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Abstract: Commercial electric vehicles (EVs) have increasingly gained interest from urban freight
companies in the past decade due to the introduction of economic and policy drivers. Although these
factors promote urban freight electrification, some barriers hinder the transition to fully electric fleets,
such as the significant monetary investment required to replace the current internal combustion
engine vehicles (ICEV) and the lack of readily available electric freight vehicles. Due to these barriers,
for the foreseeable future, urban freight companies will operate mixed fleets with a combination of
EVs and ICEVs to balance their cost/benefit trade-offs. This intermediate operational stage will allow
companies to adjust their operations, test EVs, and decide if a fully electric fleet is the best choice.
This paper focuses on urban last-mile deliveries in the USA and proposes a long-term planning model
to explore the effects of external factors (i.e., fuel costs) on planning decisions (i.e., EV share) for a
mixed fleet. In the context of this paper long-term planning is the planning for the infrastructure
needed for the introduction of EVs (i.e., fleet composition and charging station location). The goal of
the proposed model is to minimize the fuel, EV, ICEV, and EV charger costs. The results show that
the EV share of a mixed fleet is affected by gasoline and electricity prices and the distances traveled
in a given network. This paper shows that the EV share of a mixed fleet increases when the gasoline
cost increases and the electricity cost decreases.

Keywords: electric vehicles; internal combustion engine vehicles; mixed fleet; urban freight;
long-term planning

1. Introduction

Freight fleets, such as freight carriers, and delivery and shipping companies, are con-
sidering or have started transitioning to electric vehicle (EV) fleets [1–4]. The introduction
of public regulations such as urban parking restrictions that favor EVs and low emissions
zones [5] and companies’ desire to move towards carbon neutrality [1] lead to an increase
in urban freight EV adoption, and a reduction in gasoline- and diesel-powered vehicles. EV
purchasing incentives, such as tax rebates help companies acquire more EVs. Research has
shown that incentives for using EVs will increase the purchase rate of hybrid and electric
vehicles as long as there are high gasoline prices and high vehicle utilization [6]. Subsi-
dies are the most effective way of increasing EV adoption and general economic growth
compared to the effects of fuel prices. Additionally, the combination of increasing fuel
prices and improved productivity in battery manufacturing with subsidies can provide a
further boost in EV adoption [7]. A major decision during the long-term planning of a fleet
transitioning to EVs is investing in new infrastructure and incorporating it into existing
operations. In this study, we consider EV-related infrastructure the EVs themselves, and the
charging stations required to recharge the vehicles. Freight operators face the challenge
of incorporating the new infrastructure into the existing one, which currently comprises
internal combustion engine vehicles (ICEVs) and hub locations. Refueling/recharging
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needs, vehicle characteristics (e.g., vehicle range), and associated costs vary for EVs and
ICEVs and affect fleet operations. The urban freight companies balance the cost/benefit
trade-off when introducing EVs to their fleet by deciding the most appropriate EV share.
This decision is based on each company’s goals and external factors, such as costs and city
network. This work provides a method that can help companies make the best EV share
decision for their goals considering external costs (i.e., fuel, electricity, and EV cost).

Several barriers are hindering commercial EV adoption in urban freight companies,
one of these barriers is the lack of a large-scale change in the existing recharging infrastruc-
ture, i.e., a widespread charging network. At the same time, charging service providers will
not invest heavily in infrastructure until there is a high enough demand for EVs. Another
challenge for transitioning to fully electric fleets is that EV service providers and charg-
ing infrastructure companies do not offer enough supply to meet the demand for using
commercial EVs [8]. There is also unreliability of EV suppliers for sourcing vehicle parts
for production [9]. Some of the main EV elements that need to be improved for freight
operations are charging times and vehicle range. An additional barrier in transitioning
to fully electric fleets is that operators of freight vehicle fleets are not able or willing to
invest financially in changing their whole fleet to electric [8]. Furthermore, the high cost of
manufacturing batteries creates a need for additional resources to keep EVs operational [10].
Interrelated public policies are still being developed for incentivizing and supporting the
use of EVs by urban freight operators [8], while there is a lack of universal standards and
regulations for EV markets and electric facilities [10]. All the barriers mentioned above
result in a transitional period where carriers have to operate with fleets that include both
EVs and ICEVs.

For the past twenty years sustainability has been a focus for companies operating in
the freight sector, due to the high environmental impact of freight transport and increasing
regulations for greener approaches in transportation. Many studies focus on moving
to fully electric fleets and how EVs can be beneficial for companies in terms of costs,
emissions, and business. Feng and Figliozzi [11] identify break-even points where EVs
become competitive. They use a deterministic integer programming model to analyze the
competitiveness of commercial EVs and mention that it is important for fleet operators
interested in replacing ICEVs with EVs to understand how the operating and maintenance
(O&M) costs and salvage values change over time. The authors compare a conventional
and an electric truck in a similar size category under different utilization and fuel efficiency
scenarios. The results show that electric trucks outperform diesel trucks when fuel prices
are considered and the diesel trucks’ efficiency is low and utilization is high. Additionally,
Figliozzi et al. [6] evaluate environmental and policy issues, such as greenhouse gas (GHG)
taxes, by using an integer programming vehicle replacement model (VRM). The authors
provide a study of the monetary, emissions, and energy consumption trade-offs associated
with distinct vehicle technologies (conventional fossil fuel, hybrid, and electric) using real-
world market and efficiency data. This study shows that tax incentives are needed for EVs
to be economically competitive with moderate fuel prices (fuel prices are representative of
the market at the time of publication), higher initial purchase costs for EVs, and no carbon
taxes. Hub placement and resource allocation are other challenges freight operators face
during the long-term planning process. Establishing hubs to improve the urban freight
network is a well-studied problem. Laporte and Nobert [12] introduce the problem of
selecting the location of a single depot while minimizing the depot operating and total
routing costs. Murtagh proposes a large-scale nonlinear programming algorithm [13] for
the solution of the multi-depot location-allocation problem. Gendron and Crainic [14]
propose a branch-and-bound algorithm to solve the multi-commodity location problem for
a heterogeneous fleet of containers. Campbell [15] proposes optimization formulations for
the single and multiple allocation p-hub median problems and presents two heuristics for
the solution of the single allocation problems. Recent studies introduce new frameworks
and solutions based on [15] using new objectives and applications [12–16]. For example,
Taherkhani et al. [17] develop mathematical models to find how many hubs to locate
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and where, how to allocate demand nodes to the hubs, the optimal design of the hub
network, and optimal routes with the objective of maximizing profit. New hub location
approaches have been developed to pivot to more sustainable solutions, such as identifying
the impact of depot location, fleet composition, and routing decisions on vehicle emissions
in city logistics [18], minimizing air and noise pollution [19], and including the cost of
environmental and social aspects in the decision-making process [20].

Additionally, an important part of planning for the introduction of EVs in a freight
fleet is the charging strategy. The fleet charging strategy can be based on the time of day
the vehicles are charged. The three charging scenarios, in this case, are charging any time
during the day, daytime charging, and overnight charging. Although when implementing
the anytime strategy the initial cost per vehicle is lower because all vehicles do not charge
at the same time and fewer charging stations are needed, overnight charging is favorable
in terms of scheduling. The reason overnight charging is preferable to anytime charging
in terms of scheduling is that daily operations and costs are predictable and the charging
schedule does not have to be adjusted based on routes and time windows. Additionally,
overnight charging can be less costly in the long term due to utility charging rates. Finally,
daytime charging is the most costly option because of both the initial installation cost and
the utility charging rates during the day [21].

Few studies have focused on planning for mixed fleets with both ICEVs and EVs.
Authors in [22] present an optimization framework for deriving an optimal combination
of EVs with ICEVs in urban freight transportation (UFT) using portfolio optimization
techniques. This framework can be used by a UFT operator interested in replacing ICEVs
with EVs in their fleet. The objective function is a combination of the total cost and the
variance of some uncertain parameters, such as the purchase cost of EVs and the price
fluctuation of fossil fuels.

This work builds upon existing studies [23–25] that focus on refueling/recharging a
mixed freight fleet with EVs and ICEVs. To date, there are no studies that focus on the
long-term planning decisions for mixed freight fleets while examining how changes in
external factors affect these planning decisions. In this study, we assume that a freight
carrier plans to purchase EVs and utilize them along with its existing ICEV fleet.

The goal of this study is to provide a simple long-term model for freight EV adoption
and understand how the model is affected by the delivery network and fuel/electricity
costs. The applicability of our methodology is achieved by proposing a model that is easy
to implement and requires data that most companies already have (e.g., demand data,
hub locations, customer locations) or can be found online (e.g., vehicle and charger costs,
lifetime, and maintenance costs). To understand the effects of the delivery network and
fuel/electricity costs on the EV share, we test the model in 5 different U.S. cities with
different delivery networks and fuel/electricity costs.

While we present results for 5 different U.S. cities, the goal of this work is not to
compare the results between cities but to deeply understand what we can expect from the
model application in different markets. EV share results should not be compared between
cities because multiple factors change between cities, such as the local demand, the delivery
network, as well as, the fuel and/or electricity costs. It is important to note that we do not
consider EV adoption factors that cannot be modeled by most companies, like EV market
availability, EV regulations and incentives, and willingness to change vehicle operations.

This study proposes a linear optimization model that identifies the EV share of the
fleet, assigns the selected EVs and ICEVs to demand nodes, and decides the number
and location of the new EV charging stations. The proposed model minimizes the total
cost of operating a mixed fleet under a variety of constraints. For identifying the fleet
composition, we consider that the freight carrier already owns ICEVs and will not purchase
more, and will purchase the appropriate number of EVs, as determined by the optimization
model. The selected EVs and ICEVs are allocated to each hub and assigned to the customers.
The customers in this case are aggregated in demand nodes located at the centers of the
neighborhoods in the study areas. The EV charging stations are located in the hubs where
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EVs are assigned and all hubs are delivery stations that already exist and are owned by
the freight carrier. The EVs are charged during the night at the hub locations. The costs
under consideration are fuel costs for refueling/recharging the fleet, ICEV, EV, and EV
charger maintenance costs, and the initial investment costs for purchasing EVs and EV
charging stations. We assume that companies will apply the model annually to review their
planning decisions, hence the model is used to estimate the best fleet compositions based
on the costs of the next year. Five scenarios (including a baseline scenario) are applied to
test the model and explore the effects of external changes on the planning decisions, These
scenarios explore how changes in gasoline and electricity costs, as well as, EV purchasing
incentives affect the mixed fleet composition. The model is used to explore the vehicle
share results in 4 US cities with different electricity and gasoline costs, and hub-demand
node networks.

The contribution of this work lies in the fact that it proposes a long-term infrastructure
and fleet planning model with an evaluation of how external factors affect private and
public planning. The proposed model can be used by most freight delivery companies
because it does not require extensive data sources that small companies might not have
access to.

2. Materials and Methods
2.1. Methodology

In this section, we present the methodology followed for developing the proposed lin-
ear optimization long-term planning model. First, we present the assumptions made for the
model formulation. Then, we present the model formulation, the network, the parameters,
the decision variables, the objective function, and the constraints.

2.1.1. Assumptions

For the formulation of the long-term planning model, we make the following assumptions:

• The EV and ICEV fleets are homogeneous. This means that all EVs and ICEVs have
the same characteristics (e.g., load capacity).

• The EVs charge fully charge overnight, and do not recharge during the day.
• The available grid capacity is enough to accommodate all charging stations.
• The available grid capacity is cumulative and distributed equally across all hub locations.
• The demand nodes represent aggregate demand points and not specific client locations,

and are located at the center of the neighborhoods of the study area.
• The demand at each demand node is the same.
• The hub locations already exist and are owned by the freight carrier.
• We consider the existing customer demand for each of the hubs based on the outbound

number of vehicles on an average day.
• We do not take into account any degradation of the lithium-ion batteries used in the

freight EVs for the lifetime costs of these vehicles.

2.1.2. Model Formulation

The proposed model aims to create the most appropriate plan for a company that
wants to operate a mixed fleet of EVs and ICEVs and deploy these vehicles from its hubs.
We consider a fleet composed of EVs and ICEVs, a set of demand nodes, and a set of hub
locations for the placement of the EV charging stations and the mixed fleet (Figure 1). Using
a mixed integer programming (MIP) formulation we want to find (i) which hubs should
have EV charging stations, (ii) the share of EVs and ICEVs in the mixed fleet, i.e., the total
number of EVs and ICEVs needed to meet the customer demand, and (iii) how to distribute
the EV and ICEV fleets to minimize total costs.

Finding the best hubs for EV charging stations is considered part of the infrastructure
for EV adoption since the establishments will be planned once for the particular fleet size
and composition, and the customer demand (at least for the next year). We aim to find the
optimal locations for charging stations, and which hubs will accommodate EVs (i.e., have
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charging stations) while minimizing the fuel cost, EV cost, ICEV cost, and EV charging
station cost.

Figure 1. Visual outline for the long-term planning network.

Notation and definitions
I set containing all demand nodes, I = |I| number of demand nodes
K set of candidate hubs, K = |K| number of candidate hubs
T set of charging stations, T = |T| number of charging stations per hub
J1 set of EVs, J1 = |J1| max number of EVs
J2 set of ICEVs, J2 = |J2| max number of ICEVs
Parameters
Network inputs
mki ∈ R, k ∈ K, i ∈ I, max distance traveled from hub k to demand node i in miles
di ∈ R, i ∈ I, demand at demand node i in number of vehicles
evl f ∈ R, EV lifetime (years)
icevl f ∈ R, ICEV lifetime (years)
cl f ∈ R, EV charging station lifetime (years)
Budgets
ecap, annual available electric grid capacity in kWh, ecap ∈ R
Costs
elc ∈ R, the cost of establishing one Level 2 EV charging station in USD
evc ∈ R, the cost of purchasing one EV Ford E-transit in USD
ex ∈ R, electricity expenditure in kWh of a charging station for one overnight charge

per EV per day for one year
fe ∈ R, gasoline cost per mile (USD/mile), fe ∈ R
fice ∈ R, electricity cost per mile (USD/mile)
evm ∈ R, maintenance cost for the lifetime of one EV in USD
icevm ∈ R, maintenance cost for the lifetime of one ICEV in USD
icevc ∈ R, the cost of purchasing one ICEV Mercedes-Benz Metris Cargo Van
cm ∈ R, maintenance cost for the lifetime of one EV charging station in USD
Variables
The decision variables for the model are set to answer the questions for the long-term

planning of a mixed freight fleet. The questions we aim to answer are; What is the best
fleet composition?; Where EV chargers should be placed?; and What is the best vehicle
assignment to the customer demand?

The model decision variables are:
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zkij1 ∈ {0, 1}, k ∈ K, i ∈ I, j ∈ J1, 1 if EV j1 is assigned to demand node i from
hub k. 0, otherwise.

pkij2 ∈ {0, 1}, k ∈ K, i ∈ I, j ∈ J2, 1 if ICEV j2 is assigned to demand node i from
hub k, 0, otherwise.

ykt ∈ {0, 1}, k ∈ K, t ∈ T, 1 if charging station t is established at hub k, 0.
Objective
The objective of the proposed model is to minimize fuel ( f ), EV (e), ICEV (q), and EV

charger costs (g). These costs are included in the objective of the model because they
represent the different costs of a mixed fleet. Specifically, the fuel cost includes the electricity
and gasoline costs for EVs and ICEVs respectively, and the EV, ICEV, and charger costs
include the maintenance and purchase cost of EVs/ICEVs/chargers. The fuel cost is
calculated as the maximum distance traveled in a year by each vehicle multiplied by the
cost of the electricity needed to charge an EV for traveling one mile added to the cost of
gasoline needed to refuel an ICEV for traveling one mile. The EV, ICEV, and charger costs
are calculated as the maintenance and purchase costs, each multiplied by the number of
EVs/ICEVs/chargers chosen by the model and divided by the respective lifetime. All the
costs are calculated to represent the costs for a year. This is achieved by calculating the
distances traveled for a year for the fuel cost, and by dividing the purchase and maintenance
costs by the vehicle and charger lifetime for the EV, ICEV, and charger costs.

Minimize fuel cost + EV cost + ICEV cost + EV charger cost = f + e + q + g (1)

Costs
Fuel costs

f = ∑
k∈K

∑
i∈I

mki

(
fe ∑

j1∈J1

zkij1 + fice ∑
j2∈J2

pkij2

)
(2)

EV cost

e =
evc ∑k∈K ∑i∈I ∑j1∈J1

zkij1 + evm ∑k∈K ∑i∈I ∑j1∈J1
zkij1

evl f
(3)

ICEV cost

q =
icevm ∑k∈K ∑i∈I ∑j2∈J2

zkij2 + icevc ∑k∈K ∑i∈I ∑j2∈J2
zkij2

icevl f
(4)

Charger cost

g =
elc ∑k∈K ∑t∈T ykt + cm ∑k∈K ∑t∈T ykt

cl f
(5)

Constraints
Electric capacity constraint—The cumulative energy expenditure of all the established

chargers at all hubs should be less or equal to the electric grid capacity:

ex ∑
k∈K

∑
t∈T

ykt ≤ ecap (6)

Demand and supply constraint—The supply of vehicles at all hubs should be more or
equal to the demand of vehicles at all the demand nodes. The total supply and demand
includes both EVs and ICEVs:

∑
j1∈J1

zkij1 + ∑
j2∈J2

pkij2 ≥ ∑
i∈I

di, ∀ k ∈ K (7)
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The number of EV charging stations t at hub k must be less or equal to the number of
EV charging stations capacity at hub k:

∑
t∈T

ykt ≤ T, ∀k ∈ K (8)

Maximum number of EVs constraint—The number of all EVs assigned from hub k to
demand node i must be less or equal to the maximum number of EVs available.:

∑
k∈K

∑
i∈I

∑
j1∈J1

zkij1 ≤ J1 (9)

The maximum number of ICEVs constraint—The number of all ICEVs assigned from
hub k to demand node i must be less or equal to the maximum number of EVs available.:

∑
k∈K

∑
i∈I

∑
j2∈J2

pkij2 ≤ J2 (10)

The maximum number of charging stations constraint—The maximum number of
charging stations at each hub is equal to the number of EVs allocated to that hub.:

∑
t∈T

ykt = ∑
i∈I

∑
j1∈J1

zkij1 , ∀k ∈ K (11)

Distance constraint for EVs—The distance traveled by each EV has to be less or equal
to the range of the vehicle with one full charge.:

mkizkij1 ≤ DEV
max, ∀k ∈ K, ∀i ∈ I, ∀j1 ∈ J1, (12)

where DEV
max ∈ R is the maximum distance an EV can travel annually with a single recharge

per day.
Distance constraint for ICEVs—The distance traveled by each ICEV has to be less or

equal to the range of the vehicle with one full tank.:

mki pkij2 ≤ DICEV
max , ∀k ∈ K, ∀i ∈ I, ∀j2 ∈ J2, (13)

where DICEV
max ∈ R is the maximum distance an ICEV can travel annually with a single refill

per day.
Hub utilization constraint—All available hubs have to be utilized by either EVs

or ICEVs

∑
i∈I

(
∑

j1∈J1

zkij1 + ∑
j2∈J2

pkij2

)
≥ 1, ∀k ∈ K (14)

Binary variable constraints—The following constraints ensure that all variables are binary.

zkij1 ∈ {0, 1} ∀k ∈ K, i ∈ I, j1 ∈ J1 (15)

pkij2 ∈ {0, 1} ∀k ∈ K, i ∈ I, j2 ∈ J2 (16)

ykt ∈ {0, 1} ∀k ∈ K, i ∈ I, j1 ∈ J1 (17)

2.2. Data

The proposed long-term planning model was tested using hub location and demand
data from a large online retail and distribution company. The data were used to define
the locations of the distribution hubs, the maximum number of freight vehicles (both
electric and internal combustion) operating from all distribution hubs, and the demand
for vehicles for each of the hubs. Using Seattle as an example, the dataset was filtered to
keep only the distribution hub locations that are located closest to the major market area
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of Seattle with more than 2 inbound trucks per day, more than 0 packages shipped on an
average day, and are located less than 50 miles away from the center of Seattle. The filtering
process ensures that the chosen distribution centers are located from the center of Seattle
within a distance that is enough for an EV to travel to and from its destination based on
its range. The EV of interest is a commonly used Ford Transit [26] with an assumed range
of (126 miles). Additionally, we ensure that the chosen locations are operating and have
packages shipped from them daily. The resulting number of hub locations is 11 distribution
hubs. The same process was followed to choose the hubs serving the 4 US cities across
the US.

An additional data source was the King County dataset for the King County neigh-
borhood centers [27]. The shapefile includes all the King County neighborhood centers as
points and it was filtered to only include Seattle neighborhoods. The Seattle neighborhood
centers (32 in total) are used as demand points for each neighborhood. Using the distri-
bution hub locations and the neighborhood centers we calculated the maximum distance
traveled from each hub to each demand node. The data used to create the distance matrices
for the testing of the additional 4 US cities were neighborhood shapefiles sourced from the
cities’ open GIS portals [28]. The distance between hubs and demand points was calculated
in miles using the haversine formula; Equations (18)–(20) [29]. This formula is mainly used
to find distances on earth between two points using latitude and longitude.

a = sin2(ϕB − ϕA/2) + cosϕA ∗ cosϕB ∗ sin2(λB − λA/2) (18)

c = 2 ∗ atan2(
√

a,
√
(1 − a) (19)

d = R ∗ c (20)

The values of the inputs for the baseline scenario are based on the assumptions made
for the structure and testing of the proposed model and respective data sources (Table 1).
The information for the demand at each demand node is the cumulative number of out-
bound vehicles from the distribution centers divided equally by the number of demand
nodes. We assume that the demand at eachd node is the same and the demand is equally
distributed. The available electricity grid capacity (ecap) for one year is calculated as the to-
tal Washington net electricity generation (kWh) for January 2023 [30] minus the total energy
consumption (kWh) for January 2023 [30], multiplied by 12 months. The cost of buying
one EV (evc) is considered to be the cost of one new Ford E-Transit in USD [26]. The cost of
establishing one Level 2 connected charging station (elc) includes the charger hardware
cost, labor, materials, permit, and tax in USD [31]. The electricity expenditure (ex) in kWh
of a charging station for one overnight charge per EV per day for one year is calculated as
the hours needed for a Ford E-Transit to charge from 0% to 100% (8 h) [26] multiplied by
the EV Level 2 charger power (13 kW) [32]. The resulting number is multiplied by 365 days
to get the power needed for one year of charging the selected EVs. The EV charging
cost ( fe) per mile traveled by one vehicle is calculated as the current business electricity
rate for medium demand charging in King County (0.0831 USD/kWh) [33] multiplied
by the vehicle battery capacity for one EV (68 kWh) [32] divided by the maximum miles
traveled per day by one EV (126 miles EV range) [26] ((USD/kWh) × (kWh/mile)/miles).
The gasoline cost ( fice) per mile traveled by ICEVs is calculated as the average gasoline
rate in USD for the state of Washington ($ 4.5 per gallon) [34] divided by the maximum
miles traveled (19 miles per gallon) by the selected ICEV (Mercedes-Benz Metris Cargo
Van) on a full tank [35]. The EV (evm), ICEV (icevm), and EV charger (cm) maintenance
costs for the lifetime (evl f , icevl f , cl f ) of each infrastructure component are derived from
online sources [36–38]. For the testing of the additional 4 US cities, the electricity rates were
derived from the US Energy Information Administration [39] while the gasoline prices
were derived from AAA [40].
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Table 1. Data inputs.

Parameters Values Units Source

evl f 15 years [36]
icevl f 14 years [38]
cl f 10 years [37]
ecap 7,548,000,000 × 12 kWh/year [30]
elc 5432 USD [31]
evc 49,575 USD/vehicle [26]
ex 37,960 kWh/one full charge per day for a year [26]
fe 0.0831 × 68/126 USD/mile [33]
fice 0.24 USD/mile [34]
evm 14,205 USD/vehicle [36]
icevm 25,200 USD/vehicle [38]
icevc 33,000 USD/vehicle [41]
cm 4000 USD/charger [37]
c f 5500 USD [42]

3. Solution Approach

The optimization problem is written in Python using the Google OR Tools library
and is solved using a Google OR Tools solver, called Solving Constraint Integer Programs
(SCIP) [43]. This solver was chosen because it is one of the fastest non-commercial solvers
for linear programming (LP) and MIP, and provides a constraint programming framework.
An MIP solver was the most appropriate choice for the solution approach of the long-term
model because it is an MIP and the solver can solve the problem in 5 min on average.

4. Model Testing

The model is tested in different scenarios to compare the vehicle share decisions for
various external costs in the case study of Seattle, WA, and to conduct a sensitivity analy-
sis. In each scenario, all parameters are kept the same while changing only a single cost.
The external costs considered are the gasoline cost, the electricity cost, and the EV purchas-
ing cost (determined by an EV purchasing incentive). These costs were chosen because
fuel and vehicle prices are usually the main determinants for a company transitioning
to EVs. The scenarios tested are listed in Table 2. In the Baseline scenario, all inputs are
based on the data described in Section 2.2 and the assumptions presented in Section 2.1.1.
Scenarios 1 and 2 are used to test the variability in electricity and gasoline costs, respec-
tively. The electricity and gasoline prices tested in each scenario range from −30% to
+30% from the baseline electricity value. Scenario 3 is a combination of Scenarios 1 and 2,
where we test the model’s response when both gasoline and electricity prices are variable.
Scenario 4 tests how subsidizing freight EVs can affect fleet composition. The applied
incentive in this scenario ranges from −5% to −30% from the baseline EV cost value.

Table 2. Long-term planning model testing scenarios.

Scenario Description

Baseline All inputs are used as presented in the Section 2.2

External cost Scenario 1 Electricity cost is variable

External cost Scenario 2 Gasoline cost is variable

External cost Scenario 3 Electricity and gasoline costs are variable

Incentive Scenario 4 EV purchase cost incentive is variable

5. Results

In this section, we present the Baseline scenario results and review the effects of the
changes introduced in Scenarios 1 through 4 on the fleet composition and charging station
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locations. In the first subsection, we present the results of the sensitivity analysis that aims
to show the response of the model to the change in external costs. In the second subsection,
we present the model decisions on the optimal vehicle share for each scenario.

5.1. Sensitivity Analysis

The results of each scenario for the respective cost range are compared to the Baseline
scenario costs. In scenario 1 we test the effects of applying a variable electricity cost for EV
charging. The change in the electricity cost ranges from −30% to +30% compared to the
Baseline electricity cost. Table 3 shows that the model is responsive to the electricity cost
change since the total fuel cost changes similarly to the electricity cost change. For example,
when the electricity cost is decreased by 30% the total fuel cost is decreased by 30%. As seen
in Figure 2 at the 30% increase in the electricity cost the total fuel cost increases by 73%,
which is not equivalent to the electricity cost change. That difference occurs because at this
cost change the number of ICEVs increases from 0 to 30, which leads to the introduction of
the gasoline cost.

Table 3. Long-term planning model sensitivity analysis—Scenario 1.

Scenario EV Charging
Cost (USD)

ICEV Refueling
Cost (USD) Total Fuel Cost (USD) Total Fuel Cost Change (%)

Baseline 171,622.9 0 171,622.9 0

Scenario 1
Electricity cost
change (%)

−30 120,136.0 0 120,136.0 −30
−20 137,298.3 0 137,298.3 −20
−10 154,460.6 0 154,460.6 −10
+10 188,785.2 0 188,785.2 +10
+20 205,947.4 0 205,947.4 +20
+30 197,929.0 98,444.3 296,373.2 +73

150,000

200,000

250,000

300,000

−20 0 20

Electricity cost percentage change (%)

C
o
s
t 
(U

S
D

)

Costs

EV charging cost

Total fuel cost

Figure 2. Sensitivity analysis for Scenario 1—EV charging and total fuel costs change over the
electricity cost change.
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In scenario 2, we test the effects of applying a variable gasoline cost for ICEV refueling.
The change in the gasoline cost ranges from −30% to +30% compared to the Baseline
gasoline cost. Table 4 shows that the model is responsive to the gasoline cost change since
the total fuel cost decreases when the gasoline cost decreases. The total fuel cost decreases
more than the gasoline cost because the number of ICEVs, that use gasoline, increases
compared to the baseline when the gasoline cost decreases. In this scenario, the increase
in the gasoline cost stabilizes the total fuel cost and the ICEV refueling cost (Figure 3).
Specifically, when the gasoline cost increases the model chooses zero ICEVs and hence the
ICEV refueling cost becomes zero. This leads to having a stable total fuel cost that consists
only of the EV charging cost, which does not change because in this scenario the electricity
cost stays the same. The reason the total fuel cost does not change when the gasoline cost
increases is that the model chooses 0 ICEVs because the gasoline cost is too high. This
choice leads to the total fuel cost being equal to the electricity cost, which does not change
in this scenario.

Table 4. Long-term planning model sensitivity analysis—Scenario 2.

Scenario EV Charging
Cost (USD)

ICEV Refueling
Cost (USD) Total Fuel Cost (USD) Total Fuel Cost Change (%)

Baseline 171,622.9 0 171,622.9 0%

Scenario 2
Gasoline cost
change (%)

−30 81,651.0 320,088.2 401,739.2 −134
−20 108,884.0 255,088.7 363,972.8 −112
−10 132,003.9 181,222.0 313,225.8 −83
+10 171,622.9 0 171,622.9 0
+20 171,622.9 0 171,622.9 0
+30 171,622.9 0 171,622.9 0

0

100,000

200,000

300,000

400,000

−20 0 20

Gasoline cost percentage change (%)

C
o

s
t 
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S
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Costs

ICEV refueling cost

Total fuel cost

Figure 3. Sensitivity analysis for Scenario 2—ICEV refueling and total fuel costs change over the
gasoline cost change.
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In scenario 3, we test the effects of applying simultaneously variable gasoline and
electricity costs for EV recharging and ICEV refueling. The change in the gasoline electricity
costs ranges from −30% to +30% compared to the Baseline costs. In this scenario the
gasoline cost increases while the electricity cost decreases. Table 5 shows that the model
is responsive to the gasoline and electricity cost change since the total fuel cost changes
similarly to the gasoline and electricity cost change. When the gasoline cost is increased
by 30% and the electricity cost is decreased by 30% the total fuel cost is decreased by 30%
because in this case, the model chooses 0 ICEVs. When the electricity cost increases and
gasoline cost decreases the total fuel cost increases because the recharging cost increases and
the refueling cost is included because ICEVs are introduced in the fleet (Figure 4). Figure 4
shows that the increase in the electricity cost, and simultaneous decrease in gasoline cost,
results in an increase in the ICEV refueling and the total fuel costs and a decrease in the EV
charging cost. This change happens because the model chooses fewer EVs and more ICEVs.

Table 5. Long-term planning model sensitivity analysis—Scenario 3.

Scenario EV Charging
Cost (USD)

ICEV Refueling
Cost (USD)

Total Fuel
Cost (USD) Total Fuel Cost Change (%)

Baseline 171,622.9 0 171,622.9 0%

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 120,136.0 0 120,136.0 −30
−20 +20 137,298.3 0 137,298.3 −20
−10 +10 154,460.6 0 154,460.6 −10
+10 −10 145,204.3 181,222.0 326,426.2 +90
+20 −20 130,660.8 255,088.7 385,749.6 +125
+30 −30 106,146.3 320,088.2 426,234.5 +148

0

100,000

200,000

300,000

400,000

−20 0 20

Electricity cost percentage change (%)
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o
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EV charging cost
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Figure 4. Sensitivity analysis for Scenario 3—EV charging, ICEV refueling, and total fuel costs change
over the electricity cost change.

Scenario 4 tests the effects of applying a variable incentive that decreases the EV
purchase cost. The change in the EV purchase cost ranges from −10% to −30% compared to
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the Baseline EV purchase cost. Table 6 shows that the model is responsive to the incentive
change since the total EV cost changes similarly to the EV purchase cost change. Specifically,
the total EV cost change is decreased by 25% when the EV purchase cost is decreased by
30%. Figure 5 shows that the total EV cost increases accordingly to the EV purchase cost.

Table 6. Long-term planning model sensitivity analysis—Scenario 4.

Scenario EV Maintenance
Cost (USD)

EV Purchase Cost
(USD)

Total EV
Cost (USD) Total EV Cost Change (%)

Baseline 147,648 659,136 806,784 0

Scenario 4
Incentive—EV cost change (%)

−30 147,648.0 461,395.2 609,043.2 −25
−20 147,648.0 527,308.8 674,956.8 −16
−10 147,648.0 593,222.4 740,870.4 −8

450,000

500,000

550,000

600,000

650,000

700,000

750,000

−30 −25 −20 −15 −10

Incentive percentage change (%)

C
o
s
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)

Costs

EV purchase cost

Total EV cost

Figure 5. Sensitivity analysis for Scenario 4—EV purchase and total EV costs change over the
incentive change.

5.2. Planning Decisions

The planning decisions shown in this study are the vehicle share and the allocation of
the chosen vehicles, as well as the allocation of the charging stations. Table 7 shows that
vehicle share changes depending on the scenario and the tested variable external costs (i.e.,
gasoline, electricity, EV purchase costs). In the Baseline the model optimal EV share is 100%
because in Seattle the gasoline cost is high, the electricity cost is low, and the distances are
short enough for EVs to complete with a single full charge. In Scenario 1, the EV share
decreases to 84.4% only when the electricity cost increases by 30%. In Scenario 2, the EV
share decreases as the gasoline cost decreases and it stays the same as the Baseline as the
gasoline cost increases. The lower gasoline cost makes ICEVs competitive against the initial
investment cost needed for EVs. In Scenario 3, the EV share decreases when the electricity
cost increases and the gasoline cost decreases, while it stays the same for the rest of the
cost changes.
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Table 7. Vehicle share for all scenarios—Seattle.

Scenario Number of EVs Number of ICEVs EV Share (%)

Baseline 192 0 100

Scenario 1
Electricity cost change (%)

−30 192 0 100
−20 192 0 100
−10 192 0 100
+10 192 0 100
+20 192 0 100
+30 162 30 84.4

Scenario 2
Gasoline cost change (%)

−30 72 120 37.5
−20 102 90 53.1
−10 132 60 68.8
+10 192 0 100
+20 192 0 100
+30 192 0 100

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 192 0 100
−20 +20 192 0 100
−10 +10 192 0 100
+10 −10 132 60 68.8
+20 −20 102 90 53.1
+30 −30 72 120 37.5

Scenario 4
Incentive—EV cost change (%)

−30 192 0 100
−20 192 0 100
−10 192 0 100

Furthermore, in both Scenarios 2 and 3, the increase in the gasoline cost does not
change the EV share because it is already 100% and cannot increase any further. This shows
that the electricity cost in Seattle is low enough to be competitive against the high price
of gasoline for ICEVs. This is an expected result because although the cost of purchasing
EVs and EV chargers is high compared to the purchase cost of ICEVs, the large difference
between the electricity and gasoline costs (Table 1) does not favor ICEVs for the annual
mileage of vans that operate in last mile. In Scenario 4, the EV share remains 100% because
the incentive would only reinforce the adoption of EVs.

The vehicle share change for the different electricity and gasoline prices shows that
the model decisions for the optimal number of EVs and ICEVs will vary according to the
fuel prices in different states. Table 8 shows the example of the states with the lowest
and highest gasoline prices in the U.S. The gasoline price difference from Mississippi to
Washington is −41.38%. Table 9 shows the example of the states with the lowest and highest
electricity prices in the U.S. The electricity price difference from Hawaii to Washington
is +110.39%.
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Table 8. Highest and lowest gasoline prices in the U.S. compared to WA [40].

State Gasoline Prices per Gallon Difference to WA (%)

Washington $4.950 0
Mississippi $3.253 −41.38
California $4.998 +0.97

Table 9. Highest and lowest electricity prices in the U.S. compared to WA [39].

State Electricity Prices per kWh Difference to WA (%)

Washington $0.0875 0
Idaho $0.0817 −6.86
Hawaii $0.3031 +110.39

5.3. Model Application across the US

In this section, we test the model in 4 additional US cities to understand how city-
specific conditions affect the optimal number of EVs. The goal of the model application
across the US is not to compare the results for each city but to understand the changes in
EV share. The selected cities represent a selection of different ranges of fuel costs and hub-
to-demand node distances. We chose four cities in the US that have different combinations
of high miles vs. low miles (i.e., hub-to-demand node distances) and high price spread vs.
low price spread. Price spread is the difference between the gasoline price and electricity
price in a city. The cities we chose to test and represent these categories are Dallas, New
York City, Portland, and San Diego (Table 10). Table 11 shows the gasoline price per gallon,
the electricity price per kWh, and the price spread for each city. The gasoline price ranges
from $3.42/gallon in Dallas to $5.79/gallon in Portland, while the electricity price ranges
from $0.0194/kWh in Dallas to $0.1965 in Portland. The cities with a higher price spread
are San Diego (4.6005) and Portland (5.5935)., and the cities with the lower price spread
are Dallas (3.3286) and New York City (3.7689) Table 12 shows the average hub-to-demand
node distance for each city. The cities with longer distances are San Diego (19 miles) and
Dallas (18.5 miles) while the cities with shorter distances are New York City (9.1 miles) and
Portland (9.4 miles).

Table 10. US cities examined.

High Miles Low Miles

High price spread San Diego Portland
Low price spread Dallas New York City

Table 11. Price spread for each city.

City Gasoline Price ($/gallon) Electricity Price ($/kWh) Price Spread

Dallas 3.42 0.0914 3.3286
New York City 3.93 0.1611 3.7689
Portland 5.79 0.1965 5.5935
San Diego 4.69 0.0895 4.6005

Table 12. Average hub-to-demand node distances for each city.

City Average Distance (Miles)

Dallas 18.5
New York City 9.1
Portland 9.4
San Diego 19.0
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Tables 13–16 show the optimal number of EVs and ICEVs chosen by the model and
the EV share in all the scenarios for each of the cities tested.

Table 13. Vehicle share for all scenarios—Dallas.

Scenario Number of EVs Number of ICEVs EV Share (%)

Baseline 3 137 2.1

Scenario 1
Electricity cost change (%)

−30 20 120 14.3
−20 20 120 14.3
−10 3 137 2.1
+10 3 137 2.1
+20 2 138 1.4
+30 1 139 0.7

Scenario 2
Gasoline cost change (%)

−30 0 140 0
−20 0 140 0
−10 1 139 0.7
+10 20 120 14.3
+20 50 90 35.7
+30 110 30 78.6

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 140 0 100
−20 +20 80 60 57.1
−10 +10 20 120 14.3
+10 −10 0 140 0
+20 −20 0 140 0
+30 −30 0 140 0

Scenario 4
Incentive—EV cost change (%)

−30 140 0 100
−20 80 60 57.1
−10 20 120 14.3

In the case of Dallas, which is a city with high miles and low price spread, the baseline
EV share is 2.1%. The EV share for Dallas is low because the low gasoline price favors
ICEVs and EVs cannot cover the whole network. The reason EVs cannot cover the whole
network is that the hub-to-demand node distances are long and the range of the EVs with
one full charge is not enough to travel to all the demand nodes. In scenario 1, we see that the
EV share for Dallas increases compared to the baseline when the electricity cost decreases,
and decreases when the electricity cost increases. In scenario 2, we see that the EV share
decreases compared to the baseline when the gasoline cost decreases, and increases when
the gasoline cost increases. The increase of the EV share is bigger in scenario 2 compared to
scenario 1, when the gasoline and electricity costs change respectively. The reason for the
difference in the EV share change is that the gasoline cost is significantly higher than the
electricity cost and therefore has a higher effect on the results. In scenario 3, the increase
of the EV share is bigger compared to scenarios 1 and 2, when the gasoline cost increases
and the electricity cost decreases. The reason for this change is that both the gasoline and
electricity costs change at the same time, leading to even smaller charging costs compared
to refueling costs. In scenario 4, the EV share increases compared to the baseline as the
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incentive increases (i.e., EV purchasing cost decreases), because the lower EV purchasing
cost along with the low electricity price makes EVs more competitive.

Table 14. Vehicle share for all scenarios—New York City.

Scenario Number of EVs Number of ICEVs EV Share (%)

Baseline 0 116 0

Scenario 1
Electricity cost change (%)

−30 2 114 1.7
−20 2 114 1.7
−10 0 116 0
+10 0 116 0
+20 0 116 0
+30 0 116 0

Scenario 2
Gasoline cost change (%)

−30 0 116 0
−20 0 116 0
−10 0 116 0
+10 2 114 1.7
+20 2 114 1.7
+30 26 90 22.4

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 86 30 74.1
−20 +20 26 90 22.4
−10 +10 2 114 1.7
+10 −10 0 116 0
+20 −20 0 116 0
+30 −30 0 116 0

Scenario 4
Incentive—EV cost change (%)

−30 86 30 74.1
−20 2 114 1.7
−10 1 115 0.9

In the case of New York City, which is a city with low miles and a low price spread,
the baseline EV share is 0%. The EV share for New York City is 0 because it has a com-
bination of low gasoline prices and relatively high electricity prices. Although, EVs can
cover the shorter hub-to-demand node distances the high price spread does not favor EVs.
In scenario 1, we see that the EV share increases compared to the baseline when the electric-
ity cost decreases, and stays the same when the electricity cost increases. In scenario 2, we
see that the EV share increases when the gasoline cost increases. Again, the increase of the
EV share is bigger in scenario 2 compared to scenario 1, when the gasoline and electricity
costs change respectively. In scenario 3, the increase of the EV share is bigger compared to
scenarios 1 and 2, when the gasoline cost increases and the electricity cost decreases. The EV
share stays the same with the baseline when the electricity cost increases and gasoline cost
decreases because it is already 0 and cannot decrease any further. In scenario 4, the EV
share increases compared to the baseline as the incentive increases (i.e., EV purchasing cost
decreases). Specifically, the decrease of the EV purchasing cost by 30% produces one of the
highest EV shares for New York City.
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Table 15. Vehicle share for all scenarios—Portland.

Scenario Number of EVs Number of ICEVs EV Share (%)

Baseline 4 90 4.3

Scenario 1
Electricity cost change (%)

−30 94 0 100
−20 94 0 100
−10 34 60 36.2
+10 4 90 4.3
+20 4 90 4.3
+30 4 90 4.3

Scenario 2
Gasoline cost change (%)

−30 0 94 0
−20 0 94 0
−10 1 93 1.1
+10 94 0 100
+20 94 0 100
+30 94 0 100

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 94 0 100
−20 +20 94 0 100
−10 +10 94 0 100
+10 −10 1 93 1.1
+20 −20 0 94 0
+30 −30 0 94 0

Scenario 4
Incentive—EV cost change (%)

−30 94 0 100
−20 94 0 100
−10 94 0 100

In the case of Portland, which is a city with low miles and a high price spread,
the baseline EV share is 4.3%. The EV share for Portland is higher compared to the
rest of the cities tested because it has the highest gasoline prices and shorter hub-to-
demand node distances. The EVs can cover the shorter hub-to-demand node distances
with low charging prices. Although the EV share in Portland is higher it is still low
because the initial investment cost (EV purchasing and EV charger purchasing costs) for
EVs is high. In scenario 1, we see that the EV share increases compared to the baseline
when the electricity cost decreases, and stays the same when the electricity cost increases.
In scenario 2, we see that the EV share increases when the gasoline cost increases and
decreases when the gasoline cost decreases. In scenario 3, the EV share increases when the
gasoline cost increases and the electricity cost decreases. For Portland, the change in the
electricity and gasoline costs leads to 100% EV share for low electricity and high gasoline
costs and 0% for high electricity and low gasoline costs. The reason is that Portland has
a low price spread and low miles, which means that a change in fuel prices can have a
greater effect on the results. Specifically, the total fuel cost has a lower spread for moving
ICEVs and EVs in a network with shorter distances. In scenario 4, the model chooses only
EVs when an incentive is introduced (i.e., EV purchasing cost decreases). When the EV
purchase cost decreases EVs become competitive against ICEVs, because the cost to refuel
EVs is the highest in the cities examined.
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Table 16. Vehicle share for all scenarios—San Diego.

Scenario Number of EVs Number of ICEVs EV Share (%)

Baseline 1 123 0.8

Scenario 1
Electricity cost change (%)

−30 124 0 100
−20 124 0 100
−10 34 90 27.4
+10 1 123 0.8
+20 0 124 0
+30 0 124 0

Scenario 2
Gasoline cost change (%)

−30 0 124 0
−20 0 124 0
−10 0 124 0
+10 124 0 100
+20 124 0 100
+30 124 0 100

Scenario 3
Electricity cost
change (%)

Gasoline cost
change (%)

−30 +30 124 0 100
−20 +20 124 0 100
−10 +10 124 0 100
+10 −10 0 124 0
+20 −20 0 124 0
+30 −30 0 124 0

Scenario 4
Incentive—EV cost change (%)

−30 124 0 100
−20 124 0 100
−10 124 0 100

In the case of San Diego, which is a city with high miles and a high price spread,
the baseline EV share is 0.8%. The EV share for San Diego is low because it has a high
gasoline price and longer hub-to-demand node distances. In scenario 1, we see that the EV
share increases compared to the baseline when the electricity cost decreases, and decreases
when the electricity cost increases. In scenario 2, we see that the EV share increases when
the gasoline cost increases and decreases when the gasoline cost decreases. In scenario 3,
the EV share increases when the gasoline cost increases and the electricity cost decreases.
For San Diego, the change in the electricity and gasoline costs leads to 100% EV share for
any increase in the gasoline cost and 0% for any decrease in the gasoline costs. In scenario 4,
the model chooses only EVs when an incentive is introduced (i.e., EV purchasing cost
decreases). Similarly to Portland, when the EV purchase cost decreases EVs become
competitive against ICEVs, because the cost to refuel EVs is the second highest in the
cities examined.

6. Discussion

In the discussion section, we aim to show how the changes in external costs affect the
optimal EV share, present the factors that can affect EV share but are not included in this
study, and mention the public implications of the application of the proposed model by
delivery companies.
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The results of this study show that changes in electricity and gasoline costs can change
the optimal EV share. This is apparent in Tables 7 and 13–16, where we see that the
EV share increases when the gasoline cost increases and the electricity cost decreases.
While this is true for all cities, the EV share changes vary for different cost changes in
each city. For example, in Seattle, the EV share decreases only when the electricity cost
increases by 30%, while in Portland the EV share decreases at a 10% electricity cost increase.
Although the EV share changes when the fuel cost changes, it is not only based on external
costs but also on the distances traveled by vehicles. The effect of the traveled distances can
be seen in the testing of Dallas, New York City, Portland, and San Diego, which represent
different networks with long and short distances. In these results, we see that in the
context of our study, where EVs charge only once overnight, longer distances (e.g., Dallas,
San Diego) favor ICEVs, since they have enough fuel capacity (traveling range) to travel in
the network. This is seen both in the Baseline and the scenarios because the changes in the
EV share are not the same as the changes in the gasoline and electricity costs. The vehicle
share decisions made by the proposed model, in both the Seattle case study and the 4 US
cities, show that transitioning to EVs is beneficial in terms of cost for freight companies that
operate in the last mile when the gasoline cost is high, the electricity cost is low, or there
are EV purchasing incentives. Depending on the network the effect of these costs can have
a different magnitude on the EV share. Specifically, for cities with shorter hub-to-demand
node distances (e.g., New York City, Portland) the gasoline and electricity costs have a
smaller effect on the EV share (Tables 14 and 15).

It is important to note that there are factors, other than EV and EV charging station
costs, that hinder EV adoption and are not captured in this model. These factors are the low
EV freight supply compared to the demand [9,44], the reliability of EVs in terms of vehicle
range for companies that have hubs located further away from the demand compared to
the tested case study [8], the uncertainty on which sustainable transportation solutions
will be supported in the future by regulations and local conditions [45], and making new
operational decisions such as routing and vehicle allocation to support EVs [45].

Understanding how EV-related policies can affect EV adoption by last-mile delivery
companies can help federal and local entities (i.e., DOTs, utility companies, etc.) make
informed decisions about the initiatives they want to provide. The cases of Dallas, New
York City, Portland, and San Diego (Tables 13–16) show that the EV share is increased
when vehicle purchasing incentives are applied. This result means that EV adoption can
be increased when EV incentives are introduced. An example of EV-related planning
decisions by local entities is that utility companies will need to identify their freight
vehicle electrification support goals. They can achieve that by deciding if they plan to
support further freight fleet electrification and the purchasing of more EVs. This decision is
essential because it can determine the pricing schemes and incentives set by utilities for
commercial EVs.

7. Conclusions

More and more commercial fleets have started purchasing EVs or are interested in
using EVs for their transportation operations. Most of the companies that use or plan to use
EVs will have a mixed fleet with a combination of EVs and ICEVs. Many reasons contribute
to the introduction of mixed freight fleets, such as wanting to test a smaller number of
vehicles before changing the whole fleet, the high cost of EVs, and EV availability in the
market. Operating a mixed freight fleet with EVs and ICEVs will require freight companies
to make planning decisions based on their operations. One of the main decisions the
companies have to make is how to plan for the long-term effects of mixed fleets, which in
this study is the infrastructure changes needed to accommodate the new vehicles.

This study proposes an optimization model that answers the questions (Table 17):
What is the best fleet composition?; At which hubs should we assign the new EVs and
charging stations? Additionally, we explore the effects of changes in external factors on
the long-term planning decisions for mixed fleets. The inputs for the case study network
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(distribution hubs and demand nodes) are derived from a dataset from an online retail and
distribution company operating in Seattle, the King County neighborhood centers dataset.
To explore the effects of external factors on the model choices on the fleet composition and
EV charger assignment we tested four scenarios. In each scenario, we tested either a change
in one of the cost inputs or a change in the charging strategies. Furthermore, we applied the
model in 4 cities across the US to understand the effects of the network and fuel costs on the
EV share. The model is simple enough to be adopted by most freight companies, regardless
of their size, because it is easy to solve and requires the use of easily accessible data.

Table 17. Summary of study results.

Research Question Study Conclusions/Results

What is the best fleet composition?
The fleet composition is affected by the
gasoline and electricity costs, and the distances
traveled by vehicles.

At which hubs should we assign the new EVs
and charging stations?

The hubs selected for the placement of EV
chargers and EVs are the ones closest to
demand nodes.

The results of the study show that EVs are beneficial for last-mile freight companies
when gasoline costs are high, electricity costs are low, or there are EV purchasing incentives
but there are still barriers that hinder EV adoption. Additionally, the results show that
the EV share is affected by both the fuel and purchasing costs and the network distances.
The insights from the results of this study can help freight companies identify what are
the best long-term planning decisions for a mixed fleet when considering the changes in
strategies and costs. Furthermore, the results can be useful for utilities to understand how
incentives and gasoline/charging costs can affect EV fleet share and EV charger spatial
distribution. This could help utilities prepare for surges in electricity demand in certain
locations or estimate how their strategies will affect commercial EV purchases.

Future work on this topic can explore more scenarios, such as changes in customer
demand and grid capacity based on location. Testing these additional scenarios could
help explore the effects of external factors in combination with spatial changes. Another
suggestion for future studies is to explore more solution approaches for the optimization
model, other than a commercial solver. A heuristic can be applied to decrease the time the
model needs to find the optimal solution.
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