

thermal resistance of the wall; C is the equivalent heat capacity of the air conditioning; 
( )u t  is the operating state of the air conditioning; and acη  is the ratio of air conditioning 

energy consumption. Assuming that the air conditioner is in thermal steady-state opera-

tion, the set temperature of the air conditioner is 
t
setT  = 

t
inT ; because / 0t

indT dt = , we can 

obtain a single air conditioner that consumes electric power 
t
acP : 

t t
t out in
ac

T T
P

Rη
−

=  (2)

Assuming that there are N air conditioners, the total power of the air conditioning 
unit can be estimated based on the power of a single air conditioner as follows: 

1 1

min in max         

t tN N
t t out in
AC ac

n n n n
t t t

T T
P P

R
T T T

η= =

−
= ≈

≤ ≤

 

 

(3)

.
t t lit
AC d AC ACP P P= −  (4)

, max

1

t tN
lit t out
AC

n n n

T T
P

Rη=

−
=

 
(5)

where 
t
HVACP  is the aggregated power of N air conditioners at time t; .

t
HVAC dP  is the up-

per limit of the cut power of N air conditioner loads at time t; 
,lit t

HVACP  is the aggregated 
power of the user at the highest tolerable indoor temperature; and min tT  , max

tT   is the 
range of temperature comfort required to satisfy the user�s comfort level. 

Figure 1. Flexible Load Demand Side Response Architecture.

The upper DSO needs to consider its own net profit from selling electricity and
purchasing electricity, and it obtains its own income by selling electricity to users. To
improve the revenue of the DSO and meet the electricity demand of users, the DSO needs
to interact with load aggregators and external power grids. The grid decides the amount of
electricity to be traded with the DSO through the DSO’s day-ahead information interaction.
When there is a surplus of electricity, revenue can also be gained by selling electricity to the
grid at a low price.

(2) Load aggregator (LA).

As a bridge between the DSO and users, the LA improves the enthusiasm of users to
participate in demand response through measures such as electricity price and incentives.
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To satisfy the user’s own energy demand, the LA integrates flexible load response resources,
and sells its aggregated adjustable resources to the DSO to achieve its own dispatch revenue.

(3) Users with flexible loads.

The flexible load users mainly include electric vehicle owners and air conditioning
operators. By signing an agreement with the user, the load aggregator uses the intelligent
terminal installed on the air conditioner to control the temperature setting of the air
conditioner and the charging pile to control the charging time of the user’s electric vehicle.

3. Flexible Load Resource Aggregation Models
3.1. Aggregation Modelling of the Air Conditioning Load

Air conditioning load modelling currently uses the equivalent thermal parameter
model (ETP). The ETP model can be divided into first-order and second-order mod-
els. [23,24] To simplify the model complexity, this paper adopts the first-order ETP model
to describe the thermodynamic process of the air conditioning unit, and the relationship
between the air conditioning power and the indoor and outdoor temperatures is shown in
Equation (1) [25]:

C
dTt

in
dt

=
Tt

out − Tt
in

R
− ηacu(t)Pt

ac (1)

where Tt
in and Tt

out are the indoor temperature and outdoor temperature at moment t,
respectively; Pt

ac is the electric power of air conditioning at moment t; R is the equivalent
thermal resistance of the wall; C is the equivalent heat capacity of the air conditioning; u(t)
is the operating state of the air conditioning; and ηac is the ratio of air conditioning energy
consumption. Assuming that the air conditioner is in thermal steady-state operation, the
set temperature of the air conditioner is Tt

set = Tt
in; because dTt

in/dt = 0, we can obtain a
single air conditioner that consumes electric power Pt

ac:

Pt
ac =

Tt
out − Tt

in
ηR

(2)

Assuming that there are N air conditioners, the total power of the air conditioning
unit can be estimated based on the power of a single air conditioner as follows:
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where Pt
HVAC is the aggregated power of N air conditioners at time t; ∆Pt

HVAC.d is the upper
limit of the cut power of N air conditioner loads at time t; Plit,t

HVAC is the aggregated power
of the user at the highest tolerable indoor temperature; and Tt

min, Tt
max is the range of

temperature comfort required to satisfy the user’s comfort level.

3.2. Aggregation Modelling of Electric Vehicles

A mature method for modelling electric vehicle (EV) loads is currently the Monte
Carlo method. It uses the U.S. Household Travel Survey to model the start and end times
of EV charging:

fs(t) =


1√
2σs

exp
(
− (t+24−µs)

2

2σ2
s

)
, 0 < t ≤ (µs − 12)

1√
2πσs

exp
(
− (t−µs)

2

2σ2
s

)
, µs − 12 < t ≤ 24

(6)
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where fs(t) is the probability density function of the electric vehicle at the start of charging,
us is the expectation of the probability density function, and σs is the standard deviation:

fm(L) =
1√

2πσL
exp

(
− (ln L − µL)

2

2σ2
L

)
(7)

where fm(L) is the probability density function of the daily exercise mileage of the electric
vehicle; µL is the expectation of the probability density function; and σL is the expectation
of the probability density function.

By analyzing the travel pattern of EVs based on historical data, the charging time
expected by the owner can be obtained. The total charging load of electric vehicles can be
obtained by superimposing the charging load of individual electric vehicles. The expression
for the SOC before and after driving an EV is given by the following equation:

SSOC(t2) = Ssoc(t1)−
d

dm
× 100% (8)

where SSOC(t1) is the initial charge state, which is 1; SSOC(t2) is the charge state at the end
of the driving of the electric vehicle; d is the driving distance of the electric vehicle; and dm
is the maximum driving distance of the electric vehicle.

Assuming that the electric car is charged until it is fully charged each time, the charging
time required for the EV is:

TEV =
(1 − Ssoc,KC)EEV

ηEVCPEVC
(9)

SSOC,KC = SSOC(t2) (10)

where TEV is the time required for electric vehicles to be fully charged; SSOC,KC is the state
of electric vehicles to start charging; ηEVC is the charging efficiency of electric vehicles; and
PEVC is the charging power of electric vehicles. By superimposing the charging load of a
single EV, the charging load of M EVs can be obtained as:

Plit,t
EV =

M

∑
i=1

Pt
EVC,i (11)

where Pt
EV is the total aggregated power of EVs at moment t and Pt

EVC,i is the charging
power of the i-th EV at moment t, The specific process of EV charging load generation is as
follows Figure 2.Sustainability 2024, 16, x FOR PEER REVIEW 6 of 17 
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4. A Flexible Load Bilevel Optimization Model Considering Peak–Valley
Smoothing Benefits

It is assumed that the wind and PV power sources under the jurisdiction of the DSO
in the upper layer can be used to obtain the output curves based on day-ahead forecasts.
The DSO, as the leader of the upper layer model, purchases the amount of response of the
flexible loads in the station area from the LA, with the objective of maximizing the revenue
of the DSO; the LA, as the follower, has the objective function of maximizing the profit
gained from the participation of the flexible loads in the demand-side response through the
dispatch of the flexible loads. The gains of both the upper and lower layers of the proposed
two-tier optimization model are related to the amount of demand response resources, i.e.,
the objective values of the upper and lower layers interact with each other. The resulting
two-layer model architecture is shown in Figure 3.
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4.1. Upper-Layer Model Objective Functions and Constraints

The objective function of the upper-level model is to maximize the daily net profit of
the DSO considering the peak and valley smoothing benefits, as shown in Equation (10).
The net profit of the DSO is equal to the DSO’s revenue from electricity sales minus the
expenditures for purchasing the amount of DR resources from the LA, the operation and
maintenance costs of the wind and PV, the peak and valley smoothing benefits, the cost of
purchasing electricity from the grid and the revenue from the sale of electricity. The decision
variables are the number of EVs transferred, the amount of electricity purchased and sold
to the grid, the amount of air conditioning curtailment, the peak-to-valley difference, and
the load fluctuation.

The mathematical model of the upper-level optimization objective is:

D.Supper = max
T

∑
t=1

Rt
sell − Rt

grid − f t
drbuy − f t

ope + f t
avg (12)



Sustainability 2024, 16, 3207 7 of 16

where Rt
sell is the revenue from electricity sales to customers; f t

drbuy is the expenditure on
purchasing flexible load demand response resources; f t

ope is the operation and maintenance
cost of wind power and PV; Rt

grid is the revenue from the purchase and sale of electricity
from the grid; and f t

avg is the peak and valley smoothing benefit.

Rt
sell = Pt

sellc
t
cell (13)

where Pt
sell is the amount of electricity sold after the demand response, and ct

sell is the tariff
of electricity sold by the distribution network operator to the customer:

Rt
grid = Pt

bgridct
bgrid − Pt

sgridct
sgrid (14)

where Pt
bgrid is the amount of electricity purchased from the grid, Pt

sgrid is the amount of
electricity sold to the grid, ct

bgrid is the price of electricity purchased from the grid, and ct
sgrid

is the price of electricity sold to the grid.

f t
drbuy = ∆Pt

ACet
AC + ∆Pt

EVet
ev (15)

where ∆Pt
AC is the air conditioning load demand response; ∆Pt

EV is the electric vehicle
demand response; et

EV is the DSO’s call-off compensation tariff for purchasing units of
electric vehicle load response from the LA; and et

AC is the DSO’s call-off compensation tariff
for purchasing units of air conditioning load demand response from the LA.

f t
ope = Pt

wtcwt + Pt
pvcpv (16)

where Pt
wt and Pt

pv are the wind power and PV output power predicted on the previous
day, respectively, and cwt, cpv are the operation and maintenance costs of wind power and
PV, respectively.

To avoid the “peak-on-peak” phenomenon in the demand-side response results, which
jeopardizes the safe and stable operation of the power grid while taking into account the
profits of the load aggregators and the distribution network operators, a joint model of
peak–valley smoothing benefits is introduced [26]:

f t
avg = w1 ·

(
1 − f1

f1M

)
+ w2

(
1 − f2

f2M

)
(17)

f1 = max
(

Pt
sell
)
− min

(
Pt

sell
)

f1M = max(PM)− min(PM)
(18)

f2M =

(
PM −

T

∑
t=1

PM
T

)2

(19)

f2 =

(
Pt

sell −
T

∑
t=1

Pt
sell
T

)2

(20)

where f t
avg is the peak–valley smoothing benefit function; PM is the load before the demand

response; Pt
sell is the load after the demand response; f1 is the peak–valley difference after

the demand response; f1M is the peak–valley difference before the demand response; f2M
is the amount of load fluctuation before the demand response; and f2 is the amount of load
fluctuation after the demand response. w1, w2 are the benefit coefficients. The constraints
of the upper-level model are as follows:

(1) Power balance constraints
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The sum of the wind and PV output power and the power purchased from the grid by
the distribution grid operator should be equal to the sum of all the loads, i.e.,:

Pt
wt + Pt

pv + Pt
bgrid = Pt

sell + Pt
sgrid + Pload (21)

(2) Grid power purchase and sale constraints:

0 ≤ Pt
bgrid ≤ γ1Pmax

bgrid
0 ≤ Pt

sgrid ≤ γ2Pmax
sgrid

(22)

γ1 + γ2 = 1 (23)

where Pmax
bgrid is the maximum amount of power purchased and Pmax

sgrid is the maximum
amount of power sold. γ1 and γ2 are variables 0 and 1, respectively, and the grid can only
purchase and sell electricity at each moment.

4.2. Lower-Level Model Objectives and Constraints

The LA acts as an intermediary between the DSO and the user side, and generates
revenue by aggregating the amount of flexible load response resources to sell to the DSO.
The objective function of the lower layer model is:

LAlower = max
T

∑
t=1

f t
drbuy−

T

∑
t=1

f t
dr (24)

T

∑
t=1

f t
dr =

(
∆Pt

AC.dct
AC +

(
∆Pt

EV,d + ∆Pt
EV,u

)
ct

EV

)
(25)

where ∆Pt
EV.d is the transfer out of EVs, ∆Pu

EV.d is the transfer in of EVs, ∆Ct
AC is the

compensation tariff for air conditioning, and Ct
EV is the transfer tariff for EVs.

The EV load is treated as a transferable load, and the transfer does not exceed its upper
and lower limits, i.e.,:

0 ≤ ∆Pt
EV.u ≤ Plit,t

EV βb,t, ∀b, t : µb,t
1 , µb,t

2 (26)

0 ≤ ∆Pt
EV,d ≤ Plit

EVαα,t, ∀a,t : µa,t
3 , µa,t

4 (27)

T

∑
a=1

αa,t +
T

∑
b=1

βb,t ≤ 1, ∀t :µt
5 (28)

T

∑
t=1

∆Pt
EV,d =

T

∑
t=1

∆Pt
EV,u ∀t : δ1 (29)

where Plit,t
EV is the upper limit of EV transfer; αa,t and βb,t are the EV transfer-in and transfer-

out state variables, which are 0 and 1 variables, respectively; µb,t
1 , µb,t

2 , µa,t
3 , µa,t

4 , µt
5, δ1 are

the corresponding Lagrangian equation multiplier constraints and unequal multiplier
constraints, respectively; and Equation (29) indicates that the transfer-out of EV loads is
equal to that of the transfer-in.

Reductions in air conditioning satisfy the following constraints:

0 ≤ ∆Pt
AC,d ≤ Plit,t

AC ∀t µt
6, µt

7 (30)

where µt
6, µt

7 is the Lagrange multiplier constraint associated with the air conditioning
reduction, and Plit,t

AC is the upper limit of aggregated air conditioning that can be reduced to
satisfy the user’s comfort at moment t.
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4.3. DLPO Model Solving

According to the two-tier model of this paper, the amount of demand response re-
sources purchased by the upper tier affects the profit of the lower tier; thus, the upper and
lower tiers are coupled. The solution method in this section is to transform the objective
function and constraints of the lower-layer model into constraints of the upper-layer model
using the KKT condition and then transform the single-layer nonlinear problem into a
single-layer linear problem using the big-M method. The lower layer model is first utilized
to construct the Lagrangian function:

L
(

∆Pt
EV,d, ∆Pt

EV,p, ∆Pt
AC,d, µ, δ

)
=

∆Pt
ACet

AC +
(

∆Pt
EV,d + ∆Pt

EV,u

)
et

EV−(
∆Pt

AC.dct
AC +

(
∆Pt

EV.d + ∆Pt
EV,u

)
ct

EV

)
+µb,t

2

(
βb,tP

lit,t
EV − ∆Pt

EV,u

)
+ µa,t

3 ∆Pt
EV,d

+µa,t
4

(
αa,tPlit,t

EV − ∆Pt
EV.d

)
++µb,t

1 ∆Pt
EV,u

µt
5

(
1 −

T
∑

t=1
αa,t +

T
∑

t=1
βb,t

)
+ µt

6∆Pt
AC.d+

µt
7

(
Plit,t

AC − ∆Pt
AC.d

)
+ δ1

(
∆Pt

EV.d − ∆Pt
EV,u

)
(31)

Using the KKT condition again, we can obtain:

∂L
∂∆Pt

EV,d
= et

EV − ct
EV + µa,t

3 − ua,t
4 + δt = 0 (32)

∂L
∂∆Pt

EV,u
= et

EV − ct
EV + µb,t

1 − µb,t
2 − δ1 = 0 (33)

∂L
∂∆Pt

AC,d
= et

AC − ct
AC + µt

6 − µt
7 = 0 (34)

0 ≤ ∆Pt
EV,u⊥µb,t

1 ≥ 0 (35)

0 ≤
(

βb,tP
lit,t
EV − ∆Pt

EV,u

)
⊥µb,t

2 ≥ 0 (36)

0 ≤ ∆Pt
EV,d⊥µa,t

3 ≥ 0 (37)

0 ≤
(

αa,tPlit,t
EV − ∆Pt

EV.d

)
⊥µa,t

4 ≥ 0 (38)

0 ≤
(

1 −
T

∑
t=1

αa,t +
T

∑
t=1

βb,t

)
⊥µt

5 ≥ 0 (39)

0 ≤ ∆Pt
AC.d⊥µt

6 ≥ 0 (40)

0 ≤ ∆Pt
AC.d⊥µt

6 ≥ 0 (41)

0 ≤
(

Plit,t
AC − ∆Pt

AC.d

)
⊥µt

7 ≥ 0 (42)

Equations (29)–(39) are complementary relaxation conditions, where 0 ≤ a⊥b ≥ 0
denotes that a ≥ 0, b ≥ 0 and ab = 0 are nonlinear problems, which need to be converted
to linear constraints using the big-M method:{

0 ≤ ∆Pt
EV,u ≤ v1M

0 ≤ µb,t
1 ≤ (1 − v1)M

(43)
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{
0 ≤

(
βb,tP

lit,t
EV − ∆Pt

EV,u

)
≤ v2M

0 ≤ µb,t
2 ≤ (1 − v2)M

(44)

{
0 ≤ ∆Pt

EV,d ≤ v3M
0 ≤ µa,t

3 ≤ (1 − v3)M
(45)

{
0 ≤

(
αa,tPlit,t

EV − ∆Pt
EV.d

)
≤ v4M

0 ≤ µa,t
4 ≤ (1 − v4)M

(46)

 0 ≤
(

1 −
T
∑

t=1
αa,t +

T
∑

t=1
βb,t

)
≤ v5M

0 ≤ µt
5 ≤ (1 − v5)M

(47)

{
0 ≤ ∆Pt

AC.d ≤ v6M
0 ≤ µt

6 ≤ (1 − v6)M
(48){

0 ≤
(

Plit,t
AC − ∆Pt

AC.d

)
≤ v7M

0 ≤ µt
7 ≤ (1 − v7)M

(49)

where v1, v2, v3, v4, v5, v6, v7 are 0.1 variables, the objective function of this paper’s two-
layer model after transformation by the KKT and Big-M methods is Equation (12), and
the constraints are Equations (13)–(23) and (32)–(49). The flow chart of the two-layer
optimization model proposed in this paper is as follows in Figure 4.
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Figure 4. Model solving process. 
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The example selects typical daily load data in a southern region in summer, with a 
time scale of 1 h. Figure 5 shows the PV and WT output curves on a typical day, and WT 
and PV output modeling with reference to the literature [27]. Assuming that the initial set 
temperature of the air conditioning load of 1000 units in the region follows a random dis-
tribution in the interval [22 °C, 25 °C], the number of electric vehicles is 1200 and the elec-
tric vehicles need to be filled every time they are charged. According to Equations (1)–(5), 
the aggregated load curve of air conditioning from 1:00–24:00 can be obtained, and (6)–
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5. Calculation Analysis
5.1. Scene Setting

The example selects typical daily load data in a southern region in summer, with a
time scale of 1 h. Figure 5 shows the PV and WT output curves on a typical day, and
WT and PV output modeling with reference to the literature [27]. Assuming that the
initial set temperature of the air conditioning load of 1000 units in the region follows
a random distribution in the interval [22 ◦C, 25 ◦C], the number of electric vehicles is
1200 and the electric vehicles need to be filled every time they are charged. According
to Equations (1)–(5), the aggregated load curve of air conditioning from 1:00–24:00 can
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be obtained, and (6)–(11) can be obtained from the aggregated load curve of electric
vehicles from 1:00–24:00. The load before dispatch is equal to the sum of the base load, air
conditioning load, and EV load. As shown in Figure 6, it is assumed that the operation and
maintenance costs of PVs and wind turbines are 0.02/(kW·h) and 0.01/(kW·h), respectively.
The compensation tariff of the air conditioner is 0.1 Yuan/(kW·h), and the compensation
tariff of the electric vehicle [16], is 0.2 Yuan/(kW·h); Table 1 shows the electric vehicle
parameters, Table 2 shows the air conditioning parameters, Table 3 shows time-of-use tariff
information; four scenarios are established as follows.
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Figure 6. Load profile before the demand response.

Table 1. Electric vehicle parameters.

µs σs σL µL

1.5–2.5 1.5–2.5 2.6–3 1000
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Table 2. Air conditioning equipment parameters.

R C η N

1.5–2.5 Ω 1.5–2.5 F 2.6–3 1000

Table 3. Time-of-use tariff information.

Period Specific Time Slots Price/Yuan

Peak period 14:00—21:00 1.2
Bottom period 0:00—8:00 0.4

Smooth period 9:00–13:00
22:00—24:00 0.7

Scenario 1: Joint demand-side response of air-conditioning and electric vehicle loads
considering peak-to-valley smoothing benefits.

Scenario 2: Joint demand-side response for air conditioning and electric vehicle loads
without considering peak-to-valley smoothing benefits.

Scenario 3: Demand-side response for the air conditioning load without considering
peak-to-valley smoothing benefits.

Scenario 4: Demand-side response for the EV load without considering peak-to-valley
smoothing benefits.

In power systems, the peak-to-valley margin is often used to describe the smoothness
of the load profile [24], and the smaller the peak-to-valley margin is, the smaller the impact
on the grid, with the following expression:

Pdi f f =
max

(
Pt

sell
)
− min

(
Pt

sell
)

max
(

Pt
sell
) (50)

where Pdi f f is the peak-to-valley differential rate, max
(

Pt
sell
)

is the peak load, and min
(

Pt
sell
)

is the valley load.
The load volatility tends to reflect the degree of load dispersion, and the greater the

load volatility is, the worse the electricity supply is. The resulting formula is obtained
as follows:

R = κ

√
1
T

T
∑

t=1

(
Pt

sell −
T
∑

t=1

Pt
sell
T

)2

1
T

T
∑

t=1
Pt

sell

(51)

where T is the time period; κ = 1

5.2. Analysis of Simulation Results

The results of the demand side response for each scenario are as listed in Table 4.

Table 4. Optimal scheduling results for each scenario of the system.

Classifications 1 2 3 4

DSO profit/Yuan 67,118 55,679 59,967 52,655
LA profit/Yuan 3474 2542 1273 1443

Peak-to-Valley Difference Rate 0.26 0.51 0.57 0.46
Load Fluctuation Rate 0.50 0.89 0.91 0.71

5.2.1. Scenario 1 Demand Side Response Results Analysis

Figure 7 shows the load changes before and after the response of scenario 1. Scenario 1
considers peak and valley smoothing benefits. At 0:00–5:00, EV loads are transferred, and
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EV loads are connected to the grid to start charging; thus, the load increases in this time
period, and the valley load of the system, increases. In the 7:00–9:00 and 12:00–24:00 time
periods, the air conditioning load participates in the demand response, the air conditioning
load shows curtailment, the set temperature of the air conditioner increases, and the
aggregated power of the air conditioner decreases. This is because the output of PV and
wind turbines is not enough to meet the electricity needs of users in this time period,
and the compensation price given by the DSO to the LA EV and air conditioner is higher
in this time period. The LA can obtain a larger profit, and the peak load also decreases
after dispatching.
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Figure 7. Comparison of the load before and after the response in Scenario 1.

The electric power supply and demand balance relationship for Scenario 1 is shown in
Figure 8. The electric power balance relationship diagram shows that the DSO mainly meets
the users’ electricity demand through its own PV and fan output. At 0:00–4:00, 6:00–7:00,
and 10:00–24:00, the new energy output is not enough to meet the users’ electricity needs.
Although the air conditioner decreases, it is still in the peak time period of electricity
consumption, so the DSO purchases electricity from the grid. At 5:00 and 8:00–9:00, the
new energy output is higher than the air-conditioning load, the electric vehicle load, and
the base load, and at this time, there is a surplus of electricity that the DSO sells to the grid
to earn revenue from the sale of electricity.
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Figure 9 shows the gain curves of DSO and LA at each moment after the response
of scenario 1. Compared with Figure 5, the 0:00–5:00 EV loads are transferred in and
DSO provides the LA compensation cost; 16:00–19:00 EV loads are transferred out and
air-conditioning loads are curtailed; the response compensation tariffs of EV loads and
air-conditioning loads are high in this time period; and LA can obtain high flexible load
response revenue from DSO. Although the DSO provides the LA with a high response cost,
the DSO still makes a large profit from selling electricity to the customer because this time
period is the peak period of electricity consumption, and the DSO has the highest gain from
16:00–19:00, as shown in Figure 9.
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5.2.2. Comparison of the Results of the Joint Optimization of Electric Vehicles and Air
Conditioning Loads

In scenario 4, only the EV loads participate in the demand response, at which time the
air conditioning loads, as base loads, do not participate in the demand response. Scenario 3
is dispatched for air conditioning only, at which time EVs as the base load do not participate
in the demand response. As shown in Table 4, the profits of DSO and LA in Scenario 2
are Yuan 55,679 and Yuan 2542, respectively; the profits of DSO and LA in Scenario 3 are
Yuan 59,967 and Yuan 1273, respectively; and the daily profits of DSO and LA in Scenario
4 are Yuan 52,655 and Yuan 1443, respectively. The daily profit of DSO in Scenario 2 is
slightly lower than that in Scenario 3 by Yuan 3025 than that in Scenario 4, and the daily
profit of LA is higher than that in Scenario 3 and Scenario 4 by Yuan 1269 and Yuan 1099,
respectively. In addition, the peak-to-valley difference rate and load fluctuation rate are
also lower than those in Scenario 3 and are only slightly greater than those in Scenario 4,
but substantially increase the overall profit of the distribution system. The joint scheduling
of air conditioners and electric vehicles can optimize the peak and valley load profiles
more effectively than the scheduling of air conditioners or electric vehicles alone, which not
only compensates for the shortcomings of not being able to increase the valley load when
only air conditioners are optimized, but also serves only as a curtailable load, and also
compensates for the shortcomings of the response’s capability when only electric vehicles
are involved in the demand response to reduce the peak load and increase the overall
profitability of the power distribution system.
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5.2.3. Comparison of Optimization Results Taking into Account Peak and Valley
Smoothing Benefits

Scenario 1 considers peak–valley smoothing benefits in the optimization process. The
greater the peak–valley difference and load fluctuation of the system are, the smaller the
benefit of the DSO; thus, to ensure the maximum benefit of the DSO and LA, the system
prefers to reduce the load peak–valley difference and reduce the load fluctuation. Therefore,
at 0:00–5:00, the air conditioner is not cut, only by the electric vehicle load transfer, thus
increasing the valley load. As shown in Table 4, the daily profit of the LA in Scenario 1
is Yuan 3474, that of Scenario 2 is Yuan 2542, and the daily profit of the LA in Scenario 1
is Yuan 932 higher than that in Scenario 2, which indicates that the consideration of the
peak–valley smoothing benefit effectively exploits the response potential of flexible loads
and improves the benefit of the LA. The peak-to-valley difference rate of Scenario 1 is 0.26,
which is reduced by 0.25 compared with that of Scenario 2, and the load fluctuation rate is
0.5, which is reduced by 0.39 compared with that of Scenario 2, which indicates that the
consideration of peak-to-valley smoothing benefits reduces the peak-to-valley difference
and load fluctuation and ensures the safe and stable operation of the power system.

6. Conclusions

In this paper, a two-tier optimization model of flexible load demand-side response
considering the benefits of peak and valley smoothing is constructed. The validity of the
model is verified through a comparative analysis of four scenario examples. The following
main conclusions are drawn:

(1) The proposed two-layer optimization model considers the joint demand-side response
of two flexible loads: air conditioning, and electric vehicles. The profit of the DSO and
LA can be improved by the joint demand side response of flexible loads, compared
with the single load demand side response.

(2) The proposed two-tier optimization model introduces the benefit of peak–valley
smoothing, which can effectively reduce the load peak–valley difference and load
fluctuation compared with the demand-side response without considering peak–
valley smoothing, and improve the profit of the LA and DSO while guaranteeing safe
and stable power grid operation.

In our future work, we will take into account the uncertainty of wind power and
photovoltaic output, and deeply explore the regulation potential of electric vehicles and
air-conditioning loads, while taking into account the impact of seasonal factors, to help
increase the level of new energy consumption and penetration.
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