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Abstract: This study pioneers the comprehensive evaluation of the spatiotemporal evolution of land
use/land cover (LULC) in Hangzhou city, introducing the novel water body shape index (WBSI)
to analyze its seasonal impacts on the urban thermal environment and urban cool island (UCI)
effects, uncovering distinct patterns of thermal regulation. It particularly investigates how distance
gradients and the water body shape index (WBSI) influence land surface temperature (LST) in the
urban core. The region’s climate, featuring hot summers and cold winters, highlights significant
seasonal LST variations. Addressing a gap in existing UCI research, the analysis extends beyond
the typical large-scale planning focus to include small-scale, high-resolution aspects. Employing
remote sensing and geographic information system (GIS) analysis techniques, this study analyzes the
seasonal dynamics in Hangzhou’s central urban area. High-resolution LST data, obtained through
single-channel inversion and resolution enhancement algorithms, are crucial to this analysis. This
study employs the maximum likelihood classification method to analyze land use and land cover
changes from 1990 to 2020. This analysis reveals potential drivers of urban thermal environment
changes, such as the expansion of residential and commercial areas and the reduction in green spaces.
Different regions in LST data are delineated to assess the cool island effect, and the complexity
of water body boundaries is quantified using the water body shape index. Spatial and temporal
patterns of LST changes are investigated using multivariate regression and time-series analysis
models. We identified significant changes in LULC over the past 30 years in Hangzhou, closely
correlating with a continuous rise in LST. This observation underscores a clear finding: the strategic
importance of blue–green infrastructure in mitigating urban heat, a novel insight that extends the
current understanding of urban thermal dynamics. A clear and novel finding of this study is that
the intensity of the cool island effect from large water bodies not only diminishes with distance but
is intricately influenced by the complexity of their shapes, as quantified by the WBSI, whereas the
complexity of their boundaries enhances this effect. Additionally, the regulatory role of the cool
island effect is observed to vary seasonally, being most pronounced in summer and less so in autumn
and winter, thereby demonstrating a positive impact. In conclusion, our findings innovatively
highlight how the specific shapes of water bodies, quantified through the water body shape index
(WBSI), emerge as critical, yet previously underappreciated, drivers in modulating the urban thermal
environment. This underscores a new avenue for urban planning, advocating for the strategic design
of water bodies within urban landscapes. It also finds that spatial factors and seasonal variations
significantly affect the intensity of the cool island effect. These findings offer valuable evidence for
urban planning and climate change adaptation, emphasizing balancing natural elements with the
built environment in urban design.

Keywords: urban cool islands; land use/land cover (LULC); land surface temperature (LST); spatial
variability; distance gradient; water body shape index (WBSI)
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1. Introduction

The acceleration of global urbanization [1–4] has led to the continuous expansion
of urban scale and changes in surface cover conditions, contributing to the increasingly
severe urban heat island effect (UHI). According to the United Nations’ 2022 World Cities
Report, the global urban population is projected to increase from 56% in 2021 to 68% by
2050. Since the 1978 Reform and Opening-up, China’s urbanization rate has surged [5,6].
This rapid urbanization has significantly altered urban land use patterns [7,8], increased
impervious surfaces [9–11], reduced blue–green spaces, and changed surface thermal
properties, all contributing to UHI formation [12–17]. Hangzhou, a city with cold winters
and hot summers [18–22], experiences significant seasonal variations that impact its urban
thermal environment [23]. The city’s climate characteristics lead to especially prominent
seasonal variations in land surface temperature (LST) [24,25]. High summer temperatures
intensify UHI and aggravate heat stress [26], while low winter temperatures may reduce
outdoor thermal comfort. Therefore, investigating seasonal LST variations is vital for
assessing and responding to the urban thermal environment [27,28].

Planners have implemented various measures to mitigate UHI and enhance the ur-
ban thermal environment [29–31]. While the cooling island effect of urban water bodies
(UCI) has been extensively studied, most research focuses on small-scale individual water
bodies [32]. UCI is recognized as a natural and economically efficient means to allevi-
ate the UHI. It is driven mainly by urban water bodies and green spaces, which reduce
ambient temperatures through evapotranspiration [33] and sunlight reflection/scattering,
offering cooler surroundings for urban dwellers [34,35]. Recent UCI research demonstrates
a multidisciplinary and integrated approach, focusing on advanced technologies and in-
novative planning to alleviate UHI [36]. UCI intensity is typically assessed using two
main approaches [37–40]. In this field, remote sensing and GIS technologies are crucial for
obtaining and analyzing city-wide LST information. QGIS 3.28.0 processes these data to
identify cool island areas and their relationships with urban planning features [41]. The
research aims to maximize UCI by adjusting urban layouts, including enhancing greenery
and water bodies [42]. Another key research area is the link between climate change and
UCI. Integrated assessments, such as evaluating ecosystem services and health impacts, are
also applied. Seasonal analyses provide a wider view of UCI’s temporal variations.

Further research is necessary to bridge three critical gaps in UCI understanding [43–45].
Firstly, most research has focused on large-scale city variations and planning, rather than
small-scale, high-resolution analysis. Secondly, additional spatial variables, such as gra-
dient changes across distances and surroundings, must be considered for their influence
on UCI, beyond factors like land area and land use/land cover. Lastly, while most stud-
ies concentrate solely on summer conditions, a comprehensive evaluation requires an
integrated analysis across all seasons. Addressing these limitations through localized,
multidimensional, and temporally extensive approaches will enable more targeted and
impactful strategies for sustainable urban development and climate change adaptation.

In the context of exploring spatiotemporal urban land use/cover changes and their im-
pacts on the urban thermal environments, the relationship between urban disasters—especially
flooding and typhoons—and urban cool island (UCI) phenomena becomes pivotal. Such
catastrophic events critically disrupt urban thermal regulation, leading to substantial alter-
ations in urban land use and cover (LULC). We spotlight Hangzhou’s vulnerability to these
disasters and their capacity to erode key UCI components, namely urban green spaces
and water bodies. Consequently, this underscores the necessity for disaster-resilient urban
planning that ensures the longevity and efficacy of UCI strategies amidst and following
such calamities. This revision underscores the importance of integrating disaster resilience
into urban thermal environment analysis, propelled by insights on the impact of urban
structure integrity and adaptability on thermal comfort and UCI effectiveness post-disaster.
Recent studies have highlighted the necessity of incorporating disaster resilience into the
analysis of urban thermal environments to enhance sustainability. For instance, the progres-
sive collapse behavior of composite substructures under extreme conditions demonstrates
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the intricate relationship between structural integrity and thermal performance. Similarly,
advances in understanding disproportionate collapse emphasize the need for robust design
strategies that account for thermal sustainability in the face of such disasters.

This study aims to use remote sensing and GIS to investigate the UCI effects and
seasonal changes in Hangzhou’s main water bodies and their impact on LST. Satellite
data are used to construct LST models, in combination with GIS technologies to acquire
appropriate LST data. Classification and statistical analysis methods assess the efficiency
of the cooling effects of water bodies. This study aims to discuss cool island effects across
various water bodies and land uses, analyzing how major water bodies seasonally regulate
surrounding thermal environments. The findings could provide a basis for planning large
water parks as a strategy to alleviate the UHI effect.

2. Study Area and Data Source
2.1. Study Area Description

Hangzhou is located on the southern bank of the Yangtze River Delta, downstream
from the Qiantang River, extending from 118◦20′ E to 120◦44′ E longitudinally and from
29◦11′ N to 30◦34′ N latitudinally. The region has a humid subtropical climate character-
ized by hot summers. Renowned for its rich natural resources and unique urban layout,
Hangzhou stands as a critical eco-garden city in China. As of 2020, Hangzhou’s urban
green coverage rate reached 40.29%, with 406 parks covering approximately 6686.53 km2.
The city’s core area, covering about 312.43 km2, provides essential ecological services and
leisure space. Additionally, as the Yangtze River Delta’s southern core, it covers 16,596 km2

and has an estimated population of 11,936,000. Centered around West Lake, the city boasts
a diverse park system, including wilderness, urban, community, and pocket parks, totaling
over 300 parks and green spaces exceeding 4000 m2. Hangzhou’s core, adjoining Xihu,
Shangcheng, Xiacheng, and Jianggan districts, is distinguished by its unique ecological
roles and rich cultural significance, making it an excellent research subject. The extensive
waters and vegetation of West Lake significantly influence the urban environment, acting
as a vital buffer zone for the thermal milieu. The district, as shown in Figure 1, represents
Hangzhou’s core metropolitan area, notable for its substantial population and size.
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2.2. Data Sources

This study used high-quality Landsat 5, 7, and 8 satellite images from 1990 to 2020, as
shown in Tables 1 and 2. Images were selected for their clarity and minimal atmospheric
interference. Preprocessing steps like cloud and shadow removal, atmospheric correction,
and topographic normalization ensured data completeness and accuracy. Image data for
February, May, August, and November were chosen to capture seasonal variations, sourced
from the USGS Earth Explorer website. (https://earthexplorer.usgs.gov/. accessed on
6 October 2023). Landsat 5 images have a resolution of 30 × 30 m, with their thermal
infrared bands resampled to match the spectral band resolutions. Landsat 7 offers a 30 m
resolution for spectral bands and includes the Enhanced Thematic Mapper Plus (ETM+)
sensor, improving image quality over Landsat 5. Furthermore, Landsat 7’s thermal infrared
bands have a 60 m resolution, between the 30 m resolution of its spectral bands and Landsat
8’s 100 m thermal infrared resolution. Landsat 8 offers a 30 m resolution for spectral bands
and a 100 m resolution for thermal infrared bands. The images were calibrated for radiative
and atmospheric conditions.

Table 1. Metadata of the Landsat images used for this study.

Source Acquired Date
(YYYY-MM-DD) Acquired Time Sensor ID Cloud Cover Spatial Resolution

Landsat5 1991-07-23 09:54:47 GMT + 8:00 TM 0.00 30 × 30 M

Landsat5 1998-08-11 10:09:47 GMT + 8:00 TM 0.00 30 × 30 M

Landsat7 2010-08-12 10:21:41 GMT + 8:00 ETM+ 7.00 30 × 30 M

Landsat8 2022-07-28 10:31:42 GMT + 8:00 OLI_TIRS 0.98 30 × 30 M

Table 2. Bands and spectral signatures of Landsat 5, 7, 8 images. Source: USGS handbook.

Source SWIR NIR MIR IR

Landsat5 Band 7 Band 4 Band 5 Band 3

Landsat7 Band 7 Band 4 Band 5 Band 6

Landsat8 Band 7 Band 5 Band 6 Band 4

Land surface temperature (LST) data were derived by combining Landsat 5’s TM,
Landsat 7’s ETM+, and Landsat 8’s OLI and TIRS sensor data, using an improved mono-
window algorithm. These seasonal and annual data facilitated comprehensive analyses of
land cover transformations and temperature shifts in Hangzhou and its environs.

2.3. Other Considerations

Accounting for all factors affecting urban cool island effects is crucial for the research’s
thoroughness and accuracy. This study extends beyond land use analysis to include me-
teorological conditions, building and population densities, green space configurations,
and water body characteristics. Data on these elements were sourced from meteorological
stations, satellite imagery, population censuses, and field investigations, and processed
using spatial analysis and statistical models. Climate conditions, building distributions,
population patterns, and blue–green space configurations exhibit intricate relationships
with the cool island phenomenon. Incorporating these factors reveals the mechanisms
behind cool island formation, verifies research accuracy, and enhances the comprehen-
siveness and authenticity of the results. Thus, this study incorporates a broad array of
factors beyond land use, offering a more comprehensive and accurate insight into urban
cool island effects and informing urban planning and management.

https://earthexplorer.usgs.gov/
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3. Methodology

In choosing the right method, considerations include data characteristics, accuracy
needs, and technical feasibility. The objective of this study was to meticulously analyze the
urban cool island (UCI) effect across Hangzhou’s core area by examining land use/land
cover (LULC) and land surface temperature (LST). This involved evaluating the advantages
and limitations of various remote sensing data processing and analytical approaches. The
choice of appropriate techniques is crucial to ensure the accuracy and reliability of the
research findings.

3.1. LULC Classification

The maximum likelihood supervised classification approach, a probabilistic method
widely used in remote sensing image categorization [46,47], assumes that sample sets for
each classification conform to specific probability distributions, typically normal distribu-
tions. This method calculates the probabilities of a sample belonging to various categories
and assigns it to the category with the highest probability. It requires training samples
with known categories to estimate each class’s probability distribution parameters. In
practical applications like LULC classification of remote sensing images, this method in-
volves preprocessing steps such as object segmentation, spectral normalization, and setting
a priori probability values for different object types. Additionally, integrating techniques
like random forest can enhance the classification’s rationality and accuracy. Validated by
ground truth data, this method has demonstrated high classification precision, with overall
Kappa coefficients reaching 0.84.

For Landsat images, the maximum likelihood method considers mean values and
covariance of category signatures, using specific band spectral characteristics for catego-
rization. For example, specialized bands from Landsat 5, 7, and 8 satellites are used for
image classification, considering the influences of thermal bands. All images are initially
processed with Composite Bands using image processing tools to prepare for generating
LULC maps. Additionally, land surface temperature variations are considered during the
classification process, which covers a wide range of LULC categories such as building areas,
vegetation, open land/agriculture, and water bodies.

3.2. Mono-Window Algorithm Inversion and GDA Correction-Based LST Downscaling Method

This study used mono-window algorithm inversion and GDA correction-based LST
downscaling to derive temperature data from satellite images’ thermal infrared bands [48–50].
The former utilizes sensor-specific gains and biases to calibrate digital values (DN) into
radiance, then applies Plank function inverse transforms to obtain brightness temperature,
considering the Landsat sensor constants K1 and K2. The second method seeks to match
low-spatial-resolution LST data with high-spatial-resolution variables. This approach
draws from seasonal LST data (LST100mLandsat8 and LST120mLandsat5) in spring, summer,
autumn, and winter between 1990 and 2020. These data are first extracted into point
layers in QGIS. Then, multiple regression equations encompassing linear, quadratic, cubic,
reciprocal, and logarithmic formulas are constructed to establish multivariate regression
models, selecting the equation with the highest fitting accuracy as the downscaling algo-
rithm to estimate LST (LST100mLandsat8

prediction and LST120mLandsat5
prediction ). Subsequently, residual errors

between original LST data and predicted LST are computed to obtain spatial residual grids
(LST100mLandsat8

residual and LST120mLandsat5
residual ). These residual values signify aspects not predictable

by the regression models. Via simple spline interpolation, the residuals are interpolated
into 30 m-resolution grid images (LST30m

residual), with multiple validations confirming opti-
mal efficacy of spline interpolation. Finally, by applying multivariate regression models
again based on 30 m NDVI30m, NDWI30m, NDBI30m and LULC30m data, LST30m

prediction can

be recalculated and added to LST30m
residual to acquire ultimate 30 m-resolution downscaled

LST data (LST30m). This composite technique allowed for more detailed high-resolution
analysis of LST data, enhancing urban heat island effect investigations.
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3.3. Density Segmentation-Based LST Classification

Density segmentation was used to categorize LST data, facilitating the analysis of West
Lake’s UCI effect on downtown Hangzhou and its spatiotemporal variations [51,52]. This
approach relied on absolute LST values obtained through downscaling processes, aimed at
minimizing meteorological influences. Specifically, the average land surface temperature (A)
and standard deviations (SD) across the study areas were computed using specific formulas,
facilitating a more accurate assessment of the UCI effect and its variations over time and
space. This methodological approach enhances the understanding of how urbanization
patterns and natural landscape features contribute to the urban thermal environment.

T = A ± X ∗ S.D. (1)

For setting different temperature thresholds (T) based on multiples of standard devia-
tions (X).

As shown in Table 3. By selecting diverse X values, LST data could be stratified into
seven discrete levels encompassing “Extreme Cold Zone”, “Cold Zone”, “Cool Zone”,
“Moderate Zone”, “Warm Zone”, “Hot Zone”, and “Extreme Hot Zone” for spatial dis-
tribution analyses regarding these temperature divisions to identify factors impacting
UCI effects.

Table 3. Density segmentation method for LST classification.

Thermal Type LST Level Description Standard Deviation Threshold Threshold

T1 extreme cold zone <−2.5S.D. (min, AVG − 2.5 S.D.)

T2 cold zone −2.5−–1.5S.D. (AVG − 2.5 S.D, AVG − 1.5 S.D)

T3 cool zone −1.5−–0.5S.D. (AVG − 1.5 S.D, AVG − 0.5 S.D)

T4 moderate zone −0.5–0.5S.D. (AVG − 0.5 S.D, AVG + 0.5 S.D)

T5 warm zone 0.5–1.5S.D. (AVG + 0.5 S.D, AVG + 1.5 S.D)

T6 hot zone 1.5–2.5S.D. (AVG + 1.5 S.D, AVG + 2.5 S.D)

T7 extreme hot zone >2.5S.D. (AVG + 2.5 S.D, max)

3.4. Water Body Shape Index Analysis

The water body shape index (WBSI) is a quantitative index assessing water body
shape complexity and its interaction with the environment, crucial for UCI studies due to
its insight into boundary intricacies affecting microclimates. The concept of the WBSI is
based on the understanding that the physical configurations of water bodies, particularly
their boundary perimeters, play vital roles in ecological processes and thermal exchanges
in urban landscapes.

The WBSI provides a technique for thoroughly analyzing the UCI effects of major water
bodies like rivers or lakes on ambient temperature, focusing on designated buffer zones
surrounding each area, especially at landscape scales. In particular, the index encompasses
two key aspects of water body boundary complexity: the length and irregularity of the
boundary shape.

The calculation of the WBSI is straightforward yet insightful. The WBSI is defined
as the ratio of the water body’s perimeter to the square root of its area, mathematically
expressed as:

WBSI =
P√
A

(2)

where P represents the perimeter and A represents the area of the water body. This
calculation produces a dimensionless value that signifies the shape complexity of the water
body. A higher WBSI value indicates more intricate and irregular boundaries, suggesting
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stronger interactions between the water body and the surrounding landscape, which can
influence local temperature and ecological dynamics.

3.5. Multidimensional Statistical Analysis of Land Surface Temperature Changes

This study applied a multidimensional methodology to analyze LST changes across
Hangzhou’s West Lake and its vicinity [53]. Firstly, a multivariate linear regression model
was constructed to quantify the relationships between LST and the distance gradient from
various land types near the lake. This model holistically considers the influences of distance
gradient, the water body shape index (WBSI), and land use/land cover (LULC) as key
explanatory variables on LST. Denoted as:

LSTi = β0 + β1·Distancei + β2·WBSIi + β3·LULCi + ϵi (3)

where LSTi symbolizes the LST of the ith sample, β denotes regression coefficients and ε
represents the error term. β0 represents LST’s baseline in the regression model when all
variables are zero. β1 indicates LST change with distance from land types, where positive
values mean higher LST with increased distance. β2 measures the WBSI’s impact on LST,
showing how water body shape and distribution changes affect temperature. β3 evaluates
how LULC types influence LST, with variations affecting temperature through sunlight
interaction. wk indicates the frequency of LST oscillations in time-series analysis, with high
values signifying rapid changes. This model consolidates the effects of distance, the WBSI
and LULC as pivotal predictors on LST.

Regarding time-series analysis, monthly LST data underwent Fourier transformation
to decompose periodic and nonperiodic constituents through formulas:

LST(t) = a0 + ∑ n
k=1_[akcos (wkt) + bksin(wkt)] + residual(t) (4)

where ω denotes angular velocity, t refers to time and ak, bk represents Fourier coeffi-
cients. By testing obtained dominant periodic terms, intrinsic patterns behind LST seasonal
variations could be revealed.

Autoregressive, moving average, and autoregressive moving average models, com-
bined with Fourier transformation, were used to analyze LST from 1990 to 2020, identifying
long-term trends, fluctuations, and oscillations. Gradients encompassing 240 m, 480 m,
960 m, 2 km, 5 km, and 10 km distances were incorporated, with 360◦ space uniformly
split into 8 directions to examine seasonal land surface temperature shifts comprehen-
sively, as shown in Figure 2. LST change patterns across varied spatiotemporal scales
could be grasped, and associations with seasonal variations could be uncovered via this
multidimensional approach.
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4. Results
4.1. Land Use and Land Cover Indicators and Spatial Index Variations

Over the past 30 years, Hangzhou has seen significant LULC changes, reflecting its
dynamic urbanization and demographic changes. These transformations were comprehen-
sively analyzed using the maximum likelihood supervised classification approach applied
to Landsat image data from 1990, 2000, 2010, and 2020. The overall accuracies and Kappa
coefficients of this analysis, ranging from 0.86 to 0.95 (0.95, 0.86, 0.89, and 0.88, respectively),
underscore the reliability of the classification techniques used.

The LULC changes, shown in Figures 3 and 4, and Table 4, depict Hangzhou’s transi-
tion from agriculture to urbanization. This transition has been driven by economic growth,
increasing population, and evolving urban planning strategies. The spatial distribution
of these changes indicates a more pronounced transformation in the central and east-
ern parts of the city. Meanwhile, the outskirts have largely preserved their natural and
agricultural characteristics.

Table 4. 1990–2020 land use/land cover (LULC) type area and percentage statistics.

Land Use Type
1990 Total Area (ha) 2000 Total Area (ha) 2010 Total Area (ha) 2020 Total Area (ha)

1990 Area Percentage (%) 2000 Area Percentage (%) 2010 Area Percentage (%) 2020 Area Percentage (%)

Cropland 16,466.40 13,632.48 7176.96 433.44
28.92 23.94 12.61 0.76

Forest
22,583.52 10,159.20 6968.63 7896.65

39.67 17.84 12.24 13.87

Greenfield
3221.28 7663.68 6958.08 7429.79

5.66 13.46 12.22 13.05

Commercial
944.64 7277.76 8102.88 9446.40

1.67 12.78 14.23 16.59

Residential
5755.68 7102.08 8465.98 14,740.03

10.11 12.47 14.87 25.89
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Table 4. Cont.

Land Use Type
1990 Total Area (ha) 2000 Total Area (ha) 2010 Total Area (ha) 2020 Total Area (ha)

1990 Area Percentage (%) 2000 Area Percentage (%) 2010 Area Percentage (%) 2020 Area Percentage (%)

Water
3867.84 4462.56 4487.04 4597.92

6.79 7.84 7.88 8.08

Road
2170.08 3768.48 7784.64 9023.92

3.81 6.62 13.67 15.85

Industry 1923.84 2867.04 6992.64 3363.84
3.38 5.04 12.28 5.91

Total
56,933.28 56,933.28 56,933.28 56,933.28

100.00 100.00 100.00 100.00
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28.92 23.94 12.61 0.76 

Forest 
22,583.52 10,159.20 6968.63 7896.65 

39.67 17.84 12.24 13.87 

Greenfield 
3221.28 7663.68 6958.08 7429.79 

5.66 13.46 12.22 13.05 
Commer-

cial 
944.64 7277.76 8102.88 9446.40 

1.67 12.78 14.23 16.59 

Residential 
5755.68 7102.08 8465.98 14,740.03 

10.11 12.47 14.87 25.89 

Water 
3867.84 4462.56 4487.04 4597.92 

6.79 7.84 7.88 8.08 

Road 
2170.08 3768.48 7784.64 9023.92 

3.81 6.62 13.67 15.85 

Industry 
1923.84 2867.04 6992.64 3363.84 

3.38 5.04 12.28 5.91 

Total 
56,933.28 56,933.28 56,933.28 56,933.28 

100.00 100.00 100.00 100.00 

 
Figure 3. 1990–2020 land use and land cover maps of the core urban area of Hangzhou, China. Figure 3. 1990–2020 land use and land cover maps of the core urban area of Hangzhou, China.

The specific LULC changes detailed in Figure 3 and Table 4 include a dramatic decline
in arable land, a significant expansion of residential and commercial areas, an initial
decrease followed by a recovery of forested areas, a substantial expansion of infrastructure,
particularly roads, and a fluctuation in industrial land use. Water bodies have remained
stable, showcasing effective resource management during urban growth.

Notable transitions between LULC types over the decades, as shown in the Sankey
Diagram in Figure 4, include a persistence of commercial land use, the transformation of
green fields into residential and commercial areas, and the conversion of commercial and
cropland areas into residential zones.
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4.2. Spatiotemporal Variabilities Characteristics in Land Surface Temperatures of Hangzhou Core
Area over the Past 30 Years

Using a single-channel algorithm, surface temperatures in Hangzhou were extracted
from Landsat satellite imagery for the years 1990, 2000, 2010, and 2020. Median and mean
temperature values for each land use type for each season in these years were selected
as reference indices, as detailed in Table 5. Density segmentation was used to analyze
Hangzhou’s surface temperature distribution across seasons, shown in Figures 5 and 6. The
analysis revealed that major water bodies in Hangzhou, notably West Lake, were significant
cool island areas in summer, with surface temperatures approximately 2.1 ◦C lower than
the surrounding urban developed areas.

Table 5. 1990–2020 seasonal land use type land surface temperature (LST) median and average statistics.

Year Season Property Forest Cropland Greenfield Residential Road CommercialIndustry Water

1990

spring median 16.04468 16.04468 16.90057 16.90057 17.75073 18.17094 16.90057 13.66022
mean 15.93807 16.1475 16.91632 17.11824 17.76333 18.58474 16.98057 13.56742

summer median 25.40057 25.40057 26.67371 27.93436 27.51553 29.18295 27.51553 21.94138
mean 25.28314 25.658 26.74502 27.94269 27.56512 28.60135 27.50613 22.10568

autumn
median 14.71396 15.17886 15.64191 16.10309 16.10309 16.56247 16.10309 15.17886
mean 14.76979 15.07609 15.83833 16.23091 15.92025 16.70009 16.01767 15.1845

winter
median 5.495605 5.495605 5.495605 6.000641 5.495605 6.503265 5.495605 4.988159
mean 5.202796 5.525734 5.765921 6.021916 5.710056 6.316591 5.775147 5.128916

2000

spring median 14.61893 14.61893 14.61893 15.50217 15.06131 15.50217 14.61893 9.178864
mean 14.76336 14.49646 14.64769 15.72813 15.23546 15.48921 14.69877 9.728438

summer median 27.51553 27.93436 28.3519 31.64517 30.41977 31.23795 28.7681 25.82635
mean 27.74625 28.27298 28.43634 31.62341 30.40376 31.19938 28.59332 25.73865

autumn
median 20.61893 21.06131 21.06131 21.50217 21.50217 21.50217 21.06131 17.47589
mean 20.87516 20.92066 21.05335 21.77076 21.46355 21.68859 21.17359 17.66864

winter
median 4.478271 7.003571 7.003571 7.501587 7.501587 7.501587 7.501587 7.997284
mean 4.653928 7.043201 7.04425 7.587824 7.531243 7.498746 7.28324 7.998072
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Table 5. Cont.

Year Season Property Forest Cropland Greenfield Residential Road CommercialIndustry Water

2010

spring median 16.90057 19.01553 17.75073 21.0965 20.2681 21.91977 21.50879 9.882355
mean 17.07107 18.9046 18.13147 21.23243 20.09084 21.81978 21.60188 10.61995

summer median 24.9733 25.82635 25.40057 27.51553 26.67371 27.51553 27.51553 22.81519
mean 25.09188 25.82596 25.51176 27.32145 26.65884 27.41189 27.41945 22.98751

autumn
median 15.17886 16.10309 16.10309 16.10309 16.10309 16.10309 16.56247 12.83545
mean 15.00033 16.07167 15.79531 16.30177 16.0448 16.26065 16.53944 13.07103

winter
median 1.365479 2.413513 2.413513 2.413513 2.413513 2.413513 2.413513 5.495605
mean 1.204552 2.438516 2.306402 2.388947 2.568051 2.592431 2.670691 5.35603

2020

spring median 16.90057 14.95184 16.1994 17.51175 18.35596 18.43561 18.27277 8.615753
mean 14.67554 14.8674 16.06578 17.58551 18.39342 18.49794 18.34303 9.001349

summer median 24.9733 27.08307 27.61746 28.83603 29.73404 29.66306 29.48549 25.66431
mean 26.5182 27.15246 27.69375 28.83258 29.75992 29.70961 29.36934 25.85812

autumn
median 15.17886 17.60965 17.28909 17.83038 18.07095 18.20496 18.29587 16.19583
mean 15.82356 17.56839 17.3385 17.82818 18.06763 18.21729 18.40934 16.32962

winter
median 1.365479 12.39044 11.09726 11.31842 10.95679 11.42072 11.81827 7.746918
mean 10.57356 12.17768 11.12146 11.19293 10.87254 11.37231 11.72043 7.870133
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Analysis from 1990 to 2020 revealed that cool temperature zones in spring outnum-
bered other temperature zones across all areas each season. This trend highlights the 
strong correlation between urban heat island effects and seasonal changes, with the cool-
ing effect most significant in summer at West Lake, followed by spring and autumn, and 
least noticeable in winter. 

Figure 6. 1990–2020 seasonal LULC type LST proportion bar chart and trend line.

Analysis from 1990 to 2020 revealed that cool temperature zones in spring outnum-
bered other temperature zones across all areas each season. This trend highlights the
strong correlation between urban heat island effects and seasonal changes, with the cooling
effect most significant in summer at West Lake, followed by spring and autumn, and least
noticeable in winter.

Statistical analysis from 1990 to 2020 indicated an upward trend in the rate of change
in surface temperatures for all land use categories, except water bodies. For example, the
average summer temperature in forested areas increased from 25.28 ◦C in 1990 to 26.52 ◦C
in 2020. In contrast, temperature fluctuations in water bodies and forests were relatively
stable, with a standard deviation controlled below 0.8 ◦C, reflecting their lower degree of
urbanization. The data also reflected the monsoon climate characteristics of Hangzhou,
with a significant temperature difference between summer and winter in 2020.

5. Discussion
5.1. Spatial Variability Analysis of LST

The spatial variability analysis of land surface temperature (LST) revealed distinct
spatial patterns linking urban expansion with an increase in surface temperature. These
patterns demonstrate how urban materials accumulate heat and how reduced vegetation
intensifies the urban heat island (UHI) effect. With land use/land cover (LULC) changes,
LST is generally higher in urban construction and industrial areas, and lower in green
spaces and water bodies, especially around the West Lake area.

For instance, as depicted in Figure 6, it shows the 1990–2020 seasonal LULC type LST
proportion bar chart and trend line. What we want to express is the trend of the proportion
of different LST subzones (extreme cold zone, cold zone, cool zone, moderate zone, warm
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zone, hot zone, extreme hot zone) in four different seasons between 1990 and 2020. The
four subplots represent the four different seasons, and the seven different colored bars
represent the percentage of LST zones, so the curve connecting the four bars of the same
color over the four years represents the trend of this type of LST zones during these four
years. during summer, the temperature rise in urban areas is more pronounced due to
the heat island effect. As indicated in Figure 7, the analysis shows that alongside regional
LULC changes, there are corresponding shifts in LST across different zones.
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Figure 7. 1990–2020 summer LST box chart divided by LULC type and directional zone.

The analysis of the link between urban expansion and increased LST confirms that
LST is typically higher in urban construction and industrial areas. The analysis reveals that
green spaces and water bodies, especially around the West Lake, play a significant role in
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modulating LST, generally maintaining lower temperatures. Directional analysis indicates
that LST varies in certain directions, influenced by the average water body shape index
(WBSI) and seasonal LST data.

In summary, the relationship between urban expansion and increased LST, the modu-
lating effect of green spaces and water bodies on LST, and the impact of LULC changes
on LST distribution are key factors influencing the intensity of the urban heat island effect.
Seasonality and directionality also play crucial roles in influencing LST distribution.

5.2. Spatial Influence of Distance Gradient Variations on UCI Phenomena

To explore the relationship between LST and distance, this study analyzed seasonal
LST data and corresponding distances. A quadratic polynomial regression model was used
to quantitatively assess the association between LST and distance across different seasons.
As shown in Figure 8, the spring data analysis indicates that LST initially increases with
distance and then gradually decreases. This trend may reflect the predominant influence of
the urban heat island (UHI) effect, transitioning to an urban cool island (UCI) phenomenon
at greater distances, where the surface temperature peaks at a certain distance before
decreasing further.
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Figure 8. 1990–2020 seasonal LST distribution statistics and trend fitting curves by distance gradient.

The summer data exhibit a similar pattern, with the peak of LST occurring at a farther
distance, possibly due to the intensification of the UHI effect in summer. The autumn data
show relatively smaller changes in LST, indicating a more balanced interaction between
UHI and UCI effects. The winter trend is milder, possibly reflecting the limited or balanced
influences of UHI and UCI during this season.

Quantitative analysis of seasonal data reveals varying UHI and UCI effects across
seasons. UHI effects are more pronounced in spring and summer, while autumn and winter
display a more balanced characteristic between UHI and UCI.
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Taking summer as an example, Figure 9 illustrates the distribution of LST across
various Land Use and Land Cover (LULC) types along a distance gradient. The results
show that the summer urban cool island (UCI) effect, represented by West Lake’s water
body, reduces the peak impact range on commercial, residential, industrial, and road areas
from two kilometers to within one kilometer. This reflects the intensified urban heat island
(UHI) effect due to urbanization, which reduces the influence of cool islands on the urban
thermal environment.
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As the distance from the urban center increases, temperature fluctuations diminish,
indicating that water bodies and other cooling factors at greater distances collectively
expand the influence of cool islands on the urban thermal environment. This finding
underscores the significance of water bodies and green spaces in mitigating UHI effects
and enhancing the urban thermal comfort, particularly during the summer season.
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In summary, this study reveals the strong association between urban expansion and
the increase in land surface temperature (LST), the significant regulatory role of green
spaces and water bodies on LST, and the profound impact of land use/land cover (LULC)
changes on LST distribution, all of which are key factors affecting the intensity of the urban
heat island (UHI) effect. Furthermore, seasonality and directionality are also found to
have significant impacts on the distribution of LST. These findings highlight the complex
interactions between urban development, natural landscapes, and climate in shaping the
urban thermal environment.

5.3. Analysis of Water Body Shape Index (WBSI) Morphological Characteristics

Table 6 and Figure 10 present the WBSI values for each sector. Figure 10 specifically
showcases the seasonal distribution statistics and trend fitting curves of LST by the WBSI.
This figure underscores the profound impact of urban expansion on the LST, particularly
highlighting how different shapes and sizes of water bodies contribute to the urban cool
island (UCI) effect. The trend fitting curves provide a visual representation of how the LST
varies with the morphological characteristics of water bodies, measured by the WBSI. The
analysis reveals a notable cooling effect in areas surrounding higher WBSI values, empha-
sizing the significance of water body configurations in urban heat mitigation strategies. The
maximum and minimum sectoral WBSI values are 1.48 (WNW) and 1.25 (SSE), respectively,
with mean LST temperature differentials exceeding 1 ◦C. This finding indicates a significant
influence of the WBSI on UCI phenomena.

Table 6. 1990–2020 seasonal average LST by directional zone statistics.

Direction WBSI Year
LST

Spring Summer Autumn Winter

E-NE 1.5253

1990 16.5274 26.1608 15.8972 5.7939
2000 14.5901 30.1015 20.9587 7.6255
2010 20.0421 26.7125 15.9076 3.0211
2020 17.1115 29.4800 18.0686 10.9604

E-SE 1.3507

1990 16.3295 25.5706 15.6888 5.7715
2000 13.7825 29.4010 20.7432 7.5420
2010 18.7765 26.7246 15.5020 3.4523
2020 15.9935 29.0292 17.1190 9.7446

N-NE 1.5338

1990 16.8639 27.0799 15.7994 5.6658
2000 15.3599 30.2815 21.6966 7.2634
2010 21.1895 26.6782 16.1914 2.4047
2020 18.3811 29.2943 18.2673 11.4559

N-NW 1.5038

1990 17.1133 26.6236 15.5817 5.1823
2000 15.4313 30.1639 21.3931 7.4696
2010 21.3885 26.8768 16.1721 2.29886
2020 18.1732 29.0066 17.9217 10.61853

S-SE 1.5861

1990 16.0136 25.0502 14.9146 5.7233
2000 13.7579 28.3222 20.6894 7.2375
2010 17.9213 26.2513 15.5088 3.0696
2020 15.6908 28.6032 17.1172 10.5511

S-SW 1.6509

1990 15.5259 24.6928 14.6832 5.3574
2000 13.9667 27.6944 20.3486 6.8755
2010 17.0425 25.4327 15.4793 2.5305
2020 14.9548 27.6250 16.9964 10.7520

W-NW 1.8282

1990 15.6137 25.6706 14.7730 5.4439
2000 14.5380 28.4271 20.5172 6.5807
2010 19.5068 26.0381 15.9196 2.1005
2020 17.1280 27.6665 17.6144 10.9529
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Table 6. Cont.

Direction WBSI Year
LST

Spring Summer Autumn Winter

W-SW 1.4751

1990 16.1473 25.5600 14.8520 5.0256
2000 14.9192 28.3589 21.3178 5.0253
2010 18.2650 25.6243 15.4889 1.7201
2020 15.7135 27.0130 16.4139 10.9931
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A significant correlation exists between the water body shape index (WBSI) and the
urban cool island (UCI) effect intensity. Specifically, areas surrounding water bodies with
higher WBSI values exhibit more pronounced cooling effects, impacting the surrounding
land surface temperature (LST) significantly. As depicted in Figure 11 of the multidimen-
sional statistical analysis of land surface temperature changes method, it presents a more
detailed summer LST box chart divided by the WBSI and land use/land cover (LULC)
types. This figure further elaborates on the relationship between urban development, green
spaces, water bodies, and their collective influence on the urban microclimate. Specifically,
it demonstrates how varying WBSI values across different sectors around West Lake affect
the surrounding LST, with higher WBSI values correlating with more pronounced cooling
effects. This detailed breakdown by LULC types allows for a nuanced understanding of
how land use changes contribute to urban heat dynamics and the potential of water bodies
in enhancing urban thermal comfort. The region around West Lake was divided into eight
sectors—NNE, ENE, ESE, SSE, SSW, WSW, WNW, and NNW. The WBSI of each sector
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was computed using Equation (2), analyzing the LST distribution characteristics, which
facilitated identifying the association between UCI intensity and the WBSI across the lake’s
sectors.
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In summary, using the WBSI for morphological analysis effectively identifies cool
island effects near water bodies. Quantitatively correlating the WBSI with the intensity
of adjacent LST cooling facilitates enhanced UCI effect modeling and prediction capac-
ities across lake sectors. This analysis underscores the utility of the WBSI as a tool in
understanding and managing urban microclimates.

6. Conclusions and Recommendations

This study investigates the dynamics and mechanisms of the urban cool island (UCI)
effect, linking rapid urban expansion with significant increases in land surface temperature
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(LST), particularly during summer and winter, to emphasize the seasonal climatic influences
on the urban thermal landscape.

Vegetation and water bodies are pivotal in reducing urban heat stress, with their
influence being essential throughout the year, despite variations in the UCI effect across
seasons. Notably, temperatures in built-up areas continue to rise, even in winter.

Spatial analysis of large water bodies indicates that the UCI effect diminishes with
distance, while higher water body shape index (WBSI) values enhance the cooling effect.
Our findings advocate for considering spatial–temporal aspects in urban planning to
effectively leverage landscape features against UCI variations.

When it comes to the limitations of our research methodology, we find it important to
note the following points, which will serve as a guide for our future research.

1. Our study’s temporal resolution is constrained by the use of Landsat imagery at
ten-year intervals, potentially missing rapid urban changes and immediate impacts of
urban planning measures.

2. The focus on Hangzhou limits the generalizability of our findings to cities with
differing climates, urban forms, or developmental stages, necessitating further validation
in diverse contexts.

3. The novel application of the water body shape index (WBSI) to assess cooling effects
introduces a methodological limitation, with its effectiveness in varying urban settings yet
to be fully established.

In future research, we aim to address these limitations by adopting a more granular
temporal analysis, potentially utilizing satellite data with higher frequency or incorporating
urban sensor data to capture more immediate changes in land use and the urban heat island
effect. We plan to expand our study to include a broader range of cities with varied climatic
conditions, urban designs, and development trajectories to enhance the generalizability
of our findings. This comparative approach will allow us to test the applicability of the
water body shape index (WBSI) across different urban contexts and refine the metric based
on these insights. Through these efforts, we anticipate contributing to a more nuanced
understanding of urban thermal dynamics and developing more effective strategies for
mitigating urban heat island effects in cities worldwide.

Crucially, this study introduces a groundbreaking discovery that the shape of water
bodies plays a pivotal role in the urban cool island effect, a novel finding that paves the way
for innovative urban design strategies aimed at climate resilience and sustainability. We
recommend future urban planning to prioritize the design and preservation of water bodies
with complex peripheries to maximize their cooling effects. Balancing urban development
with the preservation of natural landscapes, such as green spaces and water bodies, is
crucial for mitigating urban warming and enhancing UCI efficiency. This study provides a
valuable framework for predicting and mitigating climate change in urban environments
and advocates for the inclusion of different land use categories and seasonal variations in
future studies to promote sustainable urban development strategies.
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