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Abstract: Rational utilization of soil total nitrogen is one of the keys to achieving sustainable agricul-
tural development. By accurately measuring the content of total nitrogen in the soil, the utilization
efficiency of nitrogen in the soil can be improved, and the scientific use of chemical fertilizers can
reduce the pressure of agriculture on natural resources and realize the sustainable development of
agriculture. In order to measure soil total nitrogen content simply and accurately, combined with the
method of artificial olfactory systems, a new method of soil total nitrogen content detection based
on convolutional noise reduction autoencoder (CDAE)–whale optimization algorithm (WOA)–deep
residual shrinkage network (DSRN) is proposed. In order to obtain more salient features for fusion,
the channel mechanism of the DSRN is improved by adding global Max pooling. The model uses a
CDAE for the first filtering stage to automatically obtain data that filters simple noise and uses the
WOA to automatically optimize hyperparameters. Finally, the optimized hyperparameters were used
to train the DRSN for secondary filtering and predict the soil total nitrogen content. Experimental
results show that the R2 of CAE-WOA-DSRN test set is 0.968, which is significantly better than the
R2 of a traditional algorithm (0.873) and a simple BP network (0.877), and it can more accurately
measure soil total nitrogen content.

Keywords: soil total nitrogen; artificial olfactory system; prediction method; the depth of the residual
shrinkage network; convolution encoder

1. Introduction

Soil nitrogen is an essential nutrient for plant growth and development, and it is also an
important index to measure soil fertility. Insufficient quantity will not be enough to meet the
production demand of regional crops, while excessive quantity will cause environmental
problems such as eutrophication of regional water bodies [1]. Therefore, rapid and accurate
measurement of soil total N is important for the sustainability of agricultural production.

Currently, chemical detection and spectral detection are the two primary methods for
soil nutrient detection. Chemical determination of total nitrogen in soil (including inor-
ganic and organic nitrogen) includes Kjeldahl nitrogen determination, Dumas combustion
nitrogen determination, etc. [2–5]. Especially, semi-trace Kjeldahl nitrogen determination is
now commonly used [6,7]. Although chemical detection is extensively used in practice and
can accurately measure the total nitrogen content in soil, it has some disadvantages such as
long time, complicated operation, and pollution.

Spectral detection includes hyperspectral and near-infrared spectroscopy. Hyper-
spectral remote sensing technology can provide continuous remote sensing imaging of
ground objects with very narrow and continuous spectral channels. It has numerous bands,
hundreds of spectral channels, and a spectral resolution of up to nanometers. Each spectral
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channel is continuous. Adopting this technology is helpful for studying the fine classifica-
tion and recognition of ground objects by spectral features [8]. However, because of the
high cost of its equipment and massive data volume, it is challenging to extract relevant
features from it. In addition, the prediction accuracy is relatively low.

With the advantages of fast, accurate, and pollution-free detection, NIR spectroscopy
can process a large number of soil samples in a short period of time and realize real-time
detection of soil nutrient content [9,10]. However, the spectral method of soil sample
assessment is easily affected by soil moisture, iron oxide, soil texture, etc., and its anti-
interference ability is poor in practical application [11,12].

In addition, pyrolysis gas chromatography–mass spectrometry (Py-GC/MS) has the
advantages of high speed and sensitivity, stable performance, and small sample amount [13].
It also proves that there is a correlation between soil cracking gas and soil nutrients.
However, the equipment has the disadvantages of high acquisition cost, professional
operation, inability to monitor soil total nitrogen, and time-consuming labor, so it is difficult
to achieve rapid measurement of nutrients in a large number of soil samples.

In recent years, electronic nose technology has developed rapidly. For example,
ref. [14] used an electronic nose to predict apple freshness and the accuracy reached 0.942.
Ref. [15] used an electronic nose to predict the freshness of a refrigerated large yellow
croaker and the accuracy reached 0.988. Interestingly, this technology can also be used for
soil inspection. In ref. [16], Lavanya et al. used an electronic nose to test the amounts of
hyaluronic acid and free fatty acids in soil. In ref. [17], Bieganowski et al. used an electronic
nose to realize the evaluation of soil moisture and studied the influence of soil moisture
content on the signal of the electronic nose. In refs. [18,19], Longtu and Zhu et al. used a
single-sensor array artificial olfactory system to complete the detection of organic matter
content. Unfortunately, because only a single-sensor array was used, it could not accurately
reflect the chemical reaction of gas; in the literature [20], volatile gases were detected by
multiple sensors. However, since the traditional machine learning method combined with
a simple backpropagation network was adopted in the regression prediction of gas signal
data, it could neither automatically filter the gas signal nor learn the deeper features of the
gas signal data. Therefore, the accuracy and response rate of soil total nitrogen content
detection still need to be improved.

Deep learning is a more intelligent method than traditional machine learning, which
uses the random initialization of neuron parameters of artificial neural networks to au-
tomatically extract features, and can learn deeper features in the data as the number of
layers of the network deepens. Deep learning is also widely used in regression prediction.
However, it also has the problem that the hyperparameter setting is set by the empirical
manual, and the hyperparameter is an important factor affecting the final prediction effect
of the network, so its efficiency is often very unstable. Furthermore, its interpretability is
low due to the automatic nature of the feature extraction.

In summary, traditional methods usually need to collect a large number of soil samples
and perform complex experimental analyses, which are time-consuming and costly, or
require manual work to extract the features of the data, greatly reducing the efficiency of
the overall detection. Therefore, in order to solve the above problems of traditional soil total
nitrogen detection methods, such as long detection and analysis time, complex manual
operation, high equipment cost, and corrosive reagents. In this paper, the correlation
between soil cracking gas and soil total nitrogen is used to make full use of the advantages
of low-cost gas sensors. Based on deep learning and a neural network model, a simple,
high-precision, and low-cost soil total nitrogen prediction method is proposed so as to
realize the rapid, accurate, and low-cost detection of soil total nitrogen content. At the same
time, it reduces the need for manual intervention and improves the efficiency and accuracy
of the model.

The proposed methodology comprises the following main stages:
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1. The data of soil cracking gas were obtained by thermal cracking and an electronic
nose, and the soil cracking gas was analyzed by deep learning methods to predict the
soil total nitrogen content.

2. The convolutional noise reduction encoder is used to reduce the noise and dimensions
of the features to reduce the subsequent training time and network parameters.

3. The whale optimization algorithm adding chaos factor is used to optimize the hyper-
parameter of the depth residual shrinkage network, and the time to search for the
optimal parameter is reduced while automatically searching for the optimal parameter.

4. An improved channel attention module is introduced into the deep residual shrinkage
network, and the feature of global maximum pooling is added to enhance the signifi-
cance of the feature vector for setting thresholds, so as to achieve a better fitting effect.

2. Materials and Methods
2.1. Study Area and Soil Sampling

The study area of this paper is an experimental field at the Jilin Academy of Agri-
cultural Sciences in Gongzhuling City, Jilin Province, in the autumn of 2021. A total of
120 soil samples were collected, and the sampling area is shown in Figure 1. This batch of
soil samples belongs to black soil in the soil classification system developed by FAO-UN,
which is a common cultivated soil type in Jilin Province, with strong swelling, shrinkage,
and disturbance characteristics. In order to ensure the randomness and uniformity of
the sample, the quincunx sampling method sampling method was used to avoid special
locations such as roads, fields, ditches, and manure piles. At each sampling point, 5 topsoil
layers (4–20 cm) were taken, and then the 5 soil samples were fully mixed, leaving about
1 kg of soil samples. The samples were sealed and labeled before being brought back to the
laboratory and stored in the laboratory with an average room temperature of 24 ◦C.
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Figure 1. Map of the study area: The red star is Gongzhuling.

The collected soil samples were placed in an indoor ventilation place to air dry natu-
rally. The dry soil samples with particles of less than 2 mm were selected through a 70 mesh
sieve. Finally, the soil samples were divided into two parts, and the total nitrogen content
of the soil samples was determined by the Kjeldahl nitrogen method of the HJ 717-2014
standard [21] and the detection method proposed in this paper [22].

2.2. Main Soil Nutrient Detection System

The main soil nutrient detection system devices used in this research include a vacuum
flange, tube-cracking furnace, quartz tube, pressure gauge, closed reaction chamber (with
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gas sensor array), signal processing circuit, NI data acquisition card, PWM module, vacuum
air pump, and computer. The specific structure is shown in Figure 2.
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furnace; 3. Pressure gauge; 4. Vacuum air pump; 5. NI data acquisition card; 6. Closed reaction
chamber; 7. Signal processing circuit; 8. Computer; 9. PWM speed regulation module.

In this system, the function of the tube-cracking furnace is to crack the soil sample.
A quartz tube containing the soil sample is inserted into the cracking furnace and sealed
at both ends by a vacuum flange to form a closed cracking chamber. The manometer
monitors the air pressure in the cracking chamber in real time, while the PWM module
modulated by the meridian width is used to adjust the flow rate of the vacuum air pump to
achieve the gas flow between the vacuum air pump, the cracking chamber, and the closed
reaction chamber.

The cracked gas is pushed into the closed reaction chamber equipped with a sensor
array through the vacuum air pump, and then through the signal processing circuit, an NI
data acquisition card transmits the sensor output signal to the computer. The whole main
soil nutrient detection system device can be divided into two parts: the thermal cracking
system device and the machine olfactory system device.

The thermal cracking system device is mainly used for cracking soil samples at high
temperatures in the central area of the cracking furnace. In order to prevent interference
from outside gases, the cracking chamber is kept in a completely closed state as far as
possible during the cracking process. The machine olfactory system device is responsible
for receiving and processing the cracked soil gas and pushing the cracked gas into the
closed reaction chamber through the vacuum air pump to produce a specific response. The
analog signal is transformed into a digital signal, and data are acquired by connecting the
signal processing circuit to the NI data acquisition card via the Dupont line.

2.2.1. Thermal Cracking System Device

The thermal cracking system device includes a tube-cracking furnace, quartz glass
tube, vacuum flange, rubber tube, quartz boat, pressure gauge, and other components.
In this study, we chose the Lindberg/Blue MTM Mini-MiteTM device manufactured by
Thermo Fisher Scientific as the tube-cracking furnace. The cracking furnace is insulated
with Moldather material and equipped with a microprocessor self-regulating PID controller,
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which can maintain the temperature in the furnace at any value between 100 ◦C and 1100 ◦C.
The equipment has many advantages, including its long life, small and lightweight nature,
single stage, single set point, one-time adjustment to set point, synchronous LED display,
adjustable temperature upper limit, open and power-off protection, etc. It is often used in
pyrolysis, thermal expansion, calibration, and other experiments. This device ensures rapid
rise and fall, high energy efficiency, and relatively low furnace surface temperature.

2.2.2. Machine Olfactory System Device

The machine olfactory system is the detection unit of the whole system, which is
composed of three parts, including a gas sensor array, signal processing circuit, and data
processing unit. The detection unit structure of the system includes a gas sensor array,
reaction chamber, signal processing circuit, NI data acquisition card, computer, and so on.

First of all, the sensor array is the core of the machine olfactory system, which deter-
mines the overall performance and detection accuracy of the system from top to bottom.

Therefore, a reasonable choice of sensor types and models is particularly important.
Soil total nitrogen includes organic nitrogen and inorganic nitrogen, and soil organic
matter is the main source of soil organic nitrogen. During soil thermal pyrolysis, both
organic and inorganic nitrogen compounds decompose and release gases. Organic nitrogen
compounds will undergo thermal decomposition at high temperatures, when the carbon
and nitrogen bonds will break, releasing ammonia, and other organic compounds will
release hydrocarbon gases. Similarly, inorganic nitrogen–nitrogen compounds may also
decompose during thermal pyrolysis to release gases. For example, ammonium ions can
form ammonia [23].

Therefore, depending on the gases released during soil pyrolysis, gas sensors that are
likely to produce strong reactions are selected. Considering the practical requirements and
applications of volatile gas detection found that the metal oxide semiconductor gas sensor
has high sensitivity and high selectivity.

It has the advantages of good performance and fast recovery. Therefore, the MOS
semiconductor gas sensor was selected in this study, following the following principles:

(1) High selectivity and sensitivity, strong response to high and low concentrations of
target gas;

(2) Wide-spectrum response characteristics, which can realize the concentration detec-
tion of a variety of gas molecules;

(3) The response time and recovery time are short, and the test can be repeated in a
short time;

(4) In a certain range, non-specific sensor combinations with overlapping response
characteristics can be used;

(5) Reusable, high stability, low power consumption, low price.
Based on the above selection principles, the gas sensors selected in this study are

mainly the TGS series produced by Figaro, Japan. The model of the gas sensor array
selected is shown in Table 1.

Table 1. Gas sensor models.

No. Model Number Detect Gas Type Measuring Range (ppm)

S1 TGS862 Ammonia 30~300
S2 TGS2602 Vocs, hydrogen sulfide, etc. 1~30
S3 TGS2610 Butane, LP gas 500~10,000
S4 TGS2620 Ethanol, organic solvent 50~5000
S5 TGS821 Hydrogen 100~1000
S6 TGS2603 Trimethylamine, methyl mercaptan, etc. 1~10
S7 TGS2611 Methane, Natural gas 500~10,000
S8 TGS823 Methane, Ethanol 50~300
S9 TGS2600 Hydrogen, alcohol, etc. 1~30

S10 TGS2612 Methane, propane, isobutane 3000~9000
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The output resistance signal of the sensor array is transmitted to the signal processing
circuit through the FFC soft bank wire. Next, the signal processing circuit supplies power to
the sensor array, while using the principle of resistance voltage division to detect changes in
gas concentration and convert the output signal into voltage. The signal processing circuit
is connected with the NI data acquisition card by the Dupont line, the data acquisition is
carried out, and the analog signal is converted to a digital signal.

Finally, the collected sensor response curve data are sent to the computer through the
USB data interface. In the computer, these data are displayed and saved by the LabVIEW
application for subsequent data processing. The whole process realizes the perception,
acquisition, conversion, and storage of the change in soil cracking gas concentration, which
provides convenience for subsequent data processing.

2.2.3. Response Experiment of Soil Nutrient Detection Device

The main soil nutrient detection device was built based on thermal cracking and a
machine olfactory system. The complexity of soil composition may result in a wide variety
of cracked gases. Therefore, in the initial selection of sensors, it is common to choose as
many different types of sensors as possible. However, this could mean that certain gas
sensors become less accurate in detecting soil cracking gases, or that certain sensors are
less effective in detecting soil cracking gases.

Therefore, this study needs to test the response of soil pyrolysis gas to the sensor of the
detection device to verify the rationality of the sensor selection. This testing process will
help evaluate the performance of each sensor in practical applications, identify possible
response differences or limitations, and provide a basis for further data processing and
interpretation. Through this step, the system performance can be optimized and the
accuracy and reliability of the test results can be ensured. In order to verify the operational
capability of the detector and sensor, we conducted tests on each sensor using the soil
sample described in Section 2.1. As shown in the first stage of the response curve of Figure 3,
when the soil pyrolysis gas does not enter the reaction chamber, the output voltage of all the
sensors remains unchanged in the initial state. This indicates that clean air can be utilized
as a cleaning gas because the resistance value of the gas sensor does not alter or respond in
a particular way to air.
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In the second stage of the response curve, after the introduction of soil cracking gas, all
the sensors produced a drastic change in a few seconds. The response curves of the sensors
gradually rose. In the following tens of seconds, they all reached a stable state, in line with
the normal operation of the sensor mechanism. It can be seen that the selected sensor can
produce a specific response to the soil cracking gas, and the built hardware system has a
good operating ability. The choice of sensors is quite reasonable.

2.3. Data Preprocessing

Firstly, the gas signal data of 600 data points within 60 s after thermal cracking at
500 ◦C for 2 min were selected, and the values were collected every 0.1 s. The gas signal
data with a total of 600 data points are used as the deep learning data set. Figure 3 shows
the gas response curves of the 10 sensors. Then, 600 data points such as gas signal response
area (Vrav), maximum value of the gas signal (Vmax), average differential coefficient of
the gas signal (Vmdc), variance of the gas signal (Vvv), and average value of gas signal
were extracted. Six commonly used artificial features of gas signals (Vavg) and maximum
gradient of gas signal curves (Vmgv) are used to establish feature spaces to provide data
for traditional machine learning methods.

Vrav =
N

∑
i=1

Xi∆t (1)

Vmdc =
1

N − 1∑N
i−1

Xi+1 − Xi

∆t
(2)

Vvv =
∑N

i=1
(
Xi − X

)2

N − 1
(3)

Vmgv =
Xjmax − X0

j
(4)

In the formula calculation, the meanings of Vrav, Vmdc, Vvv, and Vmgv are as follows.
Xi represents the i-th data point collected by the sensor; Xi∆t represents a 0.1 s time

interval; N represents the number of total points; X represents the average of the data; X0
represents the initial value; j represents the time corresponding to the maximum value.

In order to eliminate the influence of dimension and order of magnitude on the
prediction results and accelerate the speed of gradient descent, this study adopts the
Standscaler method, namely normal distribution standardized z-score, to process the data.

z =(x − µ)/s (5)

where z represents a single standardized data point; x represents a single raw data point;
µ represents the total raw data average; s represents the standard deviation of the overall
raw data.

2.4. Division of Training Set and Test Set

A total of 120 data sets are used in this paper, each of which contains 61 values. The
first 60 values are the above 10 sensors, and the 6 characteristic values are extracted from
each sensor. The 61st value is the true value obtained from the chemistry test, as shown
in Table 2, and the 6 characteristic values and true values of sensor 1. Among them, the
chemical test of soil nitrogen content, the label of this data set, comes from “Product
and Processed Product Quality Supervision and Inspection Testing Center of Ministry of
Agriculture and Rural Affairs (Changchun)”.
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Table 2. Data set format for total nitrogen content of soil samples: TN is total nitrogen. Remaining
eigenvalues are described within Section 2.3.

Vrav/(g·s·kg−1) Vmax/(g·kg−1) Vmdc/(g·(kg·s)−1) Vf/(g·kg−1) Vavg/(g·kg−1) Vmgv/(g·(kg·s)−1) TN/(g·kg−1)

Sensor 1 2.4 4.2 3.4 3.6 1.9 2.2 0.91

In this study, the ratio of the training set to the test set was set at 8:2. More specifically,
the training set consisted of 96 samples and the test set consisted of 24 samples.

2.5. Model Construction
2.5.1. Whale Algorithm and Chaos Mapping

The whale optimization algorithm (WOA), published in 2016 by Mirjalili and Lewis [24],
is a heuristic optimization method that draws on the behavior patterns of whale clusters in
nature. This algorithm mainly mimics the hunting mode and strategy of humpback whales,
covering three core hunting behaviors [25], namely prey rounding, bubble net hunting, and
prey searching.

In this paper, the whale optimization algorithm is used to optimize each hyperparam-
eter of the model.

The traversal of the Tent map has uniformity and randomness, which can make the
algorithm converge faster. This paper uses Tent mapping to generate chaotic sequences
and initialize the population, so that the initial solution is distributed as evenly as possible
in the solution space. The Tent sequence was adopted in this paper, where the initial value
ofω0 is a random number from 0 to 1, and the subsequent sequence number is obtained
according to Formula (6). The high quality of the initial population is of great help to the
performance of the algorithm, such as convergence speed and solution accuracy [26].

ωt+1 =

{
4 ×ωt ω < 0.5

4 × (1 −ωt) ω ≥ 0.5
(6)

2.5.2. CDAE Model

Convolution Auto Encoder (CAE) is a special case of traditional autoencoders, and
it uses convolutional layers and pooling layers instead of the original fully connected
layer. The convolution encoder structure consists of an encoder and a decoder, the encoder
consisting of multiple convolution and pooling layers, and the decoder consisting of
multiple deconvolution and sampling layers. The convolution layer can extract the local
features of the input data, the pooling layer can reduce the dimensional feature map, the
deconvolution layer can restore low-dimensional features to high-dimensional features,
the bottleneck layer can reduce the spatial dimension of the feature map while keeping the
number of input data channels unchanged, thereby reducing the computational cost of the
model and increasing the nonlinear characteristics of the network, and the sampling layer
can restore low-resolution features to high-resolution features.

The convolutional noise reduction encoder replaces the input data with the data with
noise, and uses the error between the reconstructed data and the data without noise as
the loss function. In this way, decoding parameters for removing noise can be obtained
to achieve the purpose of noise reduction. A convolutional noise reduction autoencoder
(CDAE) is formed. In this paper, gas signal data with white Gaussian noise are used as noise
data, as shown in Figure 4. After inputting the gas signal, it is converted into 64 channels
through a convolution layer, and then the signal length is compressed to half of the original.
After that, the signal features of 4 × 70 are obtained through the last convolution pooling.
After flattening, the features compressed to 1 × 1 × 70 by a linear layer are used as the
dimensionality reduction features [27].
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2.5.3. Improved Deep Residual Shrinkage Network

The deep residual shrinkage network (DSRN) is an improvement of one-dimensional
convolutional neural networks. Compared with the ordinary one-dimensional convolu-
tional neural network, it not only solves the problem of gradient explosion and gradient
disappearance through identity mapping but also eliminates noise-related features in data
through the principle of soft thresholding [28].

In this paper, the soft threshold is transformed into an inserted structural unit and
combined with the improved channel attention mechanism to automatically set the thresh-
old. The original structure is used for fault identification (classification) of vibration signals,
so it is more valuable to use global average pooling to obtain average features for the final
classification. However, the goal of this study is to predict features according to the content
of gas signals. The average features can be used for noise reduction in the stable stage, but
the average features will cause certain feature losses in the rising stage. Therefore, it is
proposed to add significant features to make up for part of the feature loss.

In order to extract more relevant features, a parallel global maximum pooling module
is added to the original component, which only employs the global average pooling
channel attention technique to minimize the dimensionality of the features recovered from
the convolutional layer. In the actual module, GAP is used to obtain the absolute value of
the feature space x, and MAP is used to obtain the maximum value of the feature space
x, to obtain two one-dimensional vectors representing the overall feature of the signal as
a threshold.

Subsequently, the two one-dimensional vector features are passed into two fully
connected layers, namely the multilayer perceptron, respectively, to obtain the scaling
parameters. After the two fully connected layers, the two scaling parameters are first
added and fused, and a sigmoid function is used, at which time the scaling parameters
are converted to a value in (0, 1). This scaling parameter is then multiplied by the mean
value of the feature graph |x| to obtain the threshold for filtering. After the threshold
value is obtained, the corresponding soft threshold processing can be conducted through
the number multiplication operation of the matrix. Finally, the final output of the module is
obtained through the residual connection and input addition. The specific module structure
diagram is shown in Figure 5a. is the improved module structure, and Figure 5b. is the
original module structure.
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represents number multiplication
operation of the matrix.

In order to enable the entire network to adjust to scenarios in which a sample contains
multiple complex noises, an automatic channel threshold module with deep residual
shrinkage and an improved channel attention mechanism are employed in this study [29].
This means that a threshold is set for each channel, indicating that every sample receives a
separate threshold.

The overall network architecture of the deep residual shrinking network used in this
study was modified by the network architecture of ResNet. After inputting the signal data
with a size of Batch_size × Channel × 1 and passing them through a one-dimensional
convolution layer, the channel of the input signal is converted into 16 channels, and the
parameters are reduced through a global average pooling. The basic module of ResNet is
replaced by the above module as the basic module of the deep residual shrinkage network.
Then, the module is stacked twice as a convolution layer, and a pooling layer is added after
every two convolution layers to reduce the parameters. Each layer will compress Batch_size
to half while doubling the number of channels, so after three convolution layers, the results
are input to the Flatten layer for the flattening operation. And then the final predicted
result can be achieved by inputting them into the linear layer, as shown in Figure 6.
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2.5.4. CDAE-WOA-DRSN Model

In order to predict the accuracy of total nitrogen content, this paper uses the improve-
ment and combination of CDAE, DSRN, and WOA algorithms to build a prediction model
between artificial olfactory feature space and soil total nitrogen content, aiming to find the
best correlation model. The overall processing flow is shown in Figure 7.
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Step 1: Data acquisition part. Use the soil major nutrient detection system device
described in Section 2 to prepare the soil cracking gas and obtain the raw gas signal data.

Step 2: Data processing section. The convolutional noise reduction autoencoder is used
to process the original data into 1 × 1 × 70 feature data and divide them into corresponding
training data and test data.

Step 3: Train the model. Use the training data to train the model and use the improved
WOA to optimize the hyperparameters that affect the model’s training effectiveness.

Step 4: Prediction. Train the model using the optimized hyperparameters and predict
the total nitrogen content of the soil based on the test data.

Step 5: Evaluate the comparison. The prediction results and the actual results are used
to calculate the relevant evaluation indicators, and the most suitable model is selected for
the prediction of soil total nitrogen content.
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2.6. Model Evaluation Index

MAE =
1
n∑n
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∣∣∣∣^yi − yi

∣∣∣∣ (7)
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(
^
yi − yi

)2
(8)

R2 = 1 −
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(
^
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)2

∑i

( -
yi − yi

)2 (9)

In order to verify the accuracy and stability of the network model, three evaluation
indexes, namely mean absolute error (MAE), root mean square deviation (RMSE), and
coefficient of determination (R2), were selected as the basis for evaluating the performance
of the model.

MAE is the mean absolute error of the network model; RMSE is used to represent the
error between the predicted value and the true value of the network model, that is, the
closer MAE and RMSE are to 0, the higher the accuracy of the network prediction. And
R2 represents the interpretation ability of the model to the dependent variable, that is, the
closer R2 is to 1, it indicates that the fitting function of the network is closer to the real
situation, and the prediction result is closer to the real value.

3. Results
3.1. Total Nitrogen Content Statistics of Soil Samples

The descriptive characteristics of total nitrogen in 120 soil samples measured are
shown in Table 3. The content of total nitrogen in soil ranges from 0.20 to 4.10 g·kg−1, with
an average value of 1.59 g·kg−1, standard deviation of 0.73 g·kg−1, coefficient of variation
of 45.77%, skewness of 1.17 g·kg−1, and kurtosis of 2.21 g·kg−1. The variation trend of
soil total nitrogen content collected in the study area and the coefficient of variation of the
samples were large, indicating that there were large differences in total nitrogen content
among the soil samples in the study area, which was conducive to the prediction of the
subsequent model.

Table 3. Statistics of total nitrogen content in soil samples.

Max (g·kg−1) Min (g·kg−1) Avg (g·kg−1) Std (g·kg−1) CV (%) Sk (g·kg−1) Ku (g·kg−1)

TN 0.20 4.10 1.59 0.73 45.77 1.17 2.21

3.2. Experimental Results

The generalization ability of the DSRN is mainly related to data set size, data noise
interference degree, model structure, module layers, iteration times (EPOCH), learning rate
(LR), batch size (Batch_size), and other hyperparameters.

Since there are only 120 samples in this experiment, the network contains the Batch
Normalization (BN) layer of dropout, and the effect of adding the dropout layer is not
good, in order to reduce the degree of overfitting, we need to adopt a shallow network
structure. At the same time, in order to improve the feature extraction ability of each layer,
a large convolution kernel is adopted for feature extraction. After many experiments, the
results are shown in Table 4. It can be found that when the convolution kernel size is 7, 31,
and 7, respectively, Test_R2 is the largest, and Test_RMSE and Test_MAE are the smallest,
that is, the prediction effect is the best. Therefore, the 1D-DSRN model in this paper uses
each basic convolutional module containing three convolutional layers, using convolution
kernel sizes of 7, 31, and 7, respectively, to extract features, and with the deepening of the
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number of layers, according to the number of channels, 16, 32, and 64 to extract features
in turn.

Table 4. Influence of convolution kernel size on the performance of the 1D-DSRN model.

Convolution
Kernel 1

Convolution
Kernel 2

Convolution
Kernel 3 Test_R2 Test_RMSE Test_MAE

1 3 1 0.935 0.253 0.196
1 7 1 0.893 0.326 0.288
3 7 3 0.948 0.226 0.184
1 31 1 0.926 0.270 0.230
3 31 3 0.902 0.311 0.254
7 31 7 0.951 0.221 0.183

In order to enable the network to extract correct features from complex noise, this
paper constructs a noise reduction encoder through a CDAE as the first filter and reduces
the dimension. Secondly, the channel attention mechanism used to set the threshold value
in the DRSN is improved, and the original global maximum pooling is added to the global
average pooling, so that the network not only extracts the most obvious features in the
sample but also extracts the features of the whole sample, that is, more general features. In
this way, more noise can be removed from the final threshold setting, which can improve
the accuracy. And then the two pooled feature vectors are fused as the weight of the
threshold setting to set the threshold value.

After several experiments, the results are shown in Table 5. It is found that the fused
feature vectors after global maximum pooling and global average pooling are multiplied
by the mean value of the feature graph |x| to obtain a threshold with a higher accuracy
of 0.951, while the predicted accuracy of the threshold vector by multiplying the fused
feature vector with the maximum value of the feature graph |x| is 0.937, which is lower
than the threshold obtained by multiplying the average value of the feature graph |x|.
Therefore, in the end, the feature vectors fused after global maximum pooling and global
average pooling are selected as weights to multiply with the average value of the feature
graph |x|, and the threshold obtained by weight balancing is taken as the final threshold
for processing.

Table 5. Influence of thresholds set by different pooling methods on the performance of the 1D-
DSRN model.

R2 RMSE MAE

GAP × AVG(|x|) 0.945 0.233 0.181
MAP × AVG(|x|) 0.927 0.268 0.229

(GAP + MAP) × AVG(|x|) 0.951 0.221 0.183
GAP × MAX(|x|) 0.917 0.286 0.238
MAP × MAX(|x|) 0.941 0.242 0.205

(GAP + MAP) × MAX(|x|) 0.937 0.251 0.202

In order to improve the accuracy of fitting and due to the complexity of manual adjust-
ment parameters, EPOCH, LR, and BATCH_SIZE are optimized by the whale optimization
algorithm. In order to verify the effectiveness of the whale optimization algorithm, the
empirical manual adjustment parameters EPOCH, LR, and BATCH_SIZE are compared
with the EPOCH, LR, and BATCH_SIZE optimized by the whale optimization algorithm
to set the network parameters. The determination coefficient is taken as the evaluation
index. Additionally, since EPOCH and BATCH_SIZE must be integers during the network
operation, BATCH_SIZE must be greater than 1 at the BN layer. And the whale optimiza-
tion algorithm in the process of calculating the value of the generated value is a floating
point number, so the two hyperparameters were rounded up to ensure that the value is
an integer greater than 1. The results are shown in Table 6. The first six behaviors are
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optimized according to the empirical manual adjustment parameters, and the last line is
optimized by the algorithm parameters. It can be found that the effect of the parameters
optimized by the algorithm is indeed better, and the parameter values are also the values
rarely obtained by the general empirical manual parameters.

Table 6. Effects of different hyperparameters on the model ability of 1D-DSER.

EPOCH LR BATCH_SIZE R2 RMSE MAE

1000 1 × 10−3 64 0.951 0.221 0.183
800 1 × 10−3 64 0.951 0.221 0.183
800 1 × 10−2 64 0.896 0.321 0.263
800 1 × 10−3 16 0.950 0.221 0.184
800 1 × 10−3 32 0.937 0.250 0.21
800 1 × 10−3 128 0.854 0.381 0.315
647 1 × 10−3 84 0.957 0.207 0.164

3.2.1. Model Extraction Features

After building the model and selecting the optimal hyperparameters, the features
extracted by the two methods were visualized separately in order to compare the differences
between features extracted by traditional methods and deep learning. As shown in Figure 8,
the values of S3, S6, and S7 are very different, and the values of features extracted by deep
learning in S3 and S6 are dozens of times higher than those extracted by traditional methods.
However, the value of S7 is tens of times higher than the traditional method, which may be
an important factor leading to the final result.
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3.2.2. Comparison of Models

In order to select the most effective prediction model and improve the versatility of
the soil total nitrogen olfactory detection model, PLSR, SVR, and RF, which are typical of
traditional machine learning, were selected and verified, respectively. In order to ensure the
synchronization of the training set and test set with the training set and test set randomly
generated by the deep learning method, the TRAIN_TEST_SPLIT method in sklearn was
used to divide the data set, and the random number seed was set to 99. In addition, BPNN,
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which represents a neural network, CNN, DSRN, and other classical one-dimensional
regression prediction models in deep learning algorithms are used for comparison. The
results are shown in Figure 9.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 21 
 

Figure 8, the values of S3, S6, and S7 are very different, and the values of features ex-
tracted by deep learning in S3 and S6 are dozens of times higher than those extracted by 
traditional methods. However, the value of S7 is tens of times higher than the traditional 
method, which may be an important factor leading to the final result. 

  

 
(a) (b) 

Figure 8. Feature signal diagram after pretreatment: (a) features extracted by convolutional noise 
reduction autoencoder; (b) features extracted according to Formulas (1)–(4). 

3.2.2. Comparison of Models 
In order to select the most effective prediction model and improve the versatility of 

the soil total nitrogen olfactory detection model, PLSR, SVR, and RF, which are typical of 
traditional machine learning, were selected and verified, respectively. In order to ensure 
the synchronization of the training set and test set with the training set and test set ran-
domly generated by the deep learning method, the TRAIN_TEST_SPLIT method in 
sklearn was used to divide the data set, and the random number seed was set to 99. In 
addition, BPNN, which represents a neural network, CNN, DSRN, and other classical 
one-dimensional regression prediction models in deep learning algorithms are used for 
comparison. The results are shown in Figure 9. 

 
Figure 9. Prediction results of each model.

The main parameters of the RF algorithm are the decision tree and the number of
leaves. If the number of decision trees is too large, the calculation time will be affected.
However, if the number is too small, the regression prediction effect will be reduced. Leaves
are the end nodes of the decision tree, and a too-small number of leaves will make the
model more susceptible to noise in the data [30]. In this paper, it is found through several
tests that the best effect is achieved when the number of decision trees is 3, the minimum
number of leaves is 2, and the maximum number of leaves is not limited. R2 is 0.858, and it
can be seen that its evaluation index is relatively low, probably because RF is more suitable
for classification tasks, and is not suitable for the specific numerical prediction of this task.

The main influencing parameters of the SVR algorithm are the penalty factor C and
the kernel function parameter g. The larger C is, the more attention is paid to the total error
in the whole optimization process, and the higher the requirement is for error reduction.
When C tends to infinity, no sample of error is allowed to exist. When C approaches 0, only
a larger interval is required. No meaningful solution can be obtained and the algorithm
will not converge. The g value must be greater than 0, and with an increase in the g value,
the higher the complexity of the model, the worse the generalization ability, and the higher
the overfitting degree [31]. In this paper, it is found through many experiments that the
best effect is R2 = 0.871 when kernel = ‘poly’, C = 1, and g = 0.48. Compared with the
RF algorithm, its evaluation index is improved, although its model rating is unchanged.
Other indicators are better than the RF algorithm, indicating that the SVR model has better
performance and tends to be more stable in the specific numerical prediction of this task.

The main Influencing parameter of the PLSR algorithm is the number of its principal
components. If the number of principal components is too large, the prediction effect will
be better, but it will lead to overfitting of the model. If the number of principal components
is too small, the complexity of the model will be reduced, but the prediction effect will also
be reduced [32]. In this paper, it is found through many experiments that when the number
of principal components is 5, the best effect is achieved, and R2 is 0.873. Compared with the
SVR algorithm, its prediction effect and fitting degree are improved, but the improvement
is not large. The PLSR algorithm and the SVR algorithm may be more suitable for the
numerical prediction required by this task than the RF algorithm.

The summary of the model comparison is shown in Table 7. To sum up, among the
three traditional machine learning algorithms (PLSR, SVR, and RF), PLSR has the best
predictive performance (R2 is the largest, RMSE and MAE are the smallest), SVR has the
second-best predictive effect, and RF has the lowest predictive performance.
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Table 7. Prediction effects of different models on soil total nitrogen.

Prediction Models R2 RMSE MAE

RF 0.858 0.320 0.267
SVR 0.871 0.306 0.239
PLSR 0.873 0.303 0.228
BPNN 0.877 0.301 0.227
CNN 0.907 0.295 0.219
DSRN 0.929 0.289 0.232

CDAE-DSRN 0.945 0.236 0.190
WOA-DSRN 0.957 0.207 0.164

CDAE-WOA-DSRN 0.968 0.176 0.176

In neural networks and deep learning models, the main parameters that affect the
model are various hyperparameters of the model and the number of hidden layers of the
network, such as EPOCH, LR, BATCH_SIZE, etc.

When EPOCH BPNN is 50, LR is 1E-2, and BATCH_SIZE is 70, the optimal effect can
be achieved. The prediction result with an R2 of 0.877 is shown in Figure 10. It can be seen
from the figure that although its evaluation index is higher than that of traditional machine
learning algorithms, it is not much higher, which may be inferred because the BPNN is not
a deep learning algorithm. The hidden layers in its network structure can only be used
with shallow layers to reduce overfitting caused by overcomplexity of the model, so not
enough features are automatically learned to fully fit a function curve that predicts total
nitrogen content [33].
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By comparing the effect of a DSRN with the effect of a CNN in deep learning algo-
rithms, it can be found that the R2 of the DSRN is 0.929, which is better than the R2 of the
CNN (0.907) and is also in line with the experiment of Minghang et al. [29]. In their work,
it was found that the effect of the CNN was worse than that of DSRN when there was noise
interference. This may be due to the existence of certain noise in the data. So the denoising
processing was further added to carry out the experiment.

By comparing the effect of a CDAE and DSRN, it was found that the noise reduction
effect of Gaussian white noise added to the CDAE was better (R2 = 0.945), which proved
that the noise reduction treatment had indeed improved the prediction effect.
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Finally, the WOA was combined with CDAE-DSRN to optimize its parameters, and
the best effect was achieved when Max_iter = 5, dim = 3, SearchAgents = 5, and R2 = 0.968.

In summary, among neural networks and deep learning models, the prediction effect
of the 1D-CDAE-WOA-DSRN proposed in this paper is the best, followed by the DSRN
optimized by the whale optimization algorithm, namely the 1D-WOA-DSRN, followed
by the 1D-CDAE-DSRN with a convolutional noise reduction autoencoder added. While
the effect of the DSRN without the WOA is the same as that of the CNN, the BPNN has
the worst effect but its R2 is greater than 0.87, indicating that the five models have good
prediction ability and the effect is better than that of traditional machine learning methods.

In order to obtain the best model and verify the stability of the model, a more intuitive
method is adopted to compare the fitting results of various models. The results are shown
in Figure 10. It can be seen from the figure that the fitting degree of the CDAE-WOA-DSRN
proposed in this paper is the best, and the training set and test set are both near the fitting
line and intersect with the fitting line.

Among the three traditional learning algorithms, the RF algorithm has data points
in the test set that are farther away from the fitting line than those in the training set,
showing a fitting trend. Although the PLSR and SVR algorithms did not select the trend of
overfitting, the data points in their test set had many data points far away from the fitting
line compared with the data points in the CDAE-WOA-DSRN, and their fitting degree was
far lower than that of the algorithms in the CDAE-WOA-DSRN.

However, although the BPNN has a better effect than the other three traditional
algorithms, the three traditional algorithms are not accurate in fitting the data point of
acc = 3.2 in the test set. On the contrary, both the BPNN and CDAE-WOA-DSRN are
accurate in fitting the data point. It is speculated that the artificially extracted features
for this data point cannot describe these data well. In addition, the situation in which the
training data within 3 g·kg−1 in the training set of the three traditional algorithms all have
obvious outliers is further advanced, but there is still a big gap compared with the effect
of the basic data points of the CDAE-WOA-DSRN all having intersection points with the
fitting line.

4. Discussion

Nitrogen content in soil directly affects crop growth and yield. Through the rapid
and accurate assessment of soil total nitrogen content, farmers can optimize the fertil-
izer application rate, improve fertilizer utilization rate, reduce environmental pollution,
provide a scientific basis for agricultural production, and achieve sustainable develop-
ment. Therefore, accurate knowledge of soil nitrogen content is crucial to achieve efficient
agricultural production.

The traditional methods for the determination of soil total nitrogen are time-consuming,
and the reagents used are corrosive. The determination method of soil total nitrogen by
near-infrared spectroscopy is affected by soil texture, soil moisture, and iron oxide. The
Py-GC/MS method has the disadvantages that it has a high equipment purchase cost,
cannot be dedicated to the determination of soil total nitrogen, and is time-consuming and
labor-intensive, so it is difficult to realize the rapid measurement of total nitrogen content
in a large number of soil samples.

During soil pyrolysis, organic compounds and inorganic nitrogen compounds decom-
pose to release gases.

Therefore, by monitoring the gases produced by soil pyrolysis, we can indirectly
understand the content and distribution of organic and inorganic N in the soil. Specific
types of gas sensors were selected to monitor the gases produced by soil pyrolysis based
on the aforementioned gases, due to the high sensitivity and selectivity of these sensors for
the detection of specific gases. They are able to accurately identify nitrogen compounds in
the soil gas, thus helping us to understand the nitrogen status of the soil and predict the
total nitrogen content of the soil.
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Therefore, a variety of traditional statistical methods and deep learning techniques
were used to analyze the gas produced by soil pyrolysis and predict the soil total nitrogen
content. These methods include traditional algorithms such as PLSR, SVR, RF, BPNN, and
the deep learning model CDAE-WOA-DSRN. Using MAE, RMSE, and R2 as indicators, the
R2 obtained is more than 0.85. It shows that there is an inherent law between soil cracking
gas and soil total nitrogen content.

Finally, the best model CDAE-WOA-DSRN was selected based on the performance
and accuracy of different algorithms to ensure an accurate assessment of soil N status.

5. Conclusions

In summary, this study proposed a method for soil total nitrogen content detection
based on thermal cracking and an electronic nose. The thermal cracking technology was
used to achieve rapid cracking of soil samples, and the electronic nose was used to complete
the data collection of cracked gas responses. Finally, the deep learning neural network
model was used to accurately predict the soil total nitrogen content.

A new method, CDAE-WOA-DSRN, combined with a convolutional denoising autoen-
coder (CDAE), the whale optimization algorithm (WOA), and the deep residual shrinkage
network (DSRN), was proposed to detect soil total nitrogen content. Combined with the
artificial olfactory technique, the CDAE was used for preliminary data filtering, the WOA
was used for the automatic optimization of hyperparameters, and the DSRN was used for
secondary filtering and prediction of soil total nitrogen content. The experimental results
show that the R2 value of the CDAE-WOA-DSRN on the test set reaches 0.968, which is
significantly better than the traditional algorithm and simple BP network, proving that the
CDAE-WOA-DSRN can measure the soil total nitrogen content more accurately.

The results of this study have important theoretical and practical significance.
(1) This method can achieve the simple and accurate measurement of soil total nitrogen

content, thereby improving soil nitrogen use efficiency, promoting scientific fertilization,
reducing the pressure of agriculture on natural resources, and promoting the sustainable
development of agriculture.

(2) The combination of a CDAE and the WOA can realize automatic hyperparameter
optimization, reduce the need for manual intervention, and improve the efficiency and
accuracy of the model.

(3) The introduction of DSRN further optimized the prediction ability of the model,
making it perform well in the prediction of soil total nitrogen content. Therefore, the CDAE-
WOA-DSRN method proposed in this study not only provides an innovative solution for
the evaluation of soil nitrogen but also provides an idea for the rapid measurement and
prediction of other soil nutrient components.
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