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Abstract: With the transformation of the energy market from the traditional vertical integrated structure
to the interactive competitive structure, the traditional centralized optimization method makes it difficult
to reveal the interactive behavior of multi-agent integrated energy systems (MAIES). In this paper, a
master–slave game optimal scheduling strategy of MAIES is proposed based on the integrated demand
response. Firstly, a master–slave game framework of MAIES is established with an energy management
agent as leader, an energy operation agent, an energy storage agent, and a user aggregation agent
as followers. Secondly, in view of the wind and solar uncertainty, the Monte Carlo method is used
to generate random scenarios, and the k-means clustering method and pre-generation elimination
technology are used for scenario reduction. Then, according to different flexible characteristics of
loads, a multi-load and multi-type integrated demand response model including electric, thermal,
and cold energy is built to fully utilize the regulation role of flexible resources. On this basis, the
transaction decision-making models of each agent are constructed, and the existence and uniqueness
of the Stackelberg equilibrium solution are proved. Finally, the case simulations demonstrate the
effectiveness of the proposed optimal scheduling strategy of MAIES. Compared to the scenario without
considering the wind and solar uncertainty and the integrated demand response, the rate of renewable
energy curtailment was reduced by 6.03% and the carbon emissions of the system were reduced by
1335.22 kg in the scenario considering the proposed method in this paper.

Keywords: multi-agent integrated energy system; master–slave game; wind and solar uncertainty;
integrated demand response; carbon emission trading; renewable energy

1. Introduction

With the increasing demand for energy and increasingly serious environmental pollu-
tion, the development of clean, economical, and efficient energy supply is the focus of the
energy field [1,2]. The integrated energy system (IES) can fully utilize the complementary
characteristics of different energy and can coordinate and optimize the entire process of en-
ergy production and consumption. At the same time, it can couple and transform multiple
heterogeneous energy flows, and achieve the rational distribution and cascade utilization of
energy [3]. Therefore, the IES has become an important form of efficient energy utilization,
which plays an important role in promoting the development of new energy and building
an environmentally friendly society [4].

As a significant carrier of energy usage, there has been much research on the IES.
In [5], an optimal scheduling method of combined power and heat system considering
the load demand response and the resident thermal inertia is proposed, which makes
full use of the respective characteristics of electric and thermal load. In [6], the heat
pumps, combined cooling, heating and power (CCHP) units, and renewable energy are
integrated into the energy hub. And the complementarity of various energy sources is
used to solve the problem of distribution network congestion. The authors in [7] propose
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a multi-objective optimization model of IES based on the carbon trading mechanism and
the refined demand response, so as to improve the incomes of the system and promote
the accommodation of clean energy. In [8], a distributed solar–biogas residential IES is
established, which can supply multiple energy sources in remote locations and make full
use of the complementarity between solar energy and biogas. However, the above studies
are all about the operation optimization of the IES, without considering the competitive
behaviors of interests among different agents in the system. There are complex interest
interactions and conflicts among multiple agents in energy production, transmission,
and consumption processes, which will bring enormous difficulties and impacts on the
operation and regulation of the system. How to ensure the benefits of all parties is a
problem that needs to be solved in the optimal scheduling of the IES. In view of these,
taking different parts of the system as stakeholders to be involved in the optimal scheduling,
a multi-agent integrated energy system (MAIES) is formed.

The operation and optimization of MAIES depend on the cooperation of multiple
stakeholders, and the basic problem to be solved is how to describe the interaction between
large-scale complex systems and different agents [9]. The optimization of MAIES belongs
to the optimization problem of a large-scale complex system, which has a large number of
parameters and variables. Because the centralized optimization requires high data trans-
mission, communication, and processing capabilities, and cannot protect the information
privacy and security of each agent. Therefore, it is more appropriate to study the distributed
optimization of MAIES. The game theory is a method of studying how multiple decision-
makers make appropriate decisions based on their information and abilities when there are
interests or conflicts between them [10]. In the process of energy transaction, the energy
manager first formulates the price strategy according to the energy demand, and then the
other agents respond according to the price information. There is a sequential order in the
game process between them, which accords with the dynamic game situation of the master–
slave hierarchical structure, so the master–slave game model should be used to analyze
the interaction between the agents. In [11], the optimal scheduling of cooling, heating, and
power supply multi-microgrid systems with electricity interaction is built to minimize the
total operating cost of the multi-microgrid system. In [12], a one-master and multi-slave
game model between microgrid operators and users with coupled thermoelectric load is
established based on the Stackelberg game, which aims to handle the multiparty energy
management problem of the grid-connected microgrids. A multi-agent Stackelberg game
model is constructed, and the interaction between multiple distributed energy stations and
multiple users in IES is studied in [13]. In [14], a modeling and operation method of the
IES is proposed, and an integrated model is built based on the Stackelberg game theory
to realize a balance of profits between the whole system and the subsystems. In [11–14],
although the game interaction of multiple stakeholders is considered, they all focus on
optimizing the energy supply side, while ignoring the impact of energy consumption
behavior of the user side. With the development of MAIES and the reform of the energy
market, the coupling interaction between sources and loads is becoming more obvious, and
the traditional vertical integrated structure is transforming into an interactive competitive
structure. The energy prices not only affect load demand but also have a reverse effect on
energy prices. Therefore, it is of great significance to study the influence of the demand
response behavior of users on the optimal scheduling of the system.

Integrated demand response (IDR) can effectively promote the adjustment of energy
consumption behaviors of users, which is an important way to realize flexible interaction
between the energy demand side and supply side [15]. Most of the existing research is
about a single type of demand response behavior [16,17], or multi-type demand response
behavior in a single IES [18,19]. In [20,21], the demand response method based on time-
sharing electricity price is applied to the game of multi-agent energy system, which can
maximize consumer surplus and enable users to obtain a good energy consumption experi-
ence. And in [22], the demand response model is constructed based on the transferability
and interruptibility of loads in the multi-agent system to give full play to the characteristics
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of different types of loads. In [23], taking the peak cutting compensation price issued by the
comprehensive energy operator as the leader strategy, and the user’s translational load, re-
ducible load, and variable thermal load as the follower strategy, an interactive optimization
operation method with one master and multiple slaves is constructed. However, in [20–23],
they do not fully consider the characteristics of different types of load and do not adopt
diversified and refined demand response methods, and the modeling methods of demand
response are relatively simple. In addition, although the above research studies the interest
competition behavior of various subjects under the background of IES and considers re-
newable energy such as wind energy and solar energy, the influence of the uncertainty of
wind and solar power output on the optimal operation of IES is ignored. The uncertainty
brought by large-scale renewable energy will cause adverse effects on system operation.
Therefore, it is necessary to describe the uncertainty of renewable energy output and its
impact. Furthermore, carbon emission trading is an effective measure to achieve the goals
of carbon peak and carbon neutrality [24]. So, in the game interaction among multiple
stakeholders, it is also essential to consider the impact of carbon emissions, so as to ensure
the interests of different stakeholders and the overall environmental benefits, and achieve a
win-win situation for the economy and environmental protection [25].

For the above problems, this paper proposes a master–slave game optimal operation
strategy of MAIES considering the uncertainty of wind and photovoltaic power output and
the integrated demand response. The main contributions are as follows:

(1) In view of the randomness of distributed energy generation, the Weibull distri-
bution is used to simulate wind power generation, and the Beta distribution is used to
simulate photovoltaic power generation. Then, the Monte Carlo method is adopted to gen-
erate random scenarios, and the k-means clustering method and pre-generation elimination
technology are adopted to reduce the scenarios, which aims to promote the utilization of
renewable energy and improve the economy of system operation.

(2) According to different scheduling potentials and flexible characteristics of loads,
an integrated demand response model is established. It includes the electric load demand
response model based on electricity price, the thermal load demand response model
based on economic incentive, and the cold load demand response model based on fuzzy
comfort, so as to give full play to the regulation potential of various loads and improve the
enthusiasm of the demand side to participate in the flexible interaction of the system.

(3) Based on Stackelberg game theory, a low-carbon interaction mechanism is estab-
lished with the energy management agent as a leader, energy operation agent, energy
storage agent, and user aggregation agent as followers. According to the roles and benefits
of each agent, a two-level game model of one master and multiple slaves with the goal
of maximizing the revenue of each agent is established. The simulation results verify the
effectiveness and superiority of the strategy proposed in this paper.

This paper is organized as follows. The master–slave game framework of MAIES is
introduced and the mathematical models are built in Section 2. Section 3 establishes the
decision-making models of each agent of MAIES. The case simulations are presented in
Section 4. Finally, the conclusions and future works are drawn in Section 5.

2. Framework and Modeling of MAIES
2.1. Master–Slave Game Framework of MAIES

The master–slave game framework of MAIES is shown in Figure 1. The energy
management agent (EMA), energy operation agent (EOA), energy storage agent (ESA), and
user aggregation agent (UAA) are all rational and independent individuals who can make
their own decisions and fully participate in the market competition to maximize their own
benefits. The EMA can be regarded as an energy agent with two-way energy flow and is the
leader in the MAIES energy market. The EMA sets prices for purchasing and selling energy
with the goal of maximizing revenue. When the electricity purchased by EMA from EOA
cannot satisfy the demands of users, it is necessary for EMA to purchase electricity from
the power grid and pay for the carbon emission cost generated by the purchased electricity.
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The role of EOA is to provide users with the required electric, thermal, and cold power. The
EOA takes the CCHP unit as the core and takes the maximum revenue of energy sales as
the objective function to optimize the output of the device. Based on price information, the
ESA optimizes its own energy storage and release power between EMA and UAA through
low-price energy storage and high-price energy release, thus achieving profitability. The
role of UAA is to provide users with energy consumption strategies. According to the
price signal, the UAA measures its own revenue and participates in the IDR, so as to adjust
energy demand and maximize the comprehensive benefit of the user side. The adjusted
actual energy demand will also in turn affect the self-benefits of various stakeholders.

The EMA is the leader, and the EOA, ESA, and UAA are the followers. The energy
interaction process of MAIES is divided into two stages in this paper. In the first stage,
the EMA sets the energy sales price for UAA and ESA and sets the energy purchase price
for EOA. In the second stage, according to the price signal of EMA, the EOA changes the
output power of the devices, ESA changes its energy storage and release power and UAA
changes its energy consumption strategy. The two stages proceed sequentially, influence
each other, and iterate in a loop until equilibrium is reached.

Power gr id

Energy operation agent

Objective:  EOA has the

                   highest revenue

 Strategy:  output of each       

                 energy device

Energy storage agent

Objective:  ESA has the

                   highest revenue

 

Strategy:  store and release
                 energy power

User aggregation agent

Objective:  UAA has the

                   highest revenue

 

Strategy:  comprehensive 
                 demand response 

Energy management agent

Objective:  EMA has the highest revenue

                   

 
Strategy:  price of purchasing and selling energy       

                 Upper level:leader

Lower level:followers

Game Game

Electric energy Thermal energy InformationCold energy

Figure 1. Master–slave game framework of MAIES.

2.2. Structure and Modeling of CCHP Unit

The CCHP integrates the advantages of renewable energy generation and traditional
fuel power generation. It is based on the principle of energy cascade utilization while meeting
the different energy demands of users for electric, thermal, and cold energy. The structure
of CCHP is shown in Figure 2. The system consists of a wind turbine (WT), photovoltaic
(PV), micro gas turbine (MT), waste heat boiler (WHB), gas boiler (GB), heat exchanger (HE),
absorption refrigerator (AR), and ice-storage air-conditioners (ISAC).

The fuel cost of MT and GB can be expressed as:

C f u
t = aMT(PMT

t
)2

+ bMT PMT
t + cMT

+aGB(HGB
t
)2

+ bGBHGB
t + cGB

(1)

where PMT
t and HGB

t are the electric power generated by MT and the thermal power
generated by GB at time t, respectively. aMT , bMT , cMT and aGB, bGB, cGB are the fuel
coefficients of MT and GB, respectively.
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Gas grid
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Figure 2. Structure of CCHP.

The waste heat generated by MT is absorbed by WHB and converted into thermal
energy, which is combined with the thermal energy generated by GB. It generates thermal
energy through HE and cold energy through AR. The model is represented as follows:

HMT
t =

1− ηMT − ηloss

ηMT PMT
t (2)

HWHB
t = HMT

t ηWHB (3)

HHE
t =

(
HWHB

t + HGB
t

)
ηHE (4)

CAR
t =

(
HWHB

t + HGB
t

)
ηAR (5)

where HMT
t is the waste thermal power generated by MT, and HWHB

t is the thermal power
recovered by WHB. HHE

t and CAR
t are the thermal and cold power generated by HE and AR,

respectively. ηMT and ηloss are the electricity generation efficiency and heat loss coefficient
of MT, respectively. ηWHB is the heat efficiency of WHB. ηHE and ηAR are the heating and
cooling efficiency of HE and AR, respectively.

In addition, the MT and GB need to satisfy the upper and lower limit constraints of
output power and climbing rate.

PMT,min ≤ PMT
t ≤ PMT,max (6)

PMT,down ≤ PMT
t − PMT

t−1 ≤ PMT,up (7)

HGB,min ≤ HGB
t ≤ HGB,max (8)

HGB,down ≤ HGB
t − HGB

t−1 ≤ HGB,up (9)

where PMT,min and PMT,max are the minimum and maximum electric power of MT, re-
spectively. PMT,up and PMT,down are the upper and lower limits of the climbing rate of
MT, respectively. HGB,min and HGB,max are the minimum and maximum thermal power of
GB, respectively. HGB,up and HGB,down are the upper and lower limits of climbing rate of
GB, respectively.
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2.3. Carbon Trading Model

Carbon trading is a trading mechanism to control carbon emissions. Under the carbon
trading mechanism, carbon emissions become freely traded commodities. When the carbon
emissions of the system exceed the carbon quota, the corresponding carbon trading cost
will be paid. When the carbon emissions are lower than the carbon quota, the remaining
carbon quota can be sold in the carbon trading market [26].

For the power industry, the allocation of initial carbon emissions quota is generally
based on free of charge. In this paper, the energy purchased by the system from the power
grid is generated by thermal power units, so the main carbon emission sources of the
system are MT, GB, and purchased energy. The model of the initial carbon quota is [7]:

EF,grid = γpPgrid
t

EF,MT = γh(HMT
t + δe,hPMT

t )
EF,GB = γh HGB

t

(10)

where EF,MT , EF,GB, and EF,grid are the initial carbon quotas of MT, GB, and electricity
purchased from the power grid, respectively. Pgrid

t is the electric power purchased from
the grid. γp and γh are the carbon emission quotas per unit of electricity supply and heat
supply, respectively. δe,h is the transformation coefficient from electricity to heat.

The actual carbon emission model can be represented as:
EA,grid = σePgrid

t
EA,MT = σgPMT

t
/

ηMTλgas
EA,GB = σg HGB

t
/

ηGBλgas

(11)

where EA,MT , EA,GB, and EA,grid are the actual carbon emissions of MT, GB, and energy
purchased from the grid, respectively. λgas is the calorific value of natural gas. σe and σg
are the carbon emission coefficients of unit electricity consumption and unit natural gas
consumption, respectively. Therefore, the carbon trading cost of purchasing electricity from
the power grid is:

Cgrid,c = εc

(
EA,grid − EF,grid

)
(12)

The carbon trading cost of MT and GB is:

CMG,c = εc

(
EA,MT + EA,GB − EF,MT − EF,GB

)
(13)

where εc is the carbon trading price. CMG,c is the equivalent total carbon trading cost of
MT and GB.

2.4. The Model of Wind and Solar Uncertainty

The output models of wind turbines and photovoltaic generators are:

PWT
t =


0, vt < vCIorvt > vCO
PR

vt−vCI
vR−vCI

, vCI ≤ vt < vR

PR, vR ≤ vt < vCO

(14)

PPV
t = PPVR

Gt

GR
{1 + τ[Tt − TR]} (15)

where PWT
t and PPV

t are the WT and PV output power, respectively. PR and PPVR are the
rated WT and PV output power, respectively. vt is the wind speed. vCI , vCO, and vR are
the cut-in wind speed, cut-out wind speed, and rated wind speed, respectively. GR is the
rated light radiation, and Gt is the light radiation. TR is the rated temperature, and Tt is
the temperature.
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In view of the randomness of wind and solar, existing studies have proved that wind
speed obeys Weibull distribution [27] and light intensity obeys Beta distribution [28]. The
probability distributions are:

f [vt] =
ks

cs

(
vt

cs

)ks−1
exp

{
−
(

vt

cs

)ks
}

(16)

f
[

PPV
t

PPVR

]
=

1
B(αS, βS)

[
PPV

t
PPVR

]αS−1[
1− PPV

t
PPVR

]βS−1
(17)

where cs and ks are the proportion parameter and shape parameter of the Weibull distribu-
tion, respectively. αs and βs are the shape parameters of Beta distribution.

Based on the probability distribution and the historical data of wind speed and light,
the Monte Carlo (MC) random sampling algorithm is used to generate multiple scenes, and
the k-means clustering method is adopted to reduce the scenes to obtain a small number of
typical scenes with different probabilities. Then, the pre-generation elimination method is
used to further reduce the scenes. Finally, Y typical scenarios and their corresponding prob-
abilities are obtained. The system is analyzed by calculating the revenue of each stakeholder
in each scenario and multiplying the corresponding probability and accumulating them.

2.5. IDR Model

The users have various energy needs of electric, thermal, and cold energy in MAIES.
The IDR considered in this paper includes the electric load demand response based price,
thermal load demand response based incentive, and cold load demand response based on
fuzzy comfort.

2.5.1. Model of Electric Load Demand Response

In economics, the price elasticity of demand is commonly used to reflect the response
of demand to price changes, while the electric load demand response model based on the
electricity price elasticity matrix can reflect the sensitivity of users to electricity price at a
certain time and adjacent time.

δ =
α

∆α

∆P
P

(18)

PUAA,IDR =


P0

1
P0

2
...

P0
t

+


P0
1 0 · · · 0

0 P0
2 · · · 0

...
...

. . .
...

0 0 · · · P0
t




δ11 δ12 · · · δ1t
δ21 δ22 · · · δ2t
...

...
. . .

...
δt1 δt2 · · · δtt




∆α1
α1

∆α2
α2
...

∆αt
αt


(19)

PUAA,IDR =

(
1 + δtt

∆αt

αt
+

T

∑
n=1,n 6=t

δtn
∆αt

αt

)
P0 (20)

where δ, δtt and δtn are elastic coefficient, self-elastic coefficient, and cross-elastic coef-
ficient, respectively, which are used to measure the dependence of consumer electricity
consumption on the increase in electric price at a certain time and adjacent time [29]. The
values of δtt and δtn are −0.2 and 0.03, respectively. αt and ∆αt are the electric price and the
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change of electric price, respectively. PUAA,IDR =
[

PUAA,IDR
1 , PUAA,IDR

2 , · · · PUAA,IDR
t

]T
,

P0 =
[
P0

1 , P0
2 , · · · P0

t
]T . PUAA,IDR

t and P0
t are the electric load before and after the IDR.

2.5.2. Model of Thermal Load Demand Response

The thermal load demand response based on incentive is used to transfer and reduce
the thermal load of the user. The thermal load is divided into basic thermal load, trans-
ferable thermal load, and reducible thermal load. The basic thermal load requires high
reliability and a fixed energy consumption time to ensure normal production and life of
users. The transferable thermal load refers to the load for which the energy consumption
time can be flexibly adjusted, and the total amount of transferable thermal load remains
unchanged during the scheduling cycle. The reducible thermal load refers to the load that
can withstand a certain interruption, power reduction, or operating time reduction. In order
to improve the enthusiasm of the users to adjust their own energy consumption behaviors,
the model of thermal load demand response is established based on the economic incentive
mechanism. Specifically, the economic reward is given to users according to load transfer
and reduction. The model of transferable thermal load is:

Htstart+n = UH
tstart+nHtran

n+1 n ∈ [0, tlast] (21)

T

∑
t=1

UH
t =

tend

∑
t=tstart

UH
t = tlast (22)

UH
t −UH

t−1 ≤ BH
t (23)

where Htran
t is the transferable thermal load. [tstart, tend] is the translation range of trans-

ferable thermal load. tlast is the duration of the load. UH
t and BH

t are the 0–1 variable of
the operation state and start-stop state of the load, respectively. The model of reducible
thermal load is:

t=tto

∑
t=t f rom

Hredu
t = Hredu

sum (24)

Hredu
min ≤ Hredu

t ≤ Hredu
max (25)

where t f rom and tto are the start and stop time of reducible thermal load, respectively. Hredu
max

and Hredu
min are the upper and lower limits of reducible thermal load. Hredu

t and Hredu
sum are the

actual reducible thermal load and the total amount of load reduction.

HUAA,IDR
t = Hbase

t + Htran
t − Hredu

t (26)

Ch,IDR
t =

T

∑
t=1

(
Htran

t ch,tran
t + Hredu

t ch,redu
t

)
(27)

where Hbase
t and HUAA,IDR

t are the basic thermal load and the thermal load after the IDR,
respectively. ch,tran

t and ch,redu
t are the compensation for unit thermal load translation and

reduction, respectively. Ch,IDR
t is the compensation benefits of participating in the thermal

load demand response.

2.5.3. Model of Cold Load Demand Response

The hot and cold comfort of the human is affected by many factors, and it is a fuzzy
random variable, so the evaluation of human comfort is a fuzzy concept. It is difficult for
humans to detect temperature changes within a certain range [29], and comfort is affected
when the temperature is adjusted in this range. The cold load is regarded as a flexible
adjustable load to be involved in the cold demand response based on fuzzy comfort. In this
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paper, the predicted mean vote (PMV) index of cold and hot feelings is used to represent
the user’s feeling of ambient temperature [30], and its expression is:

KPMV =
(
0.303e−0.036D + 0.0275

)
[D(1− η)

−3.054(5.765− 0.007H − Pa)− 0.42(H − 58.15)
−0.0173D(5.867− Pa)− 0.0014D(34− Ta)

−3.9× 10−8Kcl
(
T4

cl − T4
mrt
)
− Kclhcl(tcl − Ta)

] (28)

where D is the metabolic rate. e is a constant. η is the heat dissipation rate of the human
body. tcl is the average surface temperature of the human body. Tmrt is the average
radiation temperature of the environment. According to reference [30], the optimal comfort
of the human body corresponds to the temperature of 24 ◦C, and KPMV ∈ [−0.9, 0.9]. The
relationship between KPMV and temperature T is:

KPMV =

{
0.3895(T − 24), T ≥ 24
0.4065(−T + 24), T < 24

(29)

CUAA,IDR
t = Sµ

(
Tout

t − Tin
t

)
+ (CS/∆t)

(
Tin

t − Tin
t−1

)
(30)

Tmin ≤ Tin
t ≤ Tmax (31)

where CUAA,IDR
t is the cold load. S is the cooling area. µ is the heat loss per unit cooling

area under unit temperature difference, the value is 1.037× 104 J/(m2· ◦C). C is the heat
capacity per unit cooling area, the value is 1.63× 105 J/(m2· ◦C). Tin

t and Tout
t are the indoor

and outdoor temperature, respectively.

3. Decision-Making Models of Each Agent
3.1. EMA Model

The EMA sets energy purchase and sale prices, guides the output of various devices,
and encourages users to adjust their energy usage behavior by IDR. The objective function
of EMA is:

max FEMA =
Ω
∑

ω=1

{
T
∑

t=1

[
Xω

(
CEMA,u

t,ω + CEMA,s
t,ω

−CEMA,buy
t,ω − CEMA,grid

t,ω − Cgrid,c
t,ω − Ch,IDR

t,ω

)]} (32)

where FEMA is the total daily revenue of EMA. Ω is the total number of scenarios. Xω is the
probability of scenario Ω occurring. T is the total optimal scheduling cycle. CEMA,u

t,ω and
CEMA,s

t,ω are the energy sales revenue obtained from UAA and ESA in scenario ω at time t,

respectively. CEMA,buy
t,ω is the cost for EMA to purchase energy from EOA, and CEMA,grid

t,ω is

the electricity exchange cost between EMA and power grid. Cgrid,c
t,ω is the carbon trading cost

of EMA to purchase energy from the power grid, which can be calculated by Equation (12).

CEMA,u
t,ω =

(
ks,e

t,ωPUAA,IDR
t,ω + ks,h

t,ω HUAA,IDR
t,ω + ks,c

t,ωCUAA,IDR
t,ω

)
∆t (33)

CEMA,s
t,ω =

(
ks,e

t,ωPES,ch
t,ω + ks,h

t,ω HHS,ch
t,ω

)
∆t (34)

CEMA,buy
t,ω =

(
rb,e

t,ωPEOA,e
t,ω + rb,h

t,ω HEOA,h
t,ω + rb,c

t,ωCEOA,c
t,ω

)
∆t (35)
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CEMA,grid
t,ω =

[
max

(
PUAA,IDR

t,ω − PEOA,e
t,ω , 0

)
cs,grid

t

+min
(

PUAA,IDR
t,ω − PEOA,e

t,ω , 0
)

cb,grid
t

]
∆t

(36)

where PES,ch
t,ω and HHS,ch

t,ω are the electric and thermal power sold by EMA to ESA, respec-

tively. PEOA,e
t,ω , HEOA,h

t,ω and CEOA,c
t,ω are the electric, thermal and cold power purchased by

EMA from EOA. ks,e
t,ω, ks,h

t,ω and ks,c
t,ω are the prices of electric, thermal, and cold energy sold

by EMA to UAA, respectively. rb,e
t,ω, rb,h,ω

t and rb,c,ω
t are the prices for EMA to purchase

electric, thermal and cold energy from EOA, respectively. cs,grid
t and cb,grid

t are the selling
and purchasing prices of electricity from EMA to the power grid, respectively.

In order to ensure the interests of all parties, the purchase and sale prices of energy for
EMA must meet the following constraints:{

cb,grid
t < ks,e

t,ω < cs,grid
t

cb,grid
t < rb,e

t,ω < cs,grid
t

(37)

{
ks,h,min

t < ks,h
t,ω < ks,h,max

t , rb,h,min
t < rb,h

t,ω < rb,h,max
t

ks,c,min
t < ks,c

t,ω < ks,c,max
t , rb,c,min

t < rb,c
t,ω < rb,c,max

t
(38)



T
∑

t=1
ks,e

t,ω ≤ Tk̄s,e,max
t

T
∑

t=1
ks,h

t,ω ≤ Tk̄s,h,max
t

T
∑

t=1
ks,c

t,ω ≤ Tk̄s,c,max
t

(39)

where ks,h,min
t , rb,h,min

t and ks,h,max
t , rb,h,max

t are the lowest and highest prices of thermal and
cold energy, respectively. k̄s,e,max

t , k̄s,h,max
t and k̄s,c,max

t are the average selling electric, heat
and cold prices, respectively.

3.2. EOA Model

The optimization goal of EOA is to maximize its own revenues, that is, the difference
between energy sales revenue and device operating costs. The objective function is:

max FEOA =
Ω
∑

ω=1

{
T
∑

t=1

[
Xω

(
CEOA,sell

t,ω − C f u
t,ω −CEOA,om

t,ω − CMG,c
t,ω

)]}
(40)

where FEOA is the total revenue of EOA. CEOA,sell
t,ω is the energy sales revenue of EOA.

CEOA,om
t,ω is the cost of device operation and maintenance. CMG,c

t,ω is the carbon trading
cost of EOA, which can be calculated by Equation (13). The cost of device operation and
maintenance can be calculated by:

CEOA,om
t,ω =

T

∑
t=1

7

∑
k=1

φkPk
t,ω (41)

where the value of k is 1,2,..., 8, which represent WT, PV, MT, GB, WHB, HE, AR, and ISAC,
respectively. Pk

t,ω is the output power of device k. φk is the cost coefficient for the operation
and maintenance of device k.

The electric, thermal, and cold power output by EOA need to meet the following ex-
pressions:

PEOA,e
t,ω = PWT

t,ω + PPV
t,ω + PMT

t,ω − PISAC
t,ω (42)

HEOA,h
t,ω = HHE

t,ω =
(

HWHB
t,ω + HGB

t,ω

)
ηHE (43)
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CEOA,c
t,ω = CAR

t,ω + CIC
t,ω + CIM

t,ω (44)

where PISAC
t,ω is the electric power consumption of ISAC. CIC

t,ω and CIM
t,ω are the output

cooling power and ice melting power of ISAC, respectively [31].

3.3. ESA Model

At present, there are some problems in user-side distributed energy storage, such as
high investment cost, long cost recovery period, and low safety and reliability, which limit
the wide use of user-side distributed energy storage [32]. Therefore, this paper proposes to
establish a centralized energy storage station, which can not only reduce the storage cost
per unit of power but also avoid the security problems caused by improper maintenance of
distributed energy storage. The ESA makes revenues by storing energy at low prices and
selling energy at high prices between EMA and UAA, and the devices contain ES and HS.
As an independent energy storage agent, the auxiliary service is a part of the revenue, and
this revenue has been considered in the published comprehensive energy sales price. The
objective function of ESA is:

max FESA =
Ω

∑
ω=1

{
T

∑
t=1

[
Xω

(
CESA,dis

t,ω − CEMA,s
t,ω − CESA,om

t,ω

)]}
(45)

CESA,dis
t,ω =

(
λES

t,ωPES,dis
t,ω + λHS

t,ω HHS,dis
t,ω

)
∆t (46)

CESA,om
t,ω =

[
εES,om

(
PES,ch

t,ω + PES,dis
t,ω

)
+εHS,om

(
HHS,ch

t,ω + HHS,dis
t,ω

)]
∆t (47)

{
λES

t,ω = λES,sell
t,ω + τe

λHS
t,ω = λHS,sell

t,ω + τh (48)

where FESA is the total revenue of ESA. CESA,dis
t,ω is the energy release revenue of ESA.

CESA,om,ω
t is the operation and maintenance cost of ESA. λES

t,ω and λHS
t,ω are the comprehen-

sive prices at which the ESA sells electric and thermal energy, respectively. εES,om and εHS,om

are the operation and maintenance cost coefficients of ES and HS, respectively. λES,sell
t,ω and

λHS,sell
t,ω are the basic selling prices of electric and thermal energy of EAS, respectively. τe

and τh are the unit revenue of ESA participating in auxiliary services.
The operational constraints that energy storage devices need to meet are:

Ex
t,ω = Ex

t−1,ω(1− γx) +

(
Px,ch

t,ω ηx,ch −
Px,dis

t,ω

ηx,dis

)
∆t (49)

Ex,min ≤ Ex
t,ω ≤ Ex,max (50)

Ex
0,ω = Ex

24,ω (51)

0 ≤ Px,ch
t,ω ≤ Pmax,x,chBx,ch

t,ω (52)

0 ≤ Px,dis
t,ω ≤ Pmax,x,disBx,dis

t,ω (53)

0 ≤ Bx,ch
t,ω + Bx,dis

t,ω ≤ 1 (54)

where x ∈ {ES, HS}, Ex
t,ω is the storage energy of device x. ηx,ch and ηx,dis are the efficiency

of energy storage and release of device x. Ex,min and Ex,max are the minimum and maximum
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values of Ex
t,ω, respectively. γx is the energy self-loss rate of the energy storage device.

Pmax,x,ch and Pmax,x,dis are the maximum power of energy storage and release of device
x, respectively. Bx,ch

t,ω and Bx,dis
t,ω are the 0–1 variables of the energy storage and release

behaviors of device x, respectively.

3.4. UAA Model

In this paper, the benefit obtained by UAA is defined as the sum of the satisfaction
obtained by users purchasing electric, thermal, and cold energy, and the quadratic function
is used to express the benefit obtained from energy consumption.

UUAA
t,ω = ζePUAA,IDR

t,ω − ψe
2

(
PUAA,IDR

t,ω

)2
+ ζh HUAA,IDR

t,ω

−ψh
2

(
HUAA,IDR

t,ω

)2
+ ζcCUAA,IDR

t,ω − ψc
2

(
CUAA,IDR

t,ω

)2 (55)

where ζe, ψe, ζh, ψh and ζc, ψc are the coefficient of users’ preference for electric, thermal
and cold energy.

Based on the given energy prices, the UAA optimizes its own load power by partici-
pating in IDR. The objective function of UAA is the difference between the user’s benefit
function and the energy consumption cost, expressed as:

max FUAA =
Ω

∑
ω=1

{
T

∑
t=1

[
Xω

(
UUAA

t,ω + Ch,IDR
t,ω − CEMA,u

t,ω − CESA,dis
t,ω

)]}
(56)

3.5. Master–Slave Game Model

The master–slave game model can be expressed as:

G =
{

R; δEMA
ω ; ϕEOA

ω ; ϕESA
ω ; ϕUAA

ω ; FEMA; FEOA; FESA; FUAA} (57)

(1) Participants: 1 EMA, 1 EOA, 1 ESA, and 1 UAA, the set of participants can be
represented as R = {EMA, EOA, ESA, UAA}.

(2) Strategies: The strategy of leader EMA is the purchase and sale prices of energy,
which can be expressed as the vector δEMA

ω =
{

ks,e
t,ω, ks,h

t,ω, ks,c
t,ω, rb,e

t,ω, rb,h
t,ω, rb,c

t,ω

}
. The strategy

of follower EOA is the output power of the energy supply devices in EOA, which can be
expressed as ϕEOA

ω =
{

PMT
t,ω , HGB

t,ω

}
. The strategy of follower ESA is the energy storage and

release power of ES and HS, which can be expressed as ϕESA
ω =

{
PES

t,ω, HHS
t,ω

}
. The strategy

of follower UAA is the demand response of electric, thermal and cold loads, which can be
expressed as ϕUAA

ω =
{

PUAA,IDR
ω , HUAA,IDR

ω , CUAA,IDR
ω

}
.

(3) Revenues: The revenues of each participant are expressed as each objective function,
which can be calculated by Formulas (32), (40), (45) and (55).

When all followers make the optimal response according to the leader’s strategy
and the leader accepts the responses, the game reaches Stackelberg equilibrium. In the
Stackelberg equilibrium solution, it is impossible for any participant to gain more benefits
by unilaterally changing the strategy.

The proof of the existence and uniqueness of equilibrium solutions in games is as
follows:

Theorem 1. When the master–slave game model meets the following conditions, there exists a
unique Stackelberg equilibrium solution:

(1) The revenue function of the game participants is a non-empty and continuous
function of the game strategy set.
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(2) When the strategy of the leader is determined, all followers have a unique
optimal solution.

(3) When the strategy of the follower is determined, the leader has a unique
optimal solution.

Proof. (1) The strategy of the leader EMA needs to meet the Formulas (37)–(39), the strategy
of EOA needs to meet the Formulas (6)–(9), the strategy of ESA needs to meet the Formulas
(49)–(54), and the strategy of the UAA needs to meet the Formulas (18)–(31), so the policy
set of each participant is non-empty and compact convex.

(2) Proving that when the strategy of the leader is determined, all followers have a
unique optimal solution. For ESA, when the leader’s energy sales prices ks,e

t,ω and ks,h
t,ω are

determined, it can be seen from the objective function (45) that the revenues and decisions
of ESA vary linearly. When the constraints (49)–(54) are met, there must be a unique optimal
solution for ESA.

For UAA, when ks,e
t,ω , ks,h

t,ω and ks,c
t,ω are determined, let formula (56) take the first partial

derivative for PUAA,IDR
t,ω , HUAA,IDR

t,ω and CUAA,IDR
t,ω , respectively:

∂FUAA

∂PUAA,DR
t,ω

= ζe − ψePUAA,IDR
t,ω − ks,e

t,ω

∂FUAA

∂HUAA,DR
t,ω

= ζh − ψhHUAA,IDR
t,ω − ks,h

t,ω

∂FUAA

∂CUAA,DR
t,ω

= ζc − ψhCUAA,IDR
t,ω − ks,c

t,ω

(58)

Let the first-order partial derivatives be set to 0, respectively, and the following results
can be obtained: 

PUAA,IDR,0
t,ω =

ζe−ks,e
t,ω

ψe

HUAA,IDR,0
t,ω =

ζh−ks,h
t,ω

ψh

CUAA,IDR,0
t,ω =

ζc−ks,c
t,ω

ψc

(59)

Let Formula (56) take the second partial derivative for PUAA,IDR
t,ω , HUAA,IDR

t,ω and
CUAA,IDR

t,ω , respectively, the following results can be obtained:

∂2FUAA

∂(PUAA,IDR
t,ω )

2 = −ψe

∂2FUAA

∂(HUAA,IDR
t,ω )

2 = −ψh

∂2FUAA

∂(CUAA,IDR
t,ω )

2 = −ψh

(60)

Because the values of ψe, ψh, and ψc both are positive, the second partial derivatives
are all less than zero, and the function has a maximum point. Therefore, when the energy
sales prices of EMA are determined, the UAA has the unique optimal solution.

Similarly, for EOA, when rb,e
t,ω, rb,h

t,ω and rb,c
t,ω are determined, let Formula (40) take

the second partial derivative for PMT
t,ω and HGB

t,ω , respectively, the following results can
be obtained: 

∂2FEOA

∂(PMT
t,ω )

2 = −2aMT

∂2FEOA

∂(HGB
t,ω )

2 = −2aGB
(61)

Due to aMT and aGB being positive, the function has a maximum point, i.e., the unique
optimal solution of EOA is available.

(3) Proving that when the follower strategy is determined, the leader has a unique
optimal solution. Assuming that EMA needs to purchase electricity from the power grid
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to satisfy the energy requirement of UAA, and substituting the unique optimal solution
of the followers obtained from the above proof into Equation (32). So, the second partial
derivatives of Equation (32) about ks,e

t,ω, ks,h
t,ω, ks,c

t,ω, rb,e
t,ω, rb,h

t,ω and rb,c
t,ω are:

∂2FEMA

∂(ks,e
t,ω)

2 = − 2
ψe

, ∂2FEMA

∂(rb,e
t,ω)

2 = − 1
aMT

∂2FEMA

∂(ks,h
t,ω)

2 = − 2
ψh

, ∂2FEMA

∂(rb,h
t,ω)

2 = −
(
ηHE)2

[
1

aGB + (ηa)2

aMT

]
∂2FEMA

∂(ks,c
t,ω)

2 = − 2
ψc

, ∂2FEMA

∂(rb,c
t,ω)

2 = −
(
ηAR)2

[
1

aGB + (ηa)2

aMT

] (62)

where, ηa = ηWHB
(

1− ηMT − ηloss
)/

ηMT , ψe, ψh, ψc, aMT , aGB, ηHE, ηAR are all posi-
tive, so the second partial derivatives are all less than zero, and the function has a max-
imum point. When the constraints (37)–(39) are met, the EMA has a unique optimal
solution. When the EMA can meet UAA energy demand without purchasing electricity
from the power grid, the proof process is similar to the above, and this paper will not
elaborate further.

It should be mentioned that in this paper, we mainly consider the impact of wind
and solar uncertainty and the IDR model on the master–slave game optimal scheduling of
MAIES. For the robustness problem caused by parameter changes in the system, since the
model of wind and solar uncertainty is considered in the optimal scheduling of MAIES, and
some of the impacts of parameter changes can be eliminated by the proposed uncertainty
model. At the same time, the IDR model is also taken into account in system operation.
When the parameters change, the IDR model can effectively adjust the loads, so as to meet
the energy consumption demand of users. Thus, the IDR model can also handle part of the
influence caused by the changes in system parameters.

3.6. Solution Method

In order to solve the optimal scheduling problem of MAIES, a distributed equilibrium
solution method of genetic algorithm combined with quadratic programming (GA-QP)
is used in this paper. Because the decision-making model of leader EMA is a large-scale
nonlinear optimization problem, using a genetic algorithm can reduce the complexity of
the solution and improve the optimization ability [33]. Since the optimization objectives
of followers EOA and UAA are quadratic functions, the quadratic programming method
can be used to improve the speed and accuracy of the solution. Yalmip is a MATLAB
toolbox for modeling and solving convex optimization problems. It provides a simple
syntax that allows users to easily define optimization problems and solve them using a
variety of built-in solvers. Yalmip supports a variety of solvers, such as CPLEX, Gurobi,
MOSEK, etc. Gurobi is a powerful solver for solving linear problems, quadratic problems,
mixed integer linear and quadratic problems, and supports multi-objective optimization.
MOSEK is also recognized as one of the most efficient solvers for solving quadratic pro-
gramming, second-order cone programming, and semidefinite programming. CPLEX is a
highly optimized solver used for linear programming, integer programming, mixed integer
programming, quadratic programming, constrained quadratic programming, second-order
cone programming, and other large-scale complex optimization problems. In MATLAB,
users can easily integrate with Cplex using the Yalmip interface. CPLEX has powerful
solving performance and supports multiple optimization models, which is used in this
paper to solve the optimal solution. When the quadratic programming is embedded into
the iterative process of the genetic algorithm, the followers only need to accept the leader’s
price signal and feedback on their own power signal, which can effectively avoid the
leakage of information and protect the information privacy and security of all agents [34].
Specifically, the genetic algorithm is used to initialize and update the selling and purchasing
prices of the upper leader EMA, and the optimization problem of the lower followers is
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solved by the CPLEX solver. The solving process of the GA-QP algorithm is shown in
Figure 3.

The upper level leader EMA sends internal purchasing 

and selling energy prices to the lower level followers

The followers EOA, ESA, and UAA respectively call the CPLEX 

solver to solve based on the price information published by EMA, 

and send the optimization results to the leader

The leader EMA calculates its own revenue based 

on the optimization results of the lower level

Cross and mutate the population, and generate new population

The follower calls the CPLEX solver again to optimize the solution, and 

EMA calculates its own revenue according to the optimization results

Update the optimal revenue of EMA and update the population

Iterations=Iterations+1

Has the maximum number of iterations been reached?

Yes

No

Beginning

Is the EMA revenue higher than the last iteration?

Set the number of iterations to 0 and initialize the population

The k-means clustering and pre-generation elimination method are 

used to obtain Y typical scenarios of combined WT and PV output

Generate X sets of WT and PV output scenarios 

based on Monte Carlo random sampling algorithm

Input data and parameters

Output optimization 

results

Yes

No

Figure 3. Model solving process.

4. Case Simulation
4.1. Parameter Setting

To verify the effectiveness of the method proposed in this paper, a certain combined
cooling, heating, and power supply MAIES is used as an example. The simulation pa-
rameters are shown in Tables 1 and 2. The data of the electric, thermal, and cold loads
come from a typical day in Northeast China. The data of the predicted electric, thermal,
and cold loads are shown in Figure 4. The outdoor temperature and indoor fuzzy comfort
temperature are shown in Figure 5. The time-sharing price of electricity purchased from
the power grid is shown in Figure 6. The feed-in price of the power grid is 0.05 $/kWh. It
should be mentioned that the feed-in price of the power grid and the time-sharing price of
electricity purchased from the power grid are the lower and upper limits of electric price,
so as to avoid followers directly trading with the power grid, resulting in the loss of the
overall coordination role of the leader EMA. The upper and lower limits of heat price and
cold price are 0.0714 $/kWh and 0.0286 $/kWh, respectively, which aim to ensure a normal
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and reasonable market environment for energy interaction. The maximum average selling
electric, heat, and cold prices of EMA are 0.1 $/kWh, 0.0643 $/kWh, and 0.0643 $/kWh,
respectively, so as to avoid EMA seeking the highest price for a long time. The constant
coefficients of users’ preference for electric, thermal, and cold energy ζe, ψe, ζh, ψh and
ζc, ψc are 0.0009, 1.5, 0.0011, 1.1 and 0.0012, 1.15, respectively, which can reflect users’
demand preference for energy. It is assumed that the distance between the agents is small,
and the influence of energy transmission line loss is not taken into account. Meanwhile,
it is assumed that during the operation of the system, the input data and the proposed
constraints and parameters are fully satisfied, and the special cases such as equipment
failures are not considered.

The simulation calculations are based on MatlabR2018a software, using the YALMIP
plug-in and calling the CPLEX solver to solve the optimization problem. The computer
is configured with an Intel Core i7-10510U processor, main frequency 1.8 GHz, memory
8 GB. The population size is 30, the maximum number of iterations is 120 and the crossover
probability is 0.9.

Table 1. Parameters of MAIES model.

Parameter Value Parameter Value Parameter Value

γp 424 g/kWh aMT 0.0013 ηloss 0.09
γh 0.102 t/GJ bMT 0.16 ηWHB 0.85
δe,h 6 MJ/kWh cMT 0 ηHE 0.8
σe 968 g/kWh aGB 0.0005 ηAR 0.75
σg 220 g/m3 bGB 0.11 ηGB 0.9

λgas 9.78 kWh/m3 cGB 0 ηx,ch 0.9
εc 40 $/t ηMT 0.41 ηx,dis 0.85

Table 2. Parameters of MAIES constraints.

Parameter Value Parameter Value Parameter Value

EES,max 1600 kWh EES,min 400 kWh EHS,max 1500 kWh
EHS,min 200 kWh Pmax,ES,ch 350 kW Pmax,ES,dis 350 kW

Pmax,HS,ch 350 kW Pmax,HS,dis 300 kW PMT,up 400 kW
PMT,down −400 kW PGB,up 500 kW PGB,down −400 kW
PMT,max 1200 kW HGB,max 1000 kW PMT,min/PGB,min 0 kW
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Figure 4. Predicted electric load, thermal load, and cold load.
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Figure 5. Indoor and outdoor temperature curves.
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Figure 6. Time-sharing electricity price.

4.2. Analysis of Wind and Solar Uncertainty

According to the day-ahead prediction information of WT and PV output and the
method proposed in this paper, the MC random sampling method is used to generate
1000 scenarios of WT and PV output, which are shown in Figure 7. Then, 10 WT and PV
output scenarios with different probabilities are obtained by using the k-means clustering
method. The Cartesian connection between WT and PV output scenarios is made, and
the pre-generation elimination method is used to further reduce the scenarios. Finally,
five typical scenarios of combined WT and PV output can be obtained. The scenarios of
combined WT and PV output are shown in Figure 8, and the probability of each scenario
is shown in Figure 9. It can be seen from Figure 8 that the generated scenarios of WT and
PV output are all within the upper and lower boundaries. While ensuring a certain degree
of difference, the generated scenarios can basically cover the fluctuation range of actual
output. In addition, it can also be seen that the change trend of the WT output curves of
the five scenarios is similar, and the change trend of the PV output curves is also similar.
Therefore, the generation results of the scenarios reflect the uncertainty of WT and PV
output, which can effectively simulate the characteristics of WT and PV output in MAIES
and is beneficial for the overall planning and operation of the system.
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Figure 7. WT and PV output scenarios generated by MC: (a) WT output in 1000 scenarios; (b) PV
output in 1000 scenarios.
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Figure 8. Combined WT and PV output scenarios after reduction: (a) WT output in 5 scenarios;
(b) PV output in 5 scenarios.
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Figure 9. The probability of each scenario.

In order to analyze the influence of the uncertainty of WT and PV output on the
system, scenario 6 and scenario 7 are added to the original five scenarios. Scenario 6 does
not consider the uncertainty of the WT and PV output, that is, the day-ahead prediction
data of WT and PV output is substituted into the model to calculate the revenue. Scenario 7
refers to the total benefit calculated by substituting the data of five scenarios into the model
and multiplying the corresponding probability, which is the method used in this paper.
The iterative curves of the revenues of each agent in scenario 7 are shown in Figure 10. The
convergence process reflects the game process among the stakeholders. As the leader of
the game, the EMA continuously adjusts its own purchasing and selling energy prices to



Sustainability 2024, 16, 3182 19 of 27

maximize its own revenue, and its revenue curve shows a gradually increasing trend. The
followers EOA, ESA, and UAA also adjust their own strategies to achieve game equilibrium
based on the price information released by the leader, and their revenue curves show a
downward trend. When the number of iterations reaches about 60, the game among the
agents reaches equilibrium. At this time, the revenues of EMA, EOA, ESA, and UAA are
1488.92$, 684.38$, 92.16$, and 2831.85$, respectively.
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Figure 10. Iteration results of each agent: (a) Iteration curve of EMA revenue; (b) Iteration curve of
EOA revenue; (c) Iteration curve of ESA revenu; (d) Iteration curve of UAA revenue.

Table 3 shows the comparative results of the revenue of each agent, the curtailment
rate of wind power and photovoltaic power, and the calculation time in seven scenarios. It
can be seen that the calculation time distribution of the seven scenarios is within the range
of 10–12 min, which can meet the application needs of the actual scene. The proposed
solution method effectively solves the optimization problem in each scenario. It can be seen
that the difference in UAA revenue is relatively small in seven scenarios, which indicates
that the uncertainty of WT and PV output has a relatively small impact on UAA decision-
making. Compared with scenario 6 and scenario 7, the uncertainty of WT and PV output
affect the power supply of EOA, and the revenues of EMA, EOA, and ESA increase by
49.35$, 44.93$, and 2.81$, respectively, after considering the uncertainty of WT and PV
output in scenario 7. There is a significant difference in the rates of wind and photovoltaic
power curtailment between scenario 7 and scenario 6. The rates of wind and photovoltaic
power curtailment in scenario 7 are 3.22% and 2.81% lower than those in scenario 6,
respectively. Compared to the scenario 1 to 5, the rate of renewable energy curtailment in
scenario 7 decreases by 3.34%, 0.47%, 1.25%, 0.83%, and 2.07%, respectively. Therefore, after
considering the uncertainty of WT and PV output, the revenue of each agent has increased
and the utilization rate of renewable energy has also been effectively improved, which
plays a positive role in building the economically efficient and environmentally friendly
energy system. In addition, the proposed uncertainty model can reduce the adverse effects
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caused by the randomness of renewable energy output and improve the reliability and
sustainability of the system operation.

Table 3. Comparison results of each scenario.

Scenario EMA
Revenue ($)

EOA
Revenue ($)

ESA
Revenue ($)

UAA
Revenue ($)

WT Power
Curtailment (%)

PV Power
Curtailment (%)

Calculation
Time (s)

1 1513.32 662.34 90.66 2820.33 6.12 4.26 647.64
2 1527.43 689.13 93.38 2830.06 4.85 2.66 622.56
3 1451.12 663.20 87.01 2834.52 5.21 3.08 608.50
4 1540.20 693.57 94.62 2818.65 4.98 2.89 673.08
5 1448.83 654.06 88.49 2825.50 5.77 3.34 621.33
6 1439.57 639.45 89.35 2814.32 7.85 5.22 659.74
7 1488.92 684.38 92.16 2831.85 4.63 2.41 641.12

4.3. Energy Price Optimization Results

The pricing strategy of EMA after game equilibrium is shown in Figure 11. In
Figure 11a, the energy purchase and sale prices of EMA are always between the time-
sharing price and the feed-in price of the external power grid, which aims to provide better
prices for the energy supply side and energy consumption side. The trend of the selling
price of EMA is close to the trend of time-sharing electricity price in the power grid, while
the trend of the purchasing price of EMA is close to the changing trend of users’ energy
load, which aims to improve the enthusiasm of users to purchase electricity and the energy
supply efficiency of EOA and reduce the electricity purchase from the power grid. Similarly,
it can be seen from Figure 11b,c that the price trends of thermal and cold energy purchased
by EMA are roughly the same as the actual thermal and cold load trends of users.
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Figure 11. Optimization results of energy prices: (a) Electricity price curves; (b) Heat price curves; (c)
Cold price curves.

4.4. Comparative Analysis of Scenarios

To further analyze the effect of the master–slave game optimal operation strategy of
MAIES proposed in this paper considering the uncertainty of WT and PV output and the
IDR on the benefits and carbon emissions of each agent, the following five comparative
scenarios are set:

Scenario 1: the uncertainty of WT and PV output and the IDR are considered, the
EMA, EOA, ESA, and UAA are considered, and the carbon trading model is taken into
account in the optimal operation (the method proposed in this paper).

Scenario 2: the uncertainty of WT and PV output and the IDR are considered, and the
EMA, EOA, ESA, and UAA are considered, but the carbon trading model is not taken into
account in the optimal operation.

Scenario 3: the uncertainty of WT and PV output and the IDR are not considered, and
the EMA, EOA, ESA, and UAA are considered, and the carbon trading model is taken into
account in the optimal operation.

Scenario 4: the uncertainty of WT and PV output and the IDR are considered, the
EMA, EOA, and UAA are considered, and the carbon trading model is taken into account
in the optimal operation.

Scenario 5: the uncertainty of WT and PV output and the IDR are not considered,
the EMA, EOA, and UAA are considered, and the carbon trading model is not taken into
account in the optimal operation.
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The operation results of the five scenarios are shown in Tables 4 and 5. As can be
seen from Table 4, the calculation time for all 5 scenarios is within the range of 7–11 min,
which can meet the demands of practical applications. The optimal scheduling problem in
each scenario is effectively solved by the proposed solution method. Comparing scenario 1
and scenario 2, it can be seen that the revenues of EMA, EOA and ESA of scenario 2 are
17.66$, 80.87$, and 2.27$ higher than those in scenario 1, respectively. The reason is that
the carbon trading mechanism is not considered in scenario 2, and there is a lack of carbon
trading cost constraints in the EMA, EOA, and ESA models. Furthermore, the carbon
emissions of EOA in scenario 2 are 1975.08 kg higher than that in scenario 1, which is
because carbon emission constraints are not taken into account, and the EOA will produce
more energy and sell it to EMA, thus reducing energy purchase of EMA from the power
grid and reducing carbon emissions generated by EMA. Therefore, when the carbon trading
mechanism is not considered, although the revenues of EMA and EOA will be increased
to some extent, the carbon emissions of the system will increase significantly. Comparing
scenario 1 and scenario 3, according to the analysis in Section 4.2, the EOA revenue will
increase by considering the uncertainty of WT and PV output. However, the IDR is not
considered in scenario 3, and the thermal load cannot be reduced. So compared to scenario
1, the EMA needs to purchase more thermal power from EOA to meet the thermal demand
of UAA in scenario 3. In this way, the thermal power output of EOA units increases and the
carbon emissions and carbon trading costs also increase, and the EOA revenue increases by
1314.45$ compared with scenario 1. In addition, due to the IDR not being considered in
scenario 3, the users cannot change the energy consumption behavior of electric and cold
load during the peak periods of electric and cold prices, which also leads to an increase
in the costs of electric and cold energy consumption. So the UAA revenue is 385.06$ less
than that of scenario 1. Comparing scenario 1 and scenario 4, it can be seen that compared
with scenario 1, the revenues of EMA, EOA, and UAA in scenario 4 decrease by 1417.85$,
157.91$, and 136.22$, respectively. This is because adding energy storage devices in scenario
1 may occupy a small share of user energy purchases in EMA, but the ESA can not only
alleviate the output pressure of the devices in EOA by storing and releasing energy but also
reduce the energy purchasing cost of direct interaction between EMA and the power grid
during peak load periods. In addition, it can also provide users with more favorable energy
purchase prices than EMA, and reduce the energy purchase costs of users. The carbon
emissions of EMA and EOA in scenario 4 are 558.25 kg and 2405.85 kg more than those
in scenario 1, respectively. The reason is that the lack of energy storage devices increases
the output of the EOA devices and the EMA purchases more energy from the grid, which
both result in the increase in carbon emissions. Comparing scenario 4 and scenario 5, it
can be seen that the UAA revenue in scenario 5 is 372.76$ less than that in scenario 4. The
reason is that the IDR is not considered in scenario 5, which leads to users being unable to
obtain subsidies and flexibly adjust energy demand to use lower energy prices. It also can
be seen that the carbon emissions of EMA and EOA in scenario 5 are 278.55 kg and 644.27
kg more than those in scenario 4, which is due to the fact that the lack of carbon emissions
constraints in scenario 5 increases the carbon emissions of the system.

Therefore, by considering IDR in the optimal scheduling of MAIES, users actively
participate in the adjustment of energy load, which enables users to gain more benefits
and improve their energy usage satisfaction. The IDR model can realize peak shaving and
valley filling of loads, which can effectively reduce the energy supply pressure of the power
grid and ensure the safe and stable operation of the power grid. Furthermore, by taking
into account the carbon trading model, the carbon emissions generated by system operation
can be effectively limited, and have an important effect on environmental protection and
sustainable development. In today’s society that vigorously advocates and promotes carbon
emission reduction, the carbon trading market will continue to be a hot topic and a long-
term energy policy. So this paper makes a detailed study on the effect of the carbon trading
model in MAIES operation and provides some research basis and theoretical support for
the future development of carbon trading mechanism.
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Table 4. Revenue of each agent in different scenarios.

Scenario EMA Revenue ($) EOA Revenue ($) ESA Revenue ($) UAA Revenue ($) Calculation Time (s)

1 1488.92 684.38 92.16 2831.85 641.12
2 1506.58 765.25 94.43 2826.36 583.77
3 1548.33 887.19 89.52 2446.79 516.06
4 1471.07 526.47 — 2695.63 556.41
5 1497.92 602.17 — 2322.87 469.38

Table 5. Carbon emissions and costs in different scenarios.

Scenario EMA Emissions (kg) EOA Emissions (kg) EMA Carbon Cost ($) EOA Carbon Cost ($)

1 1304.57 9917.41 20.10 152.84
2 1152.01 11,892.49 — —
3 1325.34 11,231.86 20.42 173.09
4 1862.82 12,323.26 28.71 189.91
5 2141.37 12,967.53 — —

4.5. Load Optimization Results

The electric load, thermal load, and cold load before and after considering IDR are
shown in Figure 12. As can be seen from Figure 12a, under the effect of electricity price,
in order to reduce the total electric cost, the electric load curve exhibits the characteristic
of peak shaving and valley filling before and after IDR. The two peak periods of the
original electric load appear at 11:00–12:00 and 18:00–22:00, and the electricity price is
high in these periods. After the optimization of the IDR on the user side, the peak load
significantly decreases and shifts to the load valley stage, in which the electricity price is
low at 0:00–8:00 and 23:00–24:00, and the load fluctuation decreases obviously. As can be
seen from Figure 12b, after considering the thermal demand response based on incentive in
the system operation, the thermal load was reduced and shifted and the thermal load curve
has become smoother, so as to enable users to gain more benefits. From Figure 12c, it can be
seen that when considering the cold demand response model based on fuzzy comfort, on
the premise of satisfying the living comfort of users, the users actively change the behavior
of cold energy consumption, thus reducing energy consumption and increasing revenue.
Considering Tables 4 and 5, it can be seen that the IDR strategy proposed in this paper can
effectively improve the comprehensive benefits of multiple subjects and achieve a win-win
situation in the entire energy market.
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Figure 12. Variations of load before and after considering IDR: (a) Variations of electric load;
(b) Variations of thermal load; (c) Variations of cold load.

4.6. Supply and Demand Balance Results

The results of electric, thermal, and cold energy balance after Stackelberg game op-
timization are shown in Figure 13. At 23:00–07:00, the electric load and cold load are
relatively few, and the electricity price is in the valley range. The electric load is mainly met
by WT, and the insufficient part is supplemented by MT and electricity purchased from
the power grid. The EOA increases the output of MT to make more profits, and the excess
electric energy is stored by the ES of ESA. Furthermore, the GB and WHB work together to
satisfy the thermal energy demand of UAA. If the thermal demand cannot be met, the HS
of ESA will supplement it by releasing and storing thermal energy. The cold load demand
is relatively low, which is mainly provided by ISAC. At 08:00–10:00 and 14:00–17:00, as
the electric load and cold load gradually increase, the PV and WT output of EOA are
completely accommodated, and the MT output increases. However, the EOA restricts the
output of MT and GB by comparing energy sales revenue and operating cost, so part of the
load demand cannot be met by EOA. Therefore, the energy demand of UAA also be met by
purchasing more electricity from the grid by EMA. The cold load is satisfied by ISAC with
lower power consumption through air conditioning mode and ice-melting refrigeration at
the same time, and the insufficient part is supplemented by AR. The thermal load is still
satisfied by GB and WHB, and the insufficient part is met by the HS. At 11:00–13:00 and
18:00–23:00, the electric load is in the peak periods, and the electric load with insufficient
energy supply is met by ES discharge and purchasing more electricity from the power
grid. The refrigeration capacity of AR increases, and together with ISAC meets the cold
load demand.
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Figure 13. Supply and demand balance results: (a) Electric power balance; (b) Thermal power
balance; (c) Cold power balance.

5. Conclusions and Future Works

This paper proposes a master–slave game optimal scheduling strategy of MAIES
considering the wind and solar uncertainty and the IDR. The conclusions are as follows:

(1) After considering the wind and solar uncertainty model, the benefits of EMA,
EOA, ESA, and UAA increased by 49.35$, 44.93$, 2.81$ and 17.53$, respectively. The rates
of WT power curtailment and PV power curtailment were reduced by 3.22% and 2.81%,
respectively. So the wind and solar uncertainty model proposed in this paper is beneficial
for accommodating renewable energy and improving the operational economy of MAIES.

(2) The multi-load and multi-type IDR model can realize peak shaving and valley
filling of electric load, thermal load, and cold load within a reasonable range. After



Sustainability 2024, 16, 3182 26 of 27

considering the IDR model, the revenue of the users increased by 385.06$. At the same time,
by taking into account the carbon trading mechanism, the carbon emissions generated by
system operation were reduced by 1822.52 kg.

(3) The master–slave game optimization model of MAIES guides the controllable
device output of EOA, the energy storage and release power of ESA, and the energy con-
sumption strategy of UAA through the reasonable price information released by EMA, and
realizes the cooperative optimal scheduling of multiple agents and multiple energy sources.

In future works, the robust optimal scheduling of MAIES based on game theory will be
studied, so as to solve the robustness problem caused by parameter changes in the system.
In addition, we plan to study the dynamic nature of MAIES, which includes discussing
how the system evolves, transitions between different operational states, and responds to
external factors. The variations of energy supply and demand at different time intervals in
MAIES must also be considered in the next stage of our work.
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