
Citation: Wen, H.; Wang, R.; Liu, Y.

Towards Carbon Neutrality in

Agglomeration: Impact of

Eco-Industry Development on Urban

Carbon Emission Efficiency.

Sustainability 2024, 16, 3159. https://

doi.org/10.3390/su16083159

Received: 20 March 2024

Revised: 5 April 2024

Accepted: 8 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Towards Carbon Neutrality in Agglomeration: Impact of
Eco-Industry Development on Urban Carbon Emission Efficiency
Huwei Wen 1,* , Runnan Wang 2 and Yuhan Liu 2

1 School of Economics and Management, Nanchang University, Nanchang 330031, China
2 School of Qianhu, Nanchang University, Nanchang 330031, China; runnanwang@email.ncu.edu.cn (R.W.);

liuyuhan@email.ncu.edu.cn (Y.L.)
* Correspondence: wenhuwei@ncu.edu.cn

Abstract: Ecological industrial parks (EIPs) play a pivotal role as primary drivers of China’s industrial
green transformation, facilitating the enhancement of urban carbon emission efficiency (UCEE) and
the realization of green sustainable development. This study empirically investigates the effects of EIP
policies on UCEE through quasi-natural experiments, utilizing data from 282 prefecture-level cities in
China spanning from 2006 to 2021. Employing a multi-period difference-in-difference (DID) method,
the findings are as follows: (1) The implementation of EIP policies leads to a 2.5% average increase in
UCEE. (2) Event analysis reveals certain lagging characteristics in the promoting effect of EIP policies
on the carbon emission efficiency of pilot cities. (3) EIP construction primarily enhances UCEE by
reinforcing agglomeration effects and elevating innovation ability. (4) The promoting effect of EIP
construction is more pronounced in the eastern and central regions, as well as in non-resource-based
cities within different regions. Drawing from the empirical results, this study provides pertinent
recommendations for EIP construction, offering theoretical guidance to policymakers and managers
in crafting sustainable development strategies.

Keywords: eco-industrial park; urban carbon emission efficiency; agglomeration; quasi-natural
experiment; sustainable development

1. Introduction

Since the onset of the Industrial Revolution, there has been a pronounced trend
of rapid economic expansion attributed to the proliferation of diverse manufacturing
and production activities [1,2]. However, the exacerbation of global climate warming
is becoming increasingly acute due to heightened greenhouse gas emissions stemming
from human activities [3]. Fossil fuel production for industrial purposes stands out as the
primary contributor to carbon emissions [4]. Scientific studies indicate that burning fossil
fuels accounts for over 80% of the total carbon emissions [5]. Notably, approximately 75%
of worldwide carbon dioxide emissions emanate from urban centers. Hence, mitigating
carbon emissions is imperative in addressing the challenges precipitated by climate change
in urban areas [6–8].

Accounting for 30 percent of the world’s emissions, China presently stands as the
foremost emitter of carbon dioxide [9,10]. With a concerted emphasis on ecological envi-
ronmental governance, the Chinese government has delineated strategic objectives aimed
at achieving carbon peaking by 2030 and carbon neutrality by 2060 [11]. These goals not
only underscore China’s steadfast commitment and sense of responsibility but also present
a litmus test for its capacity to curtail carbon emissions. The burgeoning environmental
industry has emerged as an indispensable avenue for realizing a symbiotic relationship
between economic prosperity and environmental preservation, with the EIPs assuming
a pivotal role in nurturing the expansion of eco-friendly enterprises [12,13]. To address
the challenges posed by excessive energy consumption, heightened carbon emissions, and
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pervasive pollution within traditional sectors, China has been actively establishing EIPs
since 2001 [13,14].

The concept of an EIP traces back to the 1960s, when industrial facilities began em-
bracing regional cooperation strategies aimed at optimizing resource utilization, minimiz-
ing waste, and fostering recycling efforts [15]. In the 21st century, the EIP concept has
evolved into a multifaceted approach that integrates principles of industrial ecology, clean
production, and waste management. It serves as a paradigm for fostering geographic
proximity-based interactions, planning, and development among proximate enterprises.
This evolution signals a pivotal shift for businesses away from a competitive mindset to-
ward embracing symbiotic, collaborative, and synergistic industrial ecosystems to achieve
objectives centered around reducing environmental footprints, bolstering economic effi-
ciency, and advancing social well-being [16–18]. The inception of the “Industrial Symbiosis”
initiative in Kalundborg, Denmark, in 1970, stands as a landmark event marking the initial
meaningful implementation of EIPs on a global scale [19]. Since then, numerous developed
countries, including Austria, the United States, the United Kingdom, Japan, and South
Korea, have embarked on EIP initiatives of their own. While the global count of EIP projects
stood at less than 50 in the year 2000, there has been a remarkable surge in their proliferation
over the past decade. As of 2018, the tally had surged to 250 EIPs either operational or in
various stages of development worldwide [20–22].

Among the myriad of human activities driving economic growth in China, industrial
parks have played a pivotal role. Over the past 30 years, China has established over
2000 industrial parks, accounting for over 60% of industrial output value and over 50%
of GDP [23,24]. Driven by the dual objectives of economic growth and environmental
protection, the government recognized the significance of EIPs as a win–win strategy at
the industrial park level, thus joining the construction trend [22,25]. In 2000, the National
Environmental Protection Agency initiated collaboration between the government and
universities to explore EIP construction. In 2001, the first pilot EIP, the Guangxi Guigang
Sugar Factory Eco-Industrial Park, was approved by the government [24]. In 2003, the
National Environmental Protection Agency issued the “Provisional Regulations on Declaration,
Naming, and Management of National Eco-Industrial Parks” and the “Guidelines for the Trial
Planning of Eco-Industrial Demonstration Parks”, marking the formal establishment of this
policy [26,27]. As of December 2020, China had 93 EIPs distributed across all mainland
provinces except Tibet and Qinghai [23]. The construction of EIPs is promoted by the central
government through pilot projects, where local governments must voluntarily apply for
provincial-level EIPs, which are then reviewed and approved by the central government to
decide on the pilot national EIPs in different cities [28]. The incremental implementation
nature allows for evaluating the effectiveness of EIP policies by comparing trends before
and after policy implementation.

To delve deeper into the environmental ramifications of EIP policies, this study contex-
tualizes the policy impact of EIPs as a quasi-natural experiment within China. It employs
a multi-period difference-in-difference (DID) method and a mediation effect model on
panel data encompassing 282 prefecture-level cities spanning from 2006 to 2021. Firstly,
the carbon emission efficiency for each city during the sample period was computed uti-
lizing the Super-SBM DEA model, which accounts for unexpected outputs. Subsequently,
the implementation of EIP policies is observed to yield a significant positive impact on
enhancing urban carbon emission efficiency through multi-period difference-in-difference
analysis, with a battery of tests ensuring the robustness of these findings. Lastly, by scru-
tinizing the transmission mechanism, it is posited that EIP policies can effectively foster
the improvement of urban carbon emission efficiency through three avenues: optimizing
industrial structure, bolstering agglomeration effects, and augmenting innovation ability.
Furthermore, the promotional effect of EIP policies is notably pronounced in the eastern
and central regions as well as in non-resource-based cities.

The subsequent sections are organized as follows: Section 2 reviews the extant litera-
ture, succinctly delineating the incremental contributions of this study; Section 3 scrutinizes
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relevant theories and posits specific hypotheses; Section 4 delineates the research method-
ology encompassing model configurations, variable selection, and data sources; Section 5
presents empirical findings and analysis, including baseline regression, robustness tests,
mechanism analysis, and heterogeneity analysis; and Section 6 furnishes research conclu-
sions and policy recommendations while contemplating future research avenues.

2. Literature Review

The existing body of literature concerning EIP research predominantly revolves around
two core dimensions, including qualitative analysis and quantitative evaluation. Qual-
itative inquiries into EIPs often delve into their evolutionary trajectory, developmental
patterns, case-specific examinations, and the establishment of standardized frameworks.
For instance, Yu et al. (2015) [29] undertook a meticulous case study of the Rizhao EIP in
China, elucidating that pivotal drivers such as environmental standards, tax incentives, and
fiscal subsidies are instrumental in fostering industrial symbiosis. Perrucci et al. (2022) [30]
conducted a comprehensive meta-analysis scrutinizing failed EIP endeavors in American
history, thus unraveling the nuanced spectrum of costs and benefits associated with EIPs
while shedding light on their elevated failure rates. Furthermore, Tseng et al. (2021) [31] em-
ployed the Delphi method to intricately construct a hierarchical framework encapsulating
qualitative insights into the transformative dimensions of EIPs, thereby elucidating their
potential environmental and societal impacts. Conversely, quantitative investigations into
EIPs gravitate towards gauging their economic and environmental efficacy. For instance,
Liu et al. (2012) [32] utilized the logarithmic average Divisia index method to quantify the
overarching ecological efficiency of EIPs, revealing stark regional differentials in environ-
mental performance coupled with a noteworthy annual enhancement rate of 89.4%. In
contrast to the conventional life cycle assessment (LCA), the ecological footprint approach
emerges as a more intuitive and transparent mechanism, facilitating the measurement of
EIPs’ natural resource demands and the evaluation of ecosystem pressures [21]. Similarly,
Fan et al. (2017) [20] employed an ecological footprint model to assess the environmen-
tal ramifications, thereby showcasing EIPs’ potential in optimizing energy and material
utilization while mitigating the ecological footprint of industrial activities. Nevertheless,
quantitative research on EIPs predominantly gravitates towards appraising the operational
performance of industrial parks, with scant literature scrutinizing the reverberating impacts
of EIPs on carbon emission efficiency as a policy catalyst.

Furthermore, research closely aligned with the carbon emissions theme primarily
concentrates on two facets: firstly, evaluating carbon emission efficiency. The Malmquist
index within the DEA model stands as one of the extensively employed efficiency assess-
ment techniques [33]. Originating from the work of Lozano and Humphrey (2002) [34] and
Boisso et al. (2000) [35], Fare et al. formulated this index to gauge decision-making unit
productivity. Nonetheless, conventional Malmquist indices overlook unexpected outputs
during the production process, potentially introducing measurement biases. To tackle this
concern, Zhu et al. (2023) [36] pioneered the development of a directional distance function,
derived from the traditional distance function, to compute the total factor productivity
index while integrating unexpected outputs. Consequently, assessing carbon emission
efficiency through the lens of total factor productivity constitutes standard practice within
academia [37]. By establishing a production frontier grounded in input–output relation-
ships, carbon emission efficiency is delineated as the deviation between actual emissions
and the theoretically optimal value on the production frontier [38].

Secondly, factors driving carbon emission efficiency were investigated. Numerous
scholars have extensively examined the influencing factors of carbon emissions from vari-
ous perspectives. Li et al. (2018) [39] employed Structural Decomposition Analysis (SDA)
to pinpoint emission intensity, changes in production inputs, and output structure as the
primary drivers for reducing urban carbon dioxide emissions. Carbon emission reduction
in the industrial sector stands as a pivotal aspect of achieving green sustainable devel-
opment. Cui (2023) [40] assessed the implicit carbon emissions of the industrial sector
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by developing a non-competitive input–output model and a structural decomposition
model, revealing that the demand scale could also significantly influence carbon emissions.
Urban expansion exhibits a U-shaped direct effect on local carbon dioxide emissions, while
it demonstrates an inverted U-shaped spatial spillover effect on adjacent urban carbon
emissions [41]. In the industrial production realm, the production structure of an economy
profoundly impacts its carbon dioxide emissions. To attain carbon emission reduction ob-
jectives, comprehensive research on industrial structure is imperative. Hu et al. (2023) [42]
gauged the rationalization level of industrial structure through Theil’s index calculation, de-
termining that in the short term, with industrial structure rationalization, carbon emissions
will increase, but in the long term carbon emissions will decrease with industrial structure
rationalization. Presently, China’s industrial structure is gradually optimizing, with close
coordination established among relevant departments. However, in comparison to the
industrial structure characteristics of developed nations, China’s industrialization process
remains in its nascent stages [43]. Cross-regional adjustments in industrial structure not
only need to align with regional objectives but also involve inter-regional industrial trans-
fers. Rational arrangement of industrial layout can facilitate the optimization of industrial
structure [44]. Furthermore, extant research indicates that industrial agglomeration in sec-
tors such as industry and manufacturing yields significant emission reduction effects [45].
A U-shaped relationship exists between industrial agglomeration and carbon emissions,
with industrial agglomeration closely linked to the degree of environmental regulation [46].
Additionally, manufacturing agglomeration may attenuate the carbon emission reduction
effect initiated by urban digital trade, while the agglomeration of productive services could
enhance this effect [47]. Using a Spatial Durbin Model (SDM), Zhang (2024) [48] revealed
that the concentration of green finance exhibits spatial spillover effects on regional carbon
emissions, underscoring the need for increased fiscal backing for green and low-carbon
projects. Moreover, the efficacy of urban carbon dioxide emissions is impacted by the
degree of innovation. Employing the continuous double difference method, Liu (2022) [49]
discovered that policies incentivizing innovation have a notable adverse effect on urban car-
bon dioxide emissions. Several scholars have delved into the interactive dynamics between
innovation and economic advancement concerning carbon emissions. Their findings indi-
cate that both the economy and innovation contribute to carbon emission reduction, with
the economy facilitating such reductions through mechanisms of innovation [50]. Generally,
the influence of innovation on the economy adheres to a U-shaped curve. Nevertheless,
Fang’s (2022) [51] investigation unveiled a linear relationship between green innovation
and its economic impact. Additionally, the combined effect of digital finance and green
technology innovation significantly fosters UCEE, albeit with a suppressive impact on the
carbon emission efficiency of neighboring cities [6].

In summary, notwithstanding the significant research contributions made by scholars
in the field under investigation, several deficiencies persist in the existing literature. In
Table 1, we have compiled a summary of the existing literature. However, certain defi-
ciencies may be apparent in these relevant studies. Firstly, there exists a notable gap in
directly examining the impact of EIPs on urban carbon emissions, coupled with a lack
of comprehensive and in-depth analysis regarding the underlying mechanisms. Given
that EIPs represent a nascent form of industrial organization and novel environmental
policy, it is imperative to refrain from merely extrapolating insights from other industrial
innovation studies when elucidating its influence on urban carbon emissions. Secondly,
a degree of contention surrounds the evaluation of agglomeration effects or innovation
concerning the tangible efficacy of urban carbon reduction, necessitating further empir-
ical substantiation. Moreover, prevailing research predominantly focuses on developed
nations, with scant attention afforded to developing countries like China. Consequently,
the generalizability of prior research findings to developing contexts warrants verifica-
tion. Lastly, methodologically, prior studies have leaned towards qualitative case analyses,
raising concerns regarding researcher subjectivity and sample validity. Furthermore, tradi-
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tional quantitative analytical approaches employed in these studies inadequately address
endogeneity concerns.

Table 1. Existing literature analysis.

Field Content Contributors Methodology Research Finding

EIP

Qualitative analysis
Yu et al. (2015) [29]; Perrucci
et al. (2022) [30]; Tseng et al.

(2021) [31]

evolutionary trajectory;
developmental patterns;

case-specific examinations; the
establishment of standardized

frameworks EIPs are anticipated to yield a
spectrum of environmental
and economic ramifications.

Quantitative evaluation Liu et al. (2012) [32]; Fan et al.
(2017) [20]

logarithmic average Divisia
index method; life cycle

assessment (LCA); ecological
footprint model

UCEE

Evaluating carbon
emission efficiency

Liu et al. (2018) [33]; Lozano and
Humphrey (2002) [34]; Boisso

et al. (2000) [35]; Zhu et al.
(2023) [36]; Gao et al. (2021) [37];

Sun et al. (2024) [38]

the Malmquist index within the
DEA model; total factor

productivity index

Building upon the
conventional Malmquist index,

the research endeavors to
establish a production frontier

by examining input–output
relationships, thereby

enhancing the precision of
carbon emission efficiency

measurements.

Driving factors of carbon
emission efficiency

Li et al. (2018) [39]; Cui
(2023) [40]; Liu (2024) [41]; Hu
et al. (2023) [42]; Li (2017) [43];
Zhu (2021) [44]; Xu (2023) [45];
Liu (2024) [46]; Wen and Zhu
(2024) [47]; Zhang (2024) [48];
Liu (2022) [49]; You and Chen
(2022) [50]; Fang’s (2022) [51];

Lee and Zhao (2023) [6]

Structural Decomposition
Analysis (SDA); a

non-competitive input–output
model and a structural

decomposition model; Theil’s
index; Spatial Durbin Model

(SDM);

It delves into diverse factors
influencing carbon emission
efficiency from multifaceted

angles. These factors
encompass emission intensity,

production inputs, shifts in
output composition, demand
scale, urban sprawl, industrial

composition, economic
concentration, manufacturing

clustering, green finance
integration, eco-innovation,

and technological
advancement, among others.

The primary aim is to empirically investigate the direct impacts of EIP policies on
UCEE and to unravel the underlying mechanisms. This study makes several notable contri-
butions. Firstly, it delves into the role of EIPs in environmental governance, with UCEE as
the central focus, thereby enriching the discourse on EIPs within the environmental domain.
Secondly, it narrows its focus to China’s specific context, utilizing precise sample data at
the prefecture level to discern policy impacts on cities more accurately. Thirdly, from a
methodological perspective, it introduces an innovative application of the multi-period
DID method to EIP research, broadening the analytical toolkit for examining EIP’s contribu-
tions to environmental governance while effectively addressing endogeneity concerns, thus
bolstering the scientific robustness and validity of the findings. Lastly, the study advances
the understanding of EIP policies’ influence on urban carbon emissions by dissecting and
validating the underlying mechanisms both theoretically and empirically. This deeper
analysis elucidates the varying effects of EIP policies on urban characteristics, contributing
to a more nuanced theoretical comprehension of EIP policy.

3. Theoretical Analysis and Research Hypothesis
3.1. Direct Effect of EIP on UCEE

In 2003, the Ministry of Ecology and Environment of China promulgated the “National
Eco-Industrial Park Declaration, Naming, and Management Regulations”, underscoring the
imperative for EIP initiatives to be grounded in sustainable development principles and to
serve as catalysts for local economic transformation and environmental amelioration [24].
Theoretically, EIPs hold the potential to enhance UCEE through dual mechanisms. Firstly,
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they can effectively curtail urban carbon emissions, which stem from energy consumption
and are categorized into direct and indirect emissions [23,25]. Direct emissions emanate
from fossil fuel combustion, while indirect emissions include those from electricity and heat
production. The industrial symbiosis characteristic of EIPs fosters symbiotic relationships
among enterprises within the industry, forming cohesive economic entities based on shared
or complementary resources. Consequently, industrial symbiosis influences material and
energy flows within the park, impacting energy consumption, industrial processes, and
waste management, thereby influencing the park’s carbon emissions [18]. Secondly, EIPs
can bolster urban productivity. Positioned as the third generation of industrial parks
in China, EIPs serve as hubs for ecological industries and upstream and downstream
enterprises [12]. Substantial government investments in park infrastructure and policies
attracting high-quality enterprises foster balanced upstream and downstream relationships
and scale effects [12,13]. Consequently, the agglomeration and selection effects engendered
by EIP establishment can drive productivity enhancements [21]. Building upon these
premises, this paper posits the following research hypothesis:

H1. The EIP policy contributes to the enhancement of UCEE.

3.2. Indirect Effect of EIP on UCEE

The aforementioned analysis leads to the inference that EIPs exert a favorable influence
on UCEE. However, the precise mechanisms through which EIPs influence UCEE warrant
meticulous examination. Based on institutional theory, this study constructed the research
framework depicted in Figure 1. This study will undertake a thorough investigation into
the implementation of EIP policies, delving into the multifaceted ways in which such
policies bolster UCEE, specifically through their impact on industrial structure, innovation
ability, and agglomeration effects.
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Firstly, the implementation of EIP policies serves as a catalyst for optimizing and
enhancing the urban industrial economic landscape in designated cities, thus bolstering
UCEE. On one hand, stringent environmental regulations are enforced by the government
alongside meticulous assessment criteria governing emissions, energy consumption, and
operational efficiency for enterprises seeking entry into the EIP [24,27]. Adherence to these
criteria becomes imperative for enterprises aspiring to expand within the EIP, creating an
environmental barrier that compels potential entrants, particularly those characterized
by “high pollution, high emissions, and high energy consumption”, to recalibrate their
developmental approaches [22]. This pressure fosters a paradigm shift towards industrial
structural optimization. On the other hand, enterprises within the EIP must continu-
ally meet the government’s stringent assessment criteria, fostering an expulsion effect
on pollution-intensive entities within the park [52,53]. In order to sustainably reap the
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benefits of EIP incentives, enterprises are impelled to expedite their own industrial restruc-
turing efforts. Consequently, the implementation of EIP policies facilitates the overarching
enhancement of the urban industrial framework, thereby influencing UCEE positively.

Secondly, the EIP policy fosters the establishment of urban resource clusters. As a
key environmental initiative in pilot cities, the EIP endeavors to create high-quality spatial
environments conducive to the concentration of pertinent production and innovation ele-
ments within designated geographic zones, employing a combination of incentive-driven
and regulatory measures [15,18]. This directly catalyzes the emergence of business clusters,
yielding tangible economic benefits [54]. Central to this process is the concept of economic
agglomeration. According to this theory, the EIP policy incentivizes urban enterprises to
coalesce within ecological industrial park areas, serving as spatial hubs [19]. Within these
EIPs, enterprises can effectively mitigate operational costs, expedite the exchange, and
dissemination of diverse production factors, including technology, human capital, and
financial resources, within the agglomerated setting [55]. At the regional level, economic
agglomeration and carbon emissions exhibit an “inverted N-shaped” relationship, implying
the existence of thresholds for both emission increases and decreases relative to economic
agglomeration (Zhou, 2024) [56]. Moreover, the industrial agglomeration catalyzed by
the EIP policy is poised to significantly enhance carbon emission performance. Industrial
agglomeration stands as one of the paramount spatial organizational structures within
the global economy, offering distinct advantages in resource pooling, information dissem-
ination, and economies of scale [45,46]. Recent scholarly investigations underscore the
pivotal role of industrial agglomeration in mitigating carbon dioxide emissions, revealing a
pronounced U-shaped correlation [46]. This signifies a decline in carbon dioxide emissions
during the initial phase of industrial agglomeration. Such a phenomenon stems from the
dynamic interplay of competition and collaboration among enterprises, which incentivize
the adoption of cutting-edge production technologies, thereby bolstering energy efficiency.
However, as industrial agglomeration progresses into its mature and declining phases,
emissions may experience an uptick. This resurgence can be attributed to the pitfalls of
excessive agglomeration, including resource depletion and overcapacity, ultimately exacer-
bating environmental degradation [45]. Consequently, the EIP policy is poised to foster the
establishment of resource clusters within urban centers, thereby augmenting UCEE.

Finally, the establishment of an EIP is poised to elevate UCEE by fostering heightened
levels of innovation within the city. On one front, green innovation emerges as a potent
catalyst in enhancing carbon emission management, exerting a notably positive influence
across environmentally-conscious, resource-dependent, and resource-independent urban
settings (Xu, 2021) [57]. Diverging from conventional development zones, EIPs, guided
by eco-centric developmental objectives, is predisposed towards cultivating the spatial
clustering of intellectual capital and eco-friendly enterprises. This endeavor entails the
infusion of pioneering expertise and eco-conscious manufacturing technologies, alongside
the expansion and optimization of circular economy value chains, propelled by the rip-
ple effects of knowledge and technological diffusion [24,58]. Aligned with the tenets of
green development and low-carbon imperatives, EIPs assume a proactive stance in incen-
tivizing green innovation, fostering the advancement of eco-industrial technologies and
actively introducing novel methodologies conducive to ecological industrialization [49,54].
Simultaneously, technological innovation emerges as a pivotal determinant in curbing
regional carbon footprints. Leveraging green technologies such as renewable energy and
eco-efficient manufacturing processes is a viable means to curtail fossil fuel consumption
across industrial operations, transportation networks, residential domains, and beyond,
thus enhancing carbon emission efficacy [23]. Bai et al. (2020) [59] revealed that advance-
ments in renewable energy technologies play a pivotal role in diminishing per capita carbon
dioxide emissions. Estimates suggest that digital technology solutions spanning energy,
manufacturing, agriculture and land management, construction, services, transportation,
and various other sectors hold the potential to curtail approximately 15% of global carbon
emissions [60]. Additionally, the establishment of an EIP is poised to instigate a constructive
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cycle of competition among enterprises situated within its precincts. Consequently, the
phenomenon of innovation crowding-out is expected to galvanize enterprises towards
undertaking green technology innovation endeavors, aiming to secure a competitive edge
in the marketplace, thereby fostering a reduction in environmental pollution and enhanc-
ing carbon emission efficiencies [61]. Drawing from these insights, this paper posits the
following research hypothesis:

H2. The establishment of an EIP can facilitate the advancement of UCEE through three pri-
mary mechanisms: optimizing industrial structure, bolstering agglomeration effects, and elevating
innovation ability.

4. Methods
4.1. Econometric Model

The current study empirically assesses whether the EIP policy has bolstered UCEE,
yet it necessitates addressing the common issue of endogeneity in research. Specifically,
endogeneity stems from two facets: Firstly, the non-random selection of cities for EIPs,
potentially influenced by factors like regional economic development levels and disparities
in environmental quality, which could impact UCEE. Essentially, the decision to designate
cities for EIP may correlate with urban carbon emission efficiency, thus introducing endo-
geneity concerns. Secondly, as the policy unfolds, various unobservable characteristics of
distinct cities might also influence UCEE. Consequently, enhancements in UCEE could stem
from unobserved city-related variables rather than the policy per se, further complicating
endogeneity. Hence, this paper adopts a multi-period DID model to examine the EIP
policy’s impact on UCEE. This model will juxtapose the alterations in carbon emission
efficiency prior to and post policy implementation between pilot cities and non-pilot cities,
while controlling for the non-randomness of pilot city selection and unobservant city at-
tributes affecting UCEE, effectively mitigating endogeneity issues and elucidating the net
effect of the pilot policy on UCEE. Given the temporal and regional disparities inherent in
the establishment of EIPs, the multi-period DID model is formulated.

UCEEit = α + βDIDit + θControlit + λi + µt + εit (1)

In Equation (1), the dependent variable UCEEit represents the carbon emission effi-
ciency of city i in year t. The core explanatory variable, DIDit, denotes the dummy variable
for approved EIPs, which is the product of time dummy variables and between-group
dummy variables. If a pilot city receives approval in year t, the value of DIDit for year t
and onwards is 1; otherwise, it is 0. It is worth noting that pilot cities may have multiple
EIPs. Therefore, in defining the core explanatory variable, we define cities with only one
EIP based on the year of EIP establishment; for cities with multiple EIPs, we only focus
on the earliest year of EIP establishment. θControlit represents the set of control variables,
where λi and µt, respectively, represent time fixed effects and city-specific fixed effects,
and εit represents the random error term. The core coefficient, denoted as β, measures the
net impact of EIP establishment on UCEE. If the core coefficient is significantly positive,
it indicates that approved EIP policies are conducive to improving UCEE; otherwise, it
suggests that the policy effect has not been achieved.

Employing the DID model to discern policy effects and examine the parallel trends
hypothesis necessitates that both the treatment and control groups exhibit similar trends
prior to treatment initiation—notably, the implementation of EIPs. Failure to meet this
criterion may lead to systematic disparities and endogeneity concerns within the sample
groups. While Equation (1) can elucidate the average impact of EIP establishment on
urban carbon emission efficiency, it falls short of capturing the dynamic effects across
diverse timeframes. Drawing inspiration from Gehrsitz (2017) [62], this study employs
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event analysis to expand Equation (1) into a dynamic effects model, thereby delving deeper
into the temporal ramifications of EIPs:

UCEEit = α+ β j

−1

∑
j=−4

pre jit + β0currentot + βk

5

∑
k=1

a f ter kit + θControlit + λi + µt + εit (2)

where current represents the time of implementation of the EIP policy in pilot cities,
pre-4–pre-1 denotes the four years leading up to the implementation of the EIP policy,
and after1–after5 indicates the five years following the implementation of the EIP policy.
By observing the significance of the estimated coefficients for pre-4–pre-1, it is possible
to determine whether the sample data pass the parallel trends test. Ideally, before the
implementation of the EIP policy, there should be no significant difference in the trend of
changes in UCEE between the experimental group and the control group, meaning that the
estimated coefficients for pre-4–pre-1 are not significant.

Numerous studies have highlighted the positive impact of optimizing industrial
structure, fostering agglomeration effects, and advancing innovation to enhance UCEE.
To circumvent endogeneity concerns stemming from intermediate variables, this study
predominantly examines the influence of EIP establishment on industrial structure, agglom-
eration effects, and innovation ability. Meanwhile, the theoretical analysis and validation
of the effects of industrial structure, agglomeration effects, and innovation ability on UCEE
are derived from conclusions drawn in the extant literature. Equation (1) is elaborated into
Equation (3) to conduct a mechanistic assessment.

Mit = α0 + β DIDit + θControlit + λi + µt + εit (3)

In Equation (3), Mit serves as the mediating variable, calculated, respectively, from
indicators of agglomeration effects and innovation ability. The impact of EIP construction
on the mediating variable is measured using the core coefficient β. Specifically, regression
analysis of Equation (3) indicates significance for β, thus demonstrating the significant role
of EIP construction in optimizing industrial structure, enhancing agglomeration effects,
and improving innovation ability, thereby validating the influencing mechanism. While
Equation (1) aims to investigate whether EIP construction promotes UCEE, Equation (3)
aims to explore how EIP construction facilitates the enhancement of UCEE.

4.2. Variable Definition
4.2.1. Explained Variable

To mitigate potential efficiency overestimation and account for non-radial adjustments
in inputs and outputs, this study utilizes the Super-SBM DEA model. This model incorpo-
rates unexpected outputs and is employed to evaluate the carbon emission efficiency of
each city from 2006 to 2021 (see Appendix A for specific information on the Super-SBM
DEA model).

4.2.2. Explanatory Variable

In 2008, the Suzhou Industrial Park, Suzhou New and High-tech Industrial Devel-
opment Zone, and Tianjin Economic-Technological Development Area received official
designations as national EIPs by the former Ministry of Environmental Protection, marking
the inaugural cohort of formally recognized EIPs nationwide. The process of formal EIP
approval commenced as early as 2008, with varying numbers of additional zones added in
subsequent years. Notably, there were no new additions in 2009, whereas 12 new zones
were incorporated in 2016. Consequently, the explanatory variable comprises dummy vari-
ables representing cities sanctioned as EIPs. Standardized values were assigned based on
the roster of national environmental performance workgroups published by the National
Environmental Protection Agency and the timing of approval. Cities endorsed to host
EIPs during the study period received a value of 1, constituting the experimental group in
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empirical research, while other cities were assigned a value of 0, forming the control group
in empirical research.

4.2.3. Control Variable

To mitigate potential biases in estimating carbon emissions, this study incorporates
nine control variables based on prior research and data availability: (1) Population density
(Pop) is assessed using the logarithm of population per square kilometer in urban areas.
(2) Urban economic development (lnRGDP) is gauged using the logarithm of per capita
GDP within cities. (3) Human capital (lnWage) is captured through the logarithm of average
worker wages. (4) Urbanization level (UL) is quantified using the ratio of urban population
to total population in urban areas. (5) Information development index (IDI) is determined
using the logarithm of internet user numbers in cities. (6) Industrial structure (STR) is
delineated using the share of value added by the secondary industry to GDP. (7) Foreign
direct investment (FDI) is expressed as the proportion of actual utilization of foreign direct
investment to GDP. (8) Energy consumption structure (ECS) is evaluated based on energy
efficiency. (9) Environmental regulation (ER) is assessed using the logarithm of industrial
smoke removal volume.

4.3. Data

The study employed data from Chinese prefecture-level cities, sourcing regional-
level variables from the “China Statistical Yearbook” and the EPS database. To ensure data
adequacy and completeness, cities with significant data deficiencies, such as Lhasa, Chaohu,
and Tongren, were excluded. Linear interpolation was applied to rectify missing data points
in cities with minimal gaps in certain years. Furthermore, logarithmic transformation was
utilized to address heteroskedasticity and effectively control for specific variables. Overall,
282 cities meeting the outlined criteria were selected from the initial 290 prefecture-level
cities identified in the “China Urban Statistical Yearbook” of 2003. The study spanned from
2006 to 2021. Detailed information on all data is provided in Table 2.

Table 2. Descriptive statistics.

Variables Maximum Minimum Mean Standard Deviation Observation

UCEE 1.178 0.025 0.331 0.125 4512
DID 1 0 0.064 0.245 4512
Pop 7.882 1.609 5.737 0.92 4512

lnRGDP 13.056 4.595 10.491 0.725 4512
lnWage 12.214 8.509 10.676 0.537 4512

UL 3.206 0.116 0.504 0.223 4512
IDI 17.762 5.468 13.069 1.173 4512
STR 90.97 11.7 46.769 11.177 4512
FDI 0.199 0 0.018 0.019 4512
ECS 2.51 0.041 0.549 0.164 4512
ER 25.446 0 13.032 2.169 4512

5. Analysis of Empirical Results
5.1. Benchmark Regression

Utilizing Equation (1), this study assesses the influence of EIP construction on UCEE,
thereby elucidating the interplay among key variables. Five distinct regression models
were employed, contingent upon the inclusion of control variables and the fixation of
city-specific and time effects, with the baseline regression outcomes delineated in Table 3.
It is evident from the results that the coefficient of the explanatory variable DID on the
dependent variable UCEE is significantly positive, indicating a substantial enhancement in
urban carbon emission efficiency attributable to EIP construction.
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Table 3. Benchmark regression.

(1) (2) (3) (4) (5)
UCEE UCEE UCEE UCEE UCEE

DID 0.104 *** 0.071 *** 0.074 *** 0.021 *** 0.025 ***
(0.007) (0.006) (0.006) (0.005) (0.005)

Pop −0.005 −0.043 **
(0.023) (0.021)

lnRGDP −0.004 −0.015 ***
(0.005) (0.005)

lnWage 0.008 0.020 **
(0.006) (0.008)

UL −0.096 *** −0.102 ***
(0.016) (0.015)

IDI −0.014 *** −0.010 ***
(0.002) (0.002)

STR 0.002 *** 0.000 **
(0.000) (0.000)

FDI −0.495 *** −0.473 ***
(0.072) (0.068)

ECS 0.422 *** 0.402 ***
(0.008) (0.008)

ER −0.002 ** −0.003 ***
(0.001) (0.001)

_cons 0.325 *** 0.327 *** 0.326 *** 0.245 * 0.506 ***
(0.002) (0.001) (0.001) (0.129) (0.148)

City Fe No Yes Yes Yes Yes
Year Fe No No Yes No Yes

N 4512 4512 4512 4512 4512
r2 0.041 0.708 0.764 0.839 0.861

Notes: The values in parentheses are robust standard errors. ***, **, and * are 1%, 5%, and 10% significance levels,
respectively.

Focusing on column (5) as the definitive outcome, the regression coefficient of DID on
UCEE stands at 0.025 in Table 3, signifying a 2.5% increase in carbon emission efficiency
of pilot cities at the 1% significance level following the implementation of EIP policies.
Consequently, the establishment of EIPs exerts a discernible promotional effect on enhanc-
ing the carbon emission efficiency of local urban areas. Furthermore, this research delves
into the impact of various control variables on UCEE. With the exception of human capital
(lnWage), industrial structure (STR), and energy consumption structure (ECS), all other
control variables exhibit a significant negative association with UCEE. This phenomenon
may be ascribed to factors such as heightened population density (Pop), urban economic
advancement (lnRGDP), urbanization levels (UL), and the information development index
(IDI), which contribute to increased urban carbon intensity, consequently influencing car-
bon emission efficiency. Moreover, foreign direct investment (FDI) manifests a detrimental
effect on UCEE, thereby partially validating the pollution haven hypothesis.

5.2. Robust Test
5.2.1. Parallel Trend Test

To visually ascertain the impact of EIP construction on UCEE, this study initially
depicts the annual average carbon emission efficiency of both the experimental and control
groups throughout the sample period in a time series graph, as illustrated in Figure 2.
Broadly, the experimental group demonstrates a discernible upward trajectory over the
analytical timeframe, whereas the control group displays fluctuations but also exhibits
some growth compared to the initial period of the sample. A comparison between the
two groups indicates that, prior to 2008, both maintained a synchronized trend in carbon
emission efficiency, with the control group marginally outperforming the experimental
group. However, post-2008, the UCEE of the experimental group notably surpasses that of
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the control group, with the gap between them progressively widening. This observation
leads us to infer that the establishment of EIPs facilitates the enhancement of UCEE.
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This study employs the multi-period difference-in-difference method and validates it
using the event study approach, as depicted in Figure 3. By considering the year of policy
implementation in pilot cities as the base year, we deduce that prior to the establishment
of EIPs the coefficient estimates of virtual variables for each period did not reach the 5%
significance level. This implies that UCEE did not exhibit significant improvement prior
to EIP establishment. However, in the fourth year post EIP establishment, all coefficient
estimates of virtual variables surpassed the 5% significance level. This indicates that
UCEE experienced notable enhancement in the fourth year following the establishment of
EIPs, likely attributable to the lag effect of the policies. Given that the implementation of
EIP policies often entails the adoption of novel technologies by associated enterprises, a
requisite period for adaptation and execution becomes imperative. For instance, initiatives
aimed at fostering the utilization of clean energy within EIP frameworks may necessitate
time for the establishment of fresh energy infrastructure and the gradual transition of
energy consumption patterns. In summary, this study corroborates the hypothesis of
parallel trends.

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 
Figure 3. Parallel trend test and dynamic effect estimation. 

5.2.2. Placebo Test 
The placebo test in this study aimed to discern whether the observed enhancement 

in UCEE, attributed to the establishment of EIPs, could be ascribed to random factors or 
other unobserved policy effects. Following the methodologies outlined by Qian et al. 
(2021) [63] and Li et al. (2022) [64], the study randomly reassigned the treatment indicator 
DID within the sample and then redistributed this indicator to each sample. Subsequently, 
the DID model was re-estimated using the shuffled treatment indicator 500 times. The 
estimation results of the placebo test are presented in Figure 4 The figure indicates that 
the T-values of the random samples are predominantly centered around 0, with the ma-
jority of estimated p-values exceeding 0.1, thus demonstrating a normal distribution. Con-
sequently, the findings of this study are deemed robust. 

 
Figure 4. Placebo test. 

5.2.3. PSM (Propensity Score Matching) Test 
To mitigate concerns regarding selection bias, this study further investigates using the 

propensity score matching (PSM) method. We apply a PSM-DID model that encompasses 
all control variables, employing a radius of 0.05 for matching. Only matched observations 
are retained and reintroduced into Equation (1) for regression analysis. Following a balance 
test for propensity score matching, we acquire sample data of paired cities for the experi-
mental group established by EIPs. Consequently, we reevaluate Equation (1) based on this 

Figure 3. Parallel trend test and dynamic effect estimation.



Sustainability 2024, 16, 3159 13 of 22

5.2.2. Placebo Test

The placebo test in this study aimed to discern whether the observed enhancement
in UCEE, attributed to the establishment of EIPs, could be ascribed to random factors
or other unobserved policy effects. Following the methodologies outlined by Qian et al.
(2021) [63] and Li et al. (2022) [64], the study randomly reassigned the treatment indicator
DID within the sample and then redistributed this indicator to each sample. Subsequently,
the DID model was re-estimated using the shuffled treatment indicator 500 times. The
estimation results of the placebo test are presented in Figure 4 The figure indicates that the
T-values of the random samples are predominantly centered around 0, with the majority of
estimated p-values exceeding 0.1, thus demonstrating a normal distribution. Consequently,
the findings of this study are deemed robust.
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5.2.3. PSM (Propensity Score Matching) Test

To mitigate concerns regarding selection bias, this study further investigates using the
propensity score matching (PSM) method. We apply a PSM-DID model that encompasses all
control variables, employing a radius of 0.05 for matching. Only matched observations are
retained and reintroduced into Equation (1) for regression analysis. Following a balance test
for propensity score matching, we acquire sample data of paired cities for the experimental
group established by EIPs. Consequently, we reevaluate Equation (1) based on this dataset,
and the regression outcomes are displayed in Column (1) of Table 4. Notably, the regression
coefficients of EIP on UCEE remain statistically significant at the 1% level. Thus, the
implementation of EIPs appears unaffected by sampling bias, affirming the robustness of
the baseline regression results.

Table 4. Additional robustness test.

PSM-DID Replace Method Lag Effect Changing Sample Ranges
UCEE UCEE UCEE UCEE UCEE

DID 0.025 *** 0.026 *** 0.036 *** 0.024 *** 0.027 ***
(0.006) (0.005) (0.009) (0.005) (0.005)

Controls Yes Yes Yes Yes Yes
City Fe Yes Yes Yes Yes Yes
Year Fe Yes Yes Yes Yes Yes
_cons 0.333 ** 0.720 *** 0.687 ** 0.248 0.506 ***

(0.152) (0.155) (0.329) (0.156) (0.148)
N 4512 4512 4230 3384 4448
r2 0.861 0.889 0.338 0.899 0.861

Notes: The values in parentheses are robust standard errors. ***, ** are 1%, 5% significance levels, respectively.
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5.2.4. Replace the Carbon Emission Efficiency Measurement Method

To uphold the scientific rigor and persuasiveness of the test outcomes, we recalculated
the urban replacement efficiency employing the super-efficiency CCR model to reevaluate
UCEE [33], with other variables held constant. The regression outcomes are delineated in
Column (2) of Table 4. Notably, the regression coefficient of the explanatory variable DID
on the explained variable UCEE persists as significantly positive. This affirmation aligns
with the principal findings of this study, underscoring the steadfastness of the results.

5.2.5. Lag Effect

Some studies propose that the influence of EIP policies on UCEE might manifest lag
effects [63]. Moreover, given the potential bidirectional causality between EIP policies and
carbon emission efficiency, this paper addresses endogeneity concerns by lagging the policy
time by one period. The regression outcomes, displayed in Column (3) of Table 4, validate
the resilience of the earlier findings.

5.2.6. Changing Sample Ranges

Taking into account the delayed influence of EIP policies on pilot cities, we omit
sample data from periods after 2017. It is important to highlight that the distinctive
geographical positioning and economic significance of the four directly-administered
municipalities—Beijing, Shanghai, Guangzhou, and Shenzhen—might attenuate the effi-
cacy of alternative energy-saving and emission-reduction measures, thereby complicating
the discernment of EIP policy effects. Consequently, we opt to exclude sample data from
these four cities. The regression outcomes are depicted in columns (4) and (5) of Table 4,
reaffirming the steadfastness of the study’s conclusions.

5.2.7. Eliminating the Influence of Other Relevant Policies

In addition to EIP policies, there may exist other policies during the study period
that could impact UCEE. To uphold the scientific integrity of our findings, it is imperative
to mitigate the influence of these alternative policies. Previous research has indicated
that carbon emission trading policies [65] and low-carbon city pilot policies [66] wield
substantial influence on urban carbon emission efficiency. Consequently, in this study,
we adopt a similar approach by assigning a value of 0 prior to the implementation of
these policies and 1 thereafter, thereby constructing interaction terms DID1 for the carbon
emission trading market policy and DID2 for the low-carbon city pilot policy in Equation (1).
The resultant outcomes are delineated in Table 5. Even subsequent to accounting for the
effects of other policies, the regression coefficient of DID remains statistically significant,
thus affirming the robustness of our study’s conclusions.

Table 5. Eliminating the influence of other relevant policies.

Benchmark Regression Excluding Carbon Emission
Trading Policies

Excluding Low-Carbon City
Pilot Policies Excluding the Two Policies

UCEE UCEE UCEE UCEE

DID 0.025 *** 0.024 *** 0.024 *** 0.023 ***
(0.005) (0.005) (0.005) (0.005)

DID1 −0.012 *** −0.022 ***
(0.005) (0.005)

DID2 0.011 *** 0.016 ***
(0.003) (0.003)

Controls Yes Yes Yes Yes
City Fe Yes Yes Yes Yes
Year Fe Yes Yes Yes Yes
_cons 0.506 *** 0.477 *** 0.503 *** 0.447 ***

(0.148) (0.148) (0.148) (0.148)
N 4512 4512 4512 4512
r2 0.861 0.861 0.861 0.862

Notes: The values in parentheses are robust standard errors. *** is 1% significance level.
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5.3. Transmission Mechanism Regression

As outlined in Hypothesis 2, intermediary variables including industrial structure, ag-
glomeration effects, and innovation ability are chosen. Industrial value added (IAV) [41,52]
and industrial enterprise profits (IEP) [43] serve as indicators of industrial structure, while
the ratio of the sum of value added in the secondary and tertiary industries to the adminis-
trative area assesses economic agglomeration (EA) [45,48,58]. Additionally, the logarithm
of non-agricultural output to administrative area is utilized to measure industrial agglomer-
ation (PA) [54,55,67] effects. Technological innovation (TI) [68,69] is gauged by the number
of patented inventions, green innovation (GI) [51,57] by the quantity of green patents, and
digital innovation (DI) [70] by the number of patents related to the digital economy. Initially,
this section employs the bootstrap method to scrutinize the three mechanisms by which the
establishment of EIPs impacts the enhancement of carbon emission efficiency, unveiling
intermediary effects in all instances. Subsequently, a further examination of the influence of
EIP establishment on the intermediary variables is undertaken, with the results presented
in Table 6.

Table 6. Mechanism regression.

Industrial Structure Agglomeration Effects Innovation Ability
IAV IEP EA IA GI TI DI

DID 0.068 *** 0.207 *** 0.107 *** 0.029 ** 0.115 *** 1.125 *** 0.390 ***
(0.003) (0.012) (0.009) (0.011) (0.006) (0.071) (0.021)

Controls Yes Yes Yes Yes Yes Yes Yes
City Fe Yes Yes Yes Yes Yes Yes Yes
Year Fe Yes Yes Yes Yes Yes Yes Yes
_cons 0.029 −1.032 *** −7.067 *** −2.087 *** 0.405 ** 5.607 ** 1.627 **

(0.093) (0.376) (0.279) (0.351) (0.191) (2.241) (0.689)
N 4230 4189 4512 4512 4512 4506 4209
r2 0.933 0.868 0.996 0.994 0.709 0.730 0.783

Notes: The values in parentheses are robust standard errors. ***, ** are 1%, 5% significance levels, respectively.

Upon integrating control variables, the coefficients of DID for the seven selected
indicators are all notably positive at the 1% or 5% significance level. This suggests that the
implementation of EIPs effectively stimulates the enhancement of UCEE by optimizing
industrial structure, augmenting agglomeration effects, and bolstering innovation ability,
thereby affirming Hypothesis 2.

5.4. Heterogeneity Analysis
5.4.1. Analysis of Heterogeneity across Geographical Locations

China’s expansive territory exhibits notable disparities in resource distribution and
development strategies across its regions, rendering location a pivotal determinant influ-
encing carbon emission efficiency. Our study sample is categorized into eastern, central,
and western regions based on the classification provided by the National Bureau of Statis-
tics of China, with regression findings elucidated in Table 7. Our analysis reveals that
the implementation of EIPs significantly enhances carbon emission efficiency in eastern
cities and central regions yet fails to yield significant results in western cities. Notably,
the significance level is more pronounced in the eastern region compared to the central
region. This discrepancy may stem from the comparatively higher concentration of heavy
industries such as energy, chemicals, materials, and metallurgy in the western region, juxta-
posed with the eastern cities’ substantial advantages in high-end innovation, technology,
market capacity, and environmental conditions. The introduction of EIPs is anticipated to
catalyze technological innovation within enterprises, elevate urban innovation prowess,
and, consequently, foster UCEE.
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Table 7. Heterogeneity analysis based on city location.

(1) (2) (3)
Eastern Region Central Region Western Region

DID 0.058 *** 0.031 *** 0.098 *** 0.018 * 0.063 *** 0.016
(0.008) (0.007) (0.014) (0.011) (0.017) (0.012)

Controls No Yes No Yes No Yes
Year Fe Yes Yes Yes Yes Yes Yes
City Fe Yes Yes Yes Yes Yes Yes
_cons 0.373 *** 0.750 ** 0.313 *** 0.685 *** 0.289 *** 1.287 ***

(0.002) (0.379) (0.001) (0.213) (0.002) (0.246)
N 1600 1600 1584 1584 1328 1328
r2 0.763 0.844 0.699 0.845 0.763 0.879

Notes: The values in parentheses are robust standard errors. ***, **, and * are 1%, 5%, and 10% significance levels,
respectively.

5.4.2. Analysis of Heterogeneity in Urban Resource Endowment

Variations in resource endowments among different cities can significantly influence
the efficacy of environmental policies. Therefore, it is imperative to examine the divergent
impacts of EIPs on carbon emission efficiency across distinct resource endowment contexts.
According to the National Development and Reform Commission’s “National Sustainable
Development Plan for Resource-based Cities (2013–2020)”, the sampled cities are categorized
into resource-based and non-resource-based, primarily distinguished by whether mineral
resource development and processing constitute the dominant industry [71]. Resource-
based cities primarily rely on the development and utilization of natural resources to fuel
their economic growth. These resources encompass a spectrum, including oil, natural gas,
minerals, and timber. Typically, such cities are deeply involved in the extraction, process-
ing, and exportation of these resources as their principal economic pursuits, thereby being
significantly impacted by fluctuations in natural resource prices and markets. In contrast,
non-resource-based cities’ economic advancement is not primarily contingent upon the ex-
ploitation of natural resources; rather, it hinges on diverse industries or service sectors such
as manufacturing, finance, technology, education, and tourism. The economic framework
of non-resource-based cities is characterized by greater diversification, rendering them
more adaptable to economic structural shifts and fluctuations in market dynamics. The
efficacy of EIP implementation in enhancing carbon emission efficiency is notably more pro-
nounced in non-resource-based cities compared to resource-based counterparts, implying
that existing EIPs have not sufficiently optimized or upgraded the industrial structure of
resource-based cities nor have they alleviated the so-called “resource curse.” Furthermore,
resource-based cities exhibit excessive dependence on mineral resources, manifesting clear
path dependence and lock-in effects. Consequently, current EIP development policies
inadequately address all endowed characteristics of resource-based cities, thus failing to
adequately promote improvements in resource-based UCEE. Detailed regression findings
are outlined in Table 8.

Table 8. Heterogeneity analysis based on urban resource dependence.

(1) (2)
Resource-Based Cities Non-Resource-Based Cities

DID 0.012 −0.002 0.077 *** 0.033 ***
(0.022) (0.015) (0.006) (0.005)

Controls No Yes No Yes
Year Fe Yes Yes Yes Yes
City Fe Yes Yes Yes Yes
_cons 0.300 *** 0.622 *** 0.344 *** 0.754 ***

(0.001) (0.194) (0.001) (0.221)
N 1792 1792 2720 2720
r2 0.725 0.871 0.769 0.857

Notes: The values in parentheses are robust standard errors. *** is 1% significance level.
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6. Conclusions and Policy Implications
6.1. Conclusions

In recent years, with the exacerbation of global climate change, policymakers world-
wide have intensified their commitment to employing policy interventions aimed at en-
hancing carbon emission efficiency, thereby fostering environmental preservation and
sustainable development. This study utilizes panel data encompassing 282 prefecture-level
cities in China spanning from 2006 to 2021 to establish a quasi-natural experiment cen-
tered on the nationwide implementation of EIPs. Employing the difference-in-difference
method, the empirical analysis scrutinizes the impact of EIP policies on UCEE. The princi-
pal research findings are outlined as follows: Firstly, the implementation of EIP policies
notably enhances the carbon emission efficiency of cities. Specifically, for pilot cities, the
eco-industrial park policy yields a 2.5% increase in UCEE. Secondly, EIP policies exhibit
a certain lagged effect in promoting UCEE, typically manifesting in the fourth year post
policy implementation. Thirdly, the establishment of EIPs facilitates UCEE improvement
by optimizing industrial structure, augmenting agglomeration effects, and elevating in-
novation ability. Lastly, the implementation of EIPs substantially boosts carbon emission
efficiency in the eastern and central regions, with comparatively diminished effects ob-
served in the western region. The promotional impact on resource-based cities is deemed
statistically insignificant, whereas it is significant for non-resource-based cities.

6.2. Policy Implications

There is a need for the government to intensify efforts in advancing the establishment
of EIPs throughout China and to broaden the reach of pilot initiatives. Named EIPs
demonstrate a more pronounced catalyzing effect compared to those in the approval
phase. Hence, eligible industrial parks should be actively encouraged to seek EIP pre-
construction qualifications, and approved EIPs should expedite park development to secure
formal designation. Moreover, it is imperative to promptly compile successful practices
and accomplishments from pilot cities in EIP development to serve as a blueprint for
promoting EIP establishment in other locales. Given the delayed environmental advantages
stemming from EIP policies in local municipalities and the escalating marginal gains in
enhancing UCEE, it is imperative for the government to bolster support for park policies
and funding. This could entail augmenting tax incentives, implementing preferential
land policies, facilitating technological upgrades and assistance, and intensifying efforts to
attract skilled professionals, thereby ensuring the sustained and resilient growth of EIPs.

Leverage the synergistic effects stemming from EIP infrastructure and optimize in-
dustrial structure. The government must thoroughly assess the present state, potential,
and forthcoming trajectories of industries. Subsequently, strategic integration of diverse
enterprises and projects that harmonize with existing industries should be pursued to forge
competitive industrial chains. This entails fostering the lateral expansion of interconnected
industries, fostering industry clusters, and bolstering overall industry competitiveness.
Moreover, the Chinese government should accord priority to technological advancements.
Through policy incentives and targeted initiatives, it can implement innovation-centric
strategies, continually explore untapped development avenues, appropriately augment
funding allocations, concentrate on bolstering technology-oriented enterprises, and facili-
tate the technological metamorphosis of conventional pollution-intensive sectors. Enter-
prises ought to proactively respond to governmental policies, hasten the shift of traditional
industries towards high-tech domains, and progressively phase out equipment character-
ized by high pollution and energy consumption.

In addition, given the varied environmental benefits of EIP policies across different
cities, the Chinese government must deeply comprehend the economic and social develop-
ment contexts of pilot cities when enacting policies. This understanding should encompass
factors such as urban industrial structure, economic development status, population size,
and local resource and environmental conditions. By conducting a comprehensive analysis
of these factors, the challenges and potential impacts of EIP policies in diverse urban
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settings can be accurately gauged, thereby furnishing a solid scientific foundation for policy
adjustments. Furthermore, it is imperative to seamlessly integrate EIP policies into the exist-
ing industrial landscapes of respective locales. This entails a thorough consideration of the
advantageous and distinctive industries prevalent in the area, with a focus on prioritizing
these sectors for policy implementation. Such an approach ensures that, while EIP policies
yield environmental benefits, they also align with the inherent economic development
trajectories of urban regions.

6.3. Limitations

However, this study has certain limitations. Firstly, it exclusively relies on data from
Chinese prefecture-level cities, thereby constraining the generalizability of the research
findings to the Chinese context. Future research endeavors should adopt a comparative
perspective, encompassing similar environmental policies implemented in other coun-
tries besides EIPs. Secondly, this study employs a multi-period difference-in-difference
approach to evaluate the impacts of EIP policies. While this method is well-suited for
panel data analysis, its implementation may pose challenges in cases of significant data
gaps. Lastly, this study solely examines the environmental ramifications of EIP policies
on UCEE, neglecting to simultaneously investigate their economic and social implications.
Subsequent research should delve into the economic and social dividends yielded by EIP
policies, further elucidating the tripartite effects of such policies.
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Appendix A

Unlike conventional green total factor productivity assessments, determining carbon
emission efficiency necessitates accounting for the total volume of carbon emissions. Hence,
a methodical and comprehensive consideration of input and output indicators is imperative
for constructing carbon emission efficiency. Drawing from the environmental production
and directional distance functions introduced by Fare et al. [72], this paper identifies
input variables for carbon emission efficiency, encompassing labor, capital, and energy,
while city GDP serves as the anticipated output, and city carbon emissions constitute the
unexpected output. Regarding calculation methodologies, given that the standard SBM
model frequently yields efficiency values of 1 for multiple cities post-calculation, rendering
comparisons of carbon emission efficiency unfeasible and, consequently, affecting the
accuracy of regression outcomes, this paper further develops a super-efficiency SBM DEA
model integrating unexpected outputs, inspired by Li’s [73] proposed super-efficiency
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model for calculating carbon emission efficiency. The general form of the Super-SBM DEA
model is as follows.

Min ρSE =

1
m ∑m

i=1
xi
xik

1
s ∑s

r=1
yr
yrk

s.t.
n

∑
j=1,j ̸=k

xjλj ≤ x;
n

∑
j=1,j ̸=k

yjλj ≤ y

n

∑
j=1,j ̸=k

xijλj+si
− = xik, i = 1, 2, . . . , m

n

∑
j=1,j ̸=k

yijλj−sr
+ = yrk, i = 1, 2, . . . , s

n

∑
j=1,j ̸=k

λj = 1, x ≥ xk, y ≤ yk, j = 1, 2, . . . , n(j ̸= k)

y ≥ 0, λ ≥ 0, sr
+ ≥ 0, si

− ≥ 0

In the above equation, ρSE represents the efficiency value, where x and y denote input
and output variables, respectively. The number of input variables is denoted by m, while
the number of output indicators is denoted by s. The slack variables for the input and
output are represented by si

− and sr
+, respectively. The weight vector is denoted by

λ. The constraint for the relative effectiveness of the test unit DEA is that ρSE ≥ 1 and
si
− = sr

+ = 0. DEA is considered weakly effective when ρSE ≥ 1 and either si
− ̸= 0

or sr
+ ̸= 0. Conversely, when ρSE < 1, the calculation is relatively invalid, indicating

redundancy and suggesting that both the input and output need improvement for decision-
making units to be considered valid. This approach allows us to calculate the carbon
efficiency of each city.
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