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Abstract: Cover cropping recently emerged as a promising alternative to conventional tillage and
herbicide use for weed suppression in agricultural systems. We investigated their effectiveness in
weed control and the varying effects of different management strategies using a meta-analysis. Our
analysis studied two categories: weed biomass control and weed density control. We employed a
random-effect model to analyze weed biomass to address between-study heterogeneity and found
that cover crop treatments led to a significant 62.6% reduction in weed biomass. These results are
robust to outliers and publication bias. Furthermore, subgroup analysis found that planting a mixture
of cover crop types was more effective than planting a single type. Additionally, planting a mixture
of cover crop species, which are subcategories of cover crop types, was found to be more effective
than planting a single species. Our analysis also unveiled a persistent, albeit diminishing, reduction
in weed biomass even after the termination of cover crops. For weed density analysis, we used
a fixed-effect model due to the absence of between-study heterogeneity and found a statistically
significant reduction (45.4%) in weed density. Subgroup analysis revealed no significant difference in
weed density control between legume and grass cover crop types.

Keywords: cover crop; meta-analysis; weed suppression; weed biomass; weed density

1. Introduction

Traditional weed control methods rely heavily on tillage and herbicide application,
resulting in detrimental environmental impact. For example, intensive tillage causes soil
erosion, nutrient runoff, and greenhouse gas emissions [1], contributing to issues such as
the formation of dead zones in water bodies (e.g., the Gulf of Mexico dead zone [2]) and sig-
nificant water and wind erosion in U.S. cropland [3]. In addition, the overuse of herbicides
leads to herbicide resistance. According to the latest data from the International Herbicide-
Resistant Weed Database [4], there exist 530 distinct cases (species × site of action) of
herbicide-resistant weeds globally, involving 272 species, with resistance observed in 21
out of 31 known herbicide sites of action and 168 different herbicides. Herbicide-resistant
weeds have been reported in 100 crops across 72 countries [4]. Furthermore, herbicides
can enter surface water indirectly through runoff or leachate, resulting in contamination
and biological impairments in water bodies and ecosystems [5] and posing risks to human
health through dermal contact, inhalation, and consumption of food and water. Chronic
exposure to pesticides through water ingestion can mimic the body’s hormones, compro-
mising immune function, disrupting hormone balance, triggering reproductive issues, and
potentially leading to carcinogenic effects. This impact is particularly pronounced among
children in their developmental stages, potentially resulting in reduced intelligence [6,7].
Recent studies have detected trace herbicides in drinking wells across multiple countries,
including numerous European countries [8–10], China [11,12], the United States [13,14],
New Zealand [15], Argentina [16], and Brazil [17]. In the United States, at least one pesticide
compound was identified in 491 out of 1204 wells [18].
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Improving weed control strategies that reduce reliance on tillage and herbicides can
address these concerns from environmentalists, consumers, and governments. Integrated
weed management strategies which include a diverse range of weed control methods such
as biological and cultural approaches [19] offer promising alternatives. As a cultural weed
control method, cover cropping involves the use of crops, such as grasses, legumes, and
forbs [20], in suppressing weeds while providing additional benefits including the reduction
in soil erosion and nutrient leaching, improvement in soil quality and fertility, enhanced
soil moisture and water infiltration, and decreased insect populations (e.g., [21–29]).

However, the effectiveness of cover crops for weed suppression can vary depending
on agronomic management strategies. Factors such as cover crop species, planting and
termination dates, termination methods, tillage systems, and the mixture of cover crop
species can all influence the outcome [30–32]. Variations in these factors may explain
the varied effects of cover crops on weed control, as shown in the national cover crop
survey [33]. According to the survey, 44% of farmers strongly agreed and 44% somewhat
agreed that there was an improvement in weed control, while 10% neither agreed nor
disagreed, and the remaining respondents somewhat disagreed or strongly disagreed.
The variations in the effectiveness of weed control achieved by cover crops have made
farmers hesitant to adopt cover cropping as a component of integrated weed management
strategies, which is compounded by factors such as rising costs and increased management
efforts [34].

Therefore, to encourage a wider adoption of cover cropping among farmers, it is crucial
to gain a comprehensive understanding of its efficacy in weed control and the varying
effects of different management strategies. This will enable the provision of valuable
recommendations to farmers. Our study conducts a meta-analysis to investigate the effects
of cover crops on weed control. A meta-analysis can not only document the statistical
significance, magnitude, and direction of cover crop effects and provide a synthesis of
results from individual studies but also identify variables that account for the variance
in the effects. While several meta-analyses have examined the weed-suppressive effects
of cover crops (e.g., [32,35–37]), our study uniquely concentrates on fall and winter cover
crops sown in rotation with the main crop in the United States. This focus is justified by
the diverse production practices and weather conditions across countries as well as the
seasonal effects in cover crops growth throughout the year, which could potentially dilute
the analysis and lead to misleading conclusions.

Our study aims to address the following questions: (1) Does cover cropping effectively
reduce weed biomass and weed density? (2) How does the species of cover crop affect its
ability to suppress weed? (3) Is the use of a mixture of multiple cover crops more effective in
weed suppression compared to planting a single cover crop? (4) Does the weed suppression
persist after the termination of the cover crop?

2. Cover Crop Types and Their Adoption in the United States

Legumes and grasses are currently the two most popular cover crop types [38]. In
addition to weed suppression, the characteristics of cover crops play an important role in
farmers’ adoption decision. Legumes distinguish themselves from others by their ability to
fix nitrogen from the atmosphere and add it to the soil. Based on growing season, legumes
can be grouped into summer annual legumes and winter annual legumes. Among winter
legumes, some winterkill, while some can tolerate frost.

Hairy vetch emerges as the most widely used winter annual legume in northern
regions because of its winter hardiness, high N content, and high productivity [39]. Crimson
clover is favored as a top choice for cover crops in southern regions due to its fast maturation
and large N addition to the following crops [38]. In addition, field peas and subterranean
clover are also preferred options for their efficient N production.

Grass cover crops encompass a variety of species, including annual cereals such as
rye, wheat, barley, and oats, as well as annual or perennial forage grasses like ryegrass,
and warm-season grasses such as sorghum–sudan grass [38]. Because of their capacity to
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generate substantial amounts of residue and extensive roots, grass cover crop can effectively
suppress weed germination and growth [38]. In general, grass cover crops can help reduce
more NO3 leaching compared to legumes. Some grass cover crops like rye and barley grow
rapidly and consequently are commonly used for erosion protection. Others, like winter rye
and oats, can help reduce soil-borne diseases [38,40]. Oats winterkill, which makes them
a mulch the following spring, helping reserve moisture and suppress weeds [38]. While
oats have no need for killing in spring, they produce less biomass compared to winter
hardy crops.

In addition to legumes and grasses, buckwheat and Brassica (such as mustard, rape-
seed, and forage radish) can also be used as cover crops [41]. Buckwheat is summer annual
and is not winter hardy. It grows fast even in low-fertility soil and can effectively suppress
weeds. Brassica has fast growth in late summer and fall. It can improve rainfall infiltration
and the storage of soil.

Cover crops can suppress weeds through various mechanisms: they can impede
weed germination, emergence and establishment by forming a mulch layer with cover
crop residues on the soil surface [42–44]. In addition, the living and decomposed biomass
of cover crops release allelochemicals that inhibit weeds [45]. Furthermore, cover crops
compete for limited resources such as space, nutrients, water, and light [46,47], creating an
ecological disadvantage for weeds.

The practice of employing cover crops in agricultural strategies in the United States
dates back to the 18th century and experienced significant expansion throughout the
19th century. At that time, they primarily served as green manures [34,48]. The post-World
War II era witnessed the widespread replacement of cover crops with synthetic fertilizers,
which is driven by the latter’s ease of use and cost-effectiveness. However, in recent years,
there is a renewed interest in cover crops among both governments and farmers who
recognize the various benefits of cover crops. For example, out of all the conservation
practices eligible for USDA Environmental Quality Incentives Program (EQIP) funding
between 2018 and 2022, cover crops received the highest amount of funding, totaling
$448.9 million [49]. In addition, USDA/NRCS has recently introduced a new collaboration
with Farmers for Soil Health, an initiative of the United Soybean Board, National Corn
Growers Association, and National Pork Board. With a substantial investment of $38 million
from NRCS, the initiative aims to achieve a major milestone by doubling the utilization of
cover crops on corn and soybeans acres, reaching 30 million acres by the year 2030 [50]. In
addition to EQIP and the Conservation Stewardship Program (CSP) at the national level,
there are at least 22 state-level financial incentives for cover crops [51].

With government financial support and increased knowledge of the benefits of cover
cropping, the adoption of crop crops by farmers has surged over the past decade in the
United States. For example, from 2011 to 2021, cover crops adoption in the Midwest
quadrupled, although the adoption rate remains relatively low at 7.2% in the region [52].
Nationally, cover crop acreage increased from 10.3 million acres in 2012 to about 20 million
acres in 2020, nearly doubling in less than a decade [53]. While improving soil health
and adding soil organic matter/sequestering carbon are still the primary reasons for
the adoption of cover crops, as reported by over 90% of surveyed farmers in a recent
national cover crop survey [33], nearly 80% of farmers adopt cover crops to improve weed
management. This stands in sharp contrast to the 2012–2013 survey, where only 40% of
surveyed farmers had a weed management goal when adopting cover crops.

3. Methodology and Data Analysis

Many studies have investigated the effect of cover crops on weed suppression. How-
ever, individual findings exhibit considerable variation in terms of statistical significance,
magnitude, and direction. The diverse characteristics of experimental sites and crop man-
agement practices (such as cover crop species, number of cover crops, and planting and
termination time, etc.) have been associated with disparities in the results of these studies.
Therefore, our meta-analysis aims to not only quantitatively assess the effects of cover crops
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on weed suppression but also evaluate how much management practices contribute to the
variations in study results.

Meta-analysis, originally defined by Glass [54], is a statistical method for synthesizing
a large collection of individual study analyses to produce integrated findings. Essentially,
meta-analysis allows for the consolidation of results from independent studies to calculate
an overall effect through statistical techniques.

3.1. Effect Size

In meta-analysis, the key variable under investigation is the effect size, which measures
the magnitude of observed responses or effects. Specifically, in this study, we focus on
weed biomass and weed density. Various measures of effect size have been proposed,
including Pearson’s correlation coefficient, Cohen’s d [55,56], and the odds ratio [57]. Here,
we adopt the method suggested by Hedges, Gurevitch, and Curtis [58] for assessing effect
size: the logarithm of the response ratio. The logarithm of the response ratio is computed
as shown below:

L = ln(RR) = ln(
Xtr

Xc
) (1)

where Xtr and Xc are the mean responses in treatment and control groups, respectively.
The logarithm transformation helps normalize the distribution of effect size [58], while the
ratio transformation ensures that the effect size is unitless, thereby facilitating comparisons
across studies with different units of measurement.

To assess the overall effects within the population by synthesizing effect sizes from
various individual studies, it is crucial to assign weights for calculating a weighted mean
of the effect size. As discussed by Field and Gillett [59], studies with higher sampling
accuracy should be given more weight, whereas those with less precise estimates should be
given less weight. In this study, the overall mean effect is computed as the weighted mean
of individual effect sizes with the reciprocal of the total variance of the effect size serving as
the weights. The weighted mean of the effect size is calculated using the following formula:

L =
∑k

i=1 wiLi

∑k
i=1 wi

(2)

where
wi =

1
γ2 + τ2 (3)

Here, Li indicates the individual effect size calculated by using Equation (1), wi indi-
cates the weight of the ith study, τ2 denotes the between-study variance, and γ2 indicates
the within-sample variance.

3.2. Variance of Effect Size

Meta-analysis can be conducted using two main approaches: fixed-effect and random-
effect models [60], which are each based on different assumptions. The fixed-effect model
assumes that studies are sampled from a population with a constant average effect size,
thus presuming homogeneity in sample effect sizes [61]. Consequently, the average effect
size of the population can be predicted from a few predictors [61]. The fixed-effect size
measure can be expressed as shown below:

µ̂ f = µ + e (4)

where µ̂ f is the estimated common effect, µ is the true common effect, and e ∼ N
(
0, γ2) is

the sampling error with γ2 as the within-sample variance.
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In contrast, the random-effect model assumes that studies are drawn from populations
with varying average effect sizes, leading to heterogeneous effect sizes. The random effect
size can be represented as shown below:

µ̂r = µ + ϑτ + e (5)

where ϑτ ∼ N
(
0, τ2) is the random error with τ2 as the between-study variance. In

contrast to the fixed-effect model, the random-effect model incorporates two sources of
error: sampling error and additional error arising from variability across studies, which is
referred to as between-study variance [62]. When the between-study variance is zero, the
fixed-effect model becomes a special case of the random-effects model. The choice between
the random- and fixed-effect models depends on the characteristics of the data. We will
assess heterogeneity to determine the appropriate model for our analysis.

3.3. Heterogeneity Measurement

There are three commonly used methods to measure the degree of heterogeneity
(variability) between groups [63]: τ2, Cochran’s Q, and Higgin’s and Thompson’s I2. τ2 is
simply the between-study variance in the meta-analysis. Cochran’s Q -statistic is calculated
as a weighted sum of squared difference between the observed values of effect size and the
estimate from the fixed-effect model.

Cochran′s Q = ∑k
i=1 wi

(
L0i −

∑k
j=1 wjLj

∑k
l=1 wl

)2

(6)

It follows a chi-squared distribution with k − 1 degrees of freedom, testing the null hy-
pothesis that all studies evaluate the same effect. Higgin’s and Thompson’s I2 is calculated
as the percentage of variation in effect size due to heterogeneity rather than chance [64,65].
It is derived from Cochran’s Q value.

I2 = max{0,
Q − (k − 1)

Q
} (7)

Higgins et al. [65] offer a “rule of thumb” for interpreting I2: low heterogeneity if
I2 = 25%, moderate heterogeneity if I2 = 50%, and substantial heterogeneity if I2 = 75%.

As many studies often report only the sample mean and sample size without providing
variances or standard errors, there is a challenge in calculating weights and mean effect
sizes. To tackle this obstacle, we employ a technique introduced by Sangnawakij et al. [66],
which constructs the variance of the mean effect size in the random effects model using the
maximum likelihood approach and an iterative procedure.

3.4. Influence Analysis and Subgroup Analysis

If heterogeneity is detected, it becomes appealing to investigate whether the variability
between groups is driven by outliers, which have a much higher effect size. Following the
methods proposed by Viechtbauer and Cheung [67], several influence diagnostics such
as the externally standardized residual, Cook’s distance, and leave-one-out method are
conducted to identify outliers. If the results of the analysis remain largely unaffected by
the exclusion of outliers, then the previous findings are deemed robust. However, if the
analysis is substantially influenced by the exclusion of outliers, it suggests that the outliers
have a substantial impact on the results.

Given that the effect size may vary across different subgroupings, we will perform
subgroup analysis on cover crop species, the number of cover crop species, and the duration
between weed measurement and cover crop termination. This final subgroup will provide
insights into the enduring impact of cover crops on weed suppression.
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3.5. Publication Bias

Publication bias can arise when a study’s chances of being published are significantly
influenced by the statistical significance of its findings [68–72]. If smaller sample-size
studies are only able to be published when they report larger effect sizes, publication bias
may result in an overestimation of the true effect size. To examine publication bias, we
utilize Egger’s regression test [73]. Specifically, the test examines whether the intercept
equal to 0 in a linear regression of a standardized effect size estimates against their standard
errors. In the absence of publication bias, the regression intercept is expected to be zero.

3.6. Selection of Studies

The application of meta-analysis requires a collection of studies that include a compar-
ison between a control and experimental treatments. In our meta-analysis investigating the
weed suppression effects of cover crops, we compile existing studies based on the following
criteria: (1) the presence of both a control under bare fallow and a randomized treatment
involving cover crops; (2) identification of the cover crop species utilized; (3) reporting of
the number of replications; (4) conducting experiments with winter cover crops planted in
late summer or fall; (5) cover crops being terminated in the spring or being winter-killed;
(6) reporting of the termination (if not winter-killed) and sampling dates; (7) planting cover
crops in rotation with main crops; (8) conducting studies in the United States; and (9) publi-
cation in English during or after 1990. In cases where multiple cover crops are compared
within a single study, the effect of each cover crop treatment is assessed independently.
Similarly, if various management practices (such as tillage and pesticide application) are
involved and compared with a corresponding control group with the same management
practices, each practice is treated as an independent case.

As cover crops are generally cultivated during periods when cash crops are not actively
growing [74], we specifically select studies where cover crops are planted and terminated
before the active growth of cash crops, thereby excluding inter-seeding. If a study collects
experimental data from multiple sites over several years, each dataset from an experimental
site–year is considered as an observation.

We conducted a search for relevant studies using the Web of Science and Google
Scholar databases. Keywords such as “cover crops”, ”cover cropping”, individual cover
crop names (such as “ryegrass”, “hairy vetch”, “clover”, “oats”, and “radish”, etc.), “weed
depression”, “weed management” or “weed control” were employed to identify relevant
studies. In addition, studies were collected through cross-referencing with other relevant
literature. Detailed information including authors, geographic locations, experimental
years and duration, replications, main crop types, weed density and/or weed biomass,
cover crop varieties, and planting and termination dates was compiled into spreadsheets
for analysis. Some studies present their findings in graphical format. Data extraction
was performed through scale calibration and conversion techniques. The summary of the
included studies is presented in Table 1.

Table 1. List of the included studies for cover crop’s weed control analysis.

Authors Publication Year Region Cover Crop Species Cover Crop Type

Baraibar et al. [31] 2018 PA red clover, Austrian winter pea,
canola, forage radish, cereal rye, oats

legume, brassica, grass,
and mixed types

Hayden et al. [30] 2012 MI hairy vetch, cereal rye legume, grass, mixed
types

Mischler et al. [75] 2010 PA rye grass
Crawford et al. [76] 2018 IL radish, canola, rye brassica, grass

Fisk et al. [77] 2001 MI

Santiago burr medic (Medicago
polymorpha), Mogul barrel medic
(Medicago truncatula), red clover,

berseem clover

legume

Gallagher et al. [78] 2003 OH wheat, hairy vetch grass, legume
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Table 1. Cont.

Authors Publication Year Region Cover Crop Species Cover Crop Type

Hoffman et al. [79] 1993 OH hairy vetch legume
Mock et al. [80] 2012 IN rye, wheat grass
Werle et al. [81] 2017 NE rye grass

Curran et al. [82] 1994 PA hairy vetch legume
Reddy and Koger [83] 2004 MS hairy vetch legume

Reddy et al. [84] 2003 MS crimson clover, rye legume, grass

Reddy [85] 2001 MS
Italian ryegrass, oat, rye, wheat, hairy
vetch, crimson clover, subterranean

clover
grass, legume

Cornellius and Bradley
[86] 2017 MO

Australian winter pea, hairy vetch,
crimson clover, oilseed radish, winter

oats, annual ryegrass, cereal rye,
winter wheat

legume, brassica, grass,
and mixed types

Echtenkamp [87] 1989 NE rye, oats, vetch, chewings fescue,
ladino

legume, mixed grasses,
and mixed types

Smith [88] 2020 NH
barley, cereal rye, hairy vetch, triticale,

wheat, canola, forage radish, oats,
sunn hemp

grass, legume, mixed
types

Grint et al. [89] 2022 WI rye grass
Koger and Reddy [90] 2005 MS hairy vetch legume

Koger, Reddy, and
Shaw [91] 2002 MS rye grass

Reddy [92] 2003 MS rye grass

Yenish et al. [93] 1996 NC rye, crimson clover, subterranean
clover, hairy vetch grass, legume

DeSimini et al. [94] 2020 IN rye, canola grass, brassica

Burgos et al. [95] 1996 AK hairy vetch, rye, wheat legume, grass, mixed
types

Lassiter et al. [96] 2011 NC cereal rye, Italian ryegrass, oats,
triticale, wheat grass

Lawley et al. [97] 2011 MD forage radish, rye brassica, grass
Ngouajio and
Mennan [98] 2005 MI rye, hairy vetch grass, legume

Teasdale et al. [43] 1991 MD rye, hairy vetch grass, legume
Mischler et al. [99] 2010 PA hairy vetch legume
Creech et al. [100] 2008 IN ryegrass, wheat grass

4. Estimation Results

The effect size was estimated using the generic inverse variance method. The con-
fidence interval around the pooled effect size was calculated using the Knapp–Hartung
adjustment [101]. For the estimation of between-study variance τ2, the Sidik–Jonkman estima-
tor [102] was utilized, with its confidence interval determined using the method proposed
by Jackson (2013) [103]. Estimation was carried out using R version 4.3.2 [104]. While some
studies report both weed biomass and weed density, others provide data for only one of these
metrics. Separate analyses were conducted for weed biomass and weed density.

4.1. Weed Biomass Analysis Results

Our meta-analysis included a total of 250 site–year–management cases for weed
biomass control analysis. The Higgin’s and Thompson’s I2 was calculated to be 80.7% with
a 95% confidence interval of [78.4%, 82.8%]. This indicates that approximately 81% of the
variation is attributed to between-study heterogeneity, which is categorized as substantial
according to Higgins and Thompson’s “rule of thumb”. Furthermore, the heterogeneity
test is significant with Q equal to 1291.77 and a p-value < 0.0001. The rejection of the null
hypothesis suggests heterogeneity between studies. Moreover, the variance in the true effect
was estimated to be τ2 = 1.9660 with a 95% confidence interval of [1.6244; 2.7339]. Since
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the confidence interval does not contain zero, it indicates the significance of the variance,
thereby suggesting the presence of between-study heterogeneity in the data as well. Given
the indication of the heterogeneity by all above three measurements, a random-effect model
is utilized to estimate the weed biomass control effect of cover crops. The pooled-effect
size is estimated to be −0.9831 with a 95% confidence interval at [−1.1885; −0.7777]. The
statistically significant effect size (measured by log-response ratio) of −0.9831 implies a
62.6% reduction in weed biomass with cover crop treatment, which is close to the 68%
reduction found by Nichols et al. [37]. The estimation results are reported in Table 2.

Table 2. Results of random-effect model estimation and influence analysis for weed biomass control.

Effect Size I2 τ2 Q

Main analysis −0.9831 * 80.7% * 1.9660 1291.77 *
[−1.1885; −0.7777] [78.4%; 82.8%] p-value < 0.0001

Influential cases
removed

−0.8381 * 10.0% * 0.6006 232.33
[−0.9804; −0.6958] [0.0%; 25.1%] p-value = 0.1285

Note: 95% confidence interval is reported below the estimation; * indicates statistical significance at 95% signifi-
cance level; p-value for heterogeneity test Q is provided.

As previously mentioned, between-study heterogeneity may be influenced by one or
more studies with extreme effect sizes. To ensure the accuracy of the pooled effect estimate,
it is essential to remove such outliers from the analysis and examine the pooled effect
size. Using the methods proposed by Viechtbauer and Cheung (2010) [67], we identified
40 outliers. Upon removing these outliers, influence analysis was conducted, with the
results reported in Table 2. The results show that after removing the 40 studies from the
analysis, the value of τ2 decreases from 1.9660 to 0.6006, and the I2 reduces to nearly 10.0%.
The pooled effect size is −0.8381, which is slightly smaller in magnitude than the initial
estimate of −0.9831 but still within the same orders of magnitude. This suggests that our
analysis results are robust to outliers.

4.1.1. Subgroup Analysis

Several subgroup analyses were conducted to provide deeper insights. The subgroup
analysis based on the number of cover crops reveals a statistically significant between-group
difference with Q = 43.7 and p-value < 0.0001. The estimated effect sizes are presented in
Figure 1. The findings suggest that employing multiple cover crops is more effective in
controlling weed biomass compared to using a single cover crop. Specifically, using one
cover crop led to a statistically significant effect size of 75.4%, implying a 52.9% reduction in
weed biomass. In contrast, the simultaneous use of two cover crops resulted in a statistically
significant effect size of 167.7% (implying an 81.3% reduction in weed biomass), while
the utilization of more than two species of cover crops led to an effect size of 252–257%
(implying a roughly 92% reduction in weed biomass).

Figure 1. Weed biomass log-response ratio by number of cover crops utilized.
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The results of the subgroup analysis based on cover crop types are depicted in Figure 2.
Studies included in the analysis experimented with five types/combinations of cover crops:
Brassica, grass, legume, a mixture of different grasses (like rye and oats), and a mixture
of cover crops across different types (such as grass combined with legume, Brassica with
grass, and Brassica with legume). As there are only three cases that experimented with a
mixture of different grasses, we exclude it from the subgroup analysis due to the concern
about statistical power [105]. The findings indicate that a mixture of different types of cover
crops was most effective in weed biomass control, resulting in an effect size of 232% (or a
90.1% reduction in weed biomass). In comparison, the use of a single species of cover crops
led to a smaller reduction in weed biomass, with grass being the most effective type (69.5%
reduction), followed by Brassica (46.9%) and legume (38.3%). The differences between
groups are statistically significant with the p-value of the Q-test less than 0.0001. Nichols
et al. (2020) [37] and Osipitan et al. (2019) [32] also found that grass is more effective in
suppressing weed biomass than other types.

Figure 2. Weed biomass log-response ratio by types of cover crops.

The subgroup analysis based on the number of days between weed measuring and
cover crop termination revealed that cover cropping has a statistically significant effect size
of 187.23%, 74.32%, and 46.51% (implying an 84.6%, 52.4%, and 37.2% reduction in weed
biomass), respectively, at termination, within 50 days, and over 50 days. Although the
weed biomass reduction effect diminishes after cover crops are terminated, their residue
still suppresses weed emergence compared to no cover crops. The results are presented in
Figure 3.

Figure 3. Weed biomass log-response ratio by days after cover crop termination.
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4.1.2. Publication Bias

To statistically test for publication bias, we conducted the Egger regression test. The
p-value for the estimated value of the intercept is less than 0.0001, indicating the presence
of publication bias in weed biomass meta-analysis. Therefore, we utilize the trim and fill
approach proposed by Duval and Tweedie (2000) [106] to adjust for publication bias. Con-
sidering between-study heterogeneity, outliers were removed in the trim and fill estimation.
The estimated effect size is −0.7486 with a 95% confidence interval of [−0.9003; −0.5969]
and a p-value < 0.0001. Although the adjusted weed biomass reduction effect becomes
smaller than previously estimated, suggesting likely overestimation due to publication bias,
the difference is only about 10%. Therefore, the effect of publication bias effect appears to
be minimal.

4.2. Weed Density Analysis Results

The same analysis applied to the analysis of weed biomass was also applied to the
analysis of weed density. In total, 102 site–year–management cases are included in our
meta-analysis for weed density control. The Higgin’s and Thompson’s I2 is 0, and the
heterogeneity test Q is not significant. Therefore, we concluded that there was no hetero-
geneity between studies, and thus, a fixed-effect model was estimated. The pooled effect
size estimated from the fixed-effect model is −0.6060 with a p-value < 0.0001, indicating a
negative treatment effect of cover crops on weed density. This is on average equal to a 45.4%
reduction in weed density. The results are reported in Table 3. Three cases were identified
as outliers. Upon the removal of these three studies from the analysis, the pooled effect is
−0.5253 with τ2 decreasing from 0.3655 to 0.1886. The slight change in magnitude of the
effect size indicates that the analysis results for weed density are robust to the outliers.

Table 3. Results of fixed-effect model estimation and influence analysis for weed density control.

SMD I2 τ2 Q

Main analysis −0.6060 * 0.0% * 0.3655 81.53
[−0.7839; −0.4280] [0.0%; 24.2%] p-value = 0.9224

Influential cases
removed

−0.5253 * 0.0% * 0.1886 52.06
[−0.7059; −0.3447] [0.0%; 24.5%] p-value = 1.0000

Note: SMD stands for standardized mean difference. 95% confidence interval is reported below the estimation;
* indicates statistical significance at 95% significance level; p-value for heterogeneity test Q is provided.

Among the 102 cases included for weed density analysis, 99 cases experimented with
only one species of cover crops. Therefore, subgroup analysis on the number of cover crops
is not conducted for weed density. Additionally, as only two cases experimented with
Brassica and a mixture of different species/types of cover crops, subgroup analysis on
cover crop types excluded those types and was only conducted on grass and legume. As
shown in Figure 4, while the legume is slightly more effective in controlling weed density
comparing to grass, the difference is not substantial, with the legume effect size being
−0.6968 (implying a 50.18% reduction) and grass −0.5849 (implying a 44.28% reduction).
Moreover, the between-group difference is not statistically significant based on a Q-test
with a p-value equal to 0.5468.

The subgroup analysis on days between cover crop’s termination and weed measure-
ment, as presented in Figure 5, indicates that weed density control effectiveness decreases
after 50 days. However, the between-group difference is not statistically significant with a
p-value of 0.4007 for a Q test. Eggers’ regression test did not detect publication bias in the
weed density analysis. The intercept is 0.465 with a p-value equal to 0.1315, indicating that
it is not statistically significantly different from 0.
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Figure 4. Weed density log-response ratio by types of cover crops.

Figure 5. Weed density log-response ratio by days between cover crop termination and weed
measurement.

5. Conclusions

Our study finds that cover crops effectively suppress weeds. We use a random-
effect model to address substantial between-study heterogeneity among the 250 site–year–
management cases included in our analysis of weed biomass control. On average, cover
crop treatments led to a 62.6% reduction in weed biomass. Despite some outliers, our influ-
ence analysis demonstrated the robustness of our results. Subgroup analysis highlighted
the superior efficacy of employing multiple cover crop types to control weed biomass
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compared to using a single cover crop type, with grass being the most effective among the
single types. In addition, a mixture of different cover crop species was found to be more
effective in weed biomass control compared to a single cover crop species. Moreover, our
analysis revealed a persistent, albeit diminishing, weed biomass reduction effect even after
termination of cover crops. Adjusting the effects for publication bias did not change the
original estimate noticeably, suggesting the robustness of our results.

We used a fixed-effect model due to the absence of between-study heterogeneity in
the weed density analysis and found a statistically significant reduction in weed density.
Since very few studies in weed density control utilize Brassica or a mixture of cover crops,
the subgroup analysis focused on comparing legume and grass and found no statistically
significant difference in weed density control between the two.

Overall, our study highlights the effectiveness of cover cropping in controlling both
weed biomass and weed density. It offers promise as a component in integrated weed
management systems and provides a sustainable alternative to tillage and pesticide use,
with the latter two posing environmental risks and compromising agricultural sustainability.
In addition, our analysis shows the effects of various management strategies on weed
control, including cover crop species, mixtures, and termination timing. By describing
these characteristics and the additional benefits of different cover crops discussed earlier
in the paper, our findings can help farmers make more informed decisions on cover crop
management strategies.

One limitation of our analysis is that most of the included studies do not assess
economic costs incurred by cover cropping, including expenses for seed, labor, and man-
agement. In addition, they do not measure the economic benefits of cover crops, such as
increased yield of the main crop and improved soil quality, which could reduce fertilizer
costs. Future studies should address this gap to provide a more comprehensive understand-
ing of the costs and benefits of cover cropping. This will both assist farmers in decision
making and allow policymakers to make more informed decisions regarding policies and
programs, such as insurance structures and financial support to incentivize farmers to
adopt cover cropping as a weed suppression practice.
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