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Abstract: This study explores the intricate dynamics of CO2 emissions stemming from transport
within the tourism sector. It aims to unravel the multidimensional aspects of how transport-related
tourism contributes to CO2 emissions and to elucidate the complex relationship between regional
economic growth and CO2 emissions from transport-related tourism. Our study employed Loga-
rithmic Mean Divisia Index (LMDI) and Panel Vector Autoregression (PVAR) models to analyze
data from 30 Chinese provincial regions between 2010 and 2018. The tourism transport-related CO2

emissions were decomposed into four separate driving effects using the LMDI approach. Then,
PVAR models were constructed to reveal dynamic interactions between each driving effect and per
capita gross regional product (GRP). Our results demonstrate a decrease in both energy structure
effect (tourism transport-related CO2 emissions from energy structure) and energy intensity effect
(tourism transport-related CO2 emissions from energy intensity) during the pre-COVID decade.
Notably, the positive impulse response of energy structure effect to per capita GRP is observed.
However, we found no evidence of a cointegrated relationship between energy intensity effect and
regional economic growth, although other factors demonstrated connections. These findings echo
the necessity to integrate sustainable practices into the tourism transportation business, especially
in the area of energy structure, in order to mitigate adverse environmental effects from tourism.
This paper disseminates the main drivers of CO2 emissions in the tourism transport sector and
their interrelationship with regional economic growth. It not only guides tourism policymakers in
targeting efforts to reduce carbon footprints, but also sets a new benchmark for future studies on
CO2 emissions.

Keywords: tourism; transport; carbon emissions; Logarithmic Mean Divisia Index

1. Introduction

Carbon dioxide (CO2) emissions are a major driver of climate change, with significant
implications for global environmental and socio-economic systems. The tourism industry is
a notable contributor to global carbon emissions [1,2], accounting for approximately 8% of
global greenhouse gas emissions [2,3]. These emissions arise from various sources within the
tourism system, including transport, accommodation, and other activities [4–6]. According
to the United Nations World Tourism Organization (UNWTO), transport plays a critical
role in the tourism sector, being responsible for 75% of its carbon dioxide emissions [7].
Carbon dioxide emissions from transport, such as aviation and automobiles, are significant
contributors to greenhouse gas emissions and have a substantial impact on global climate
change [8]. Studying transport-related CO2 emissions in tourism helps reveal the specific role
of the tourism industry in climate change and provides effective measures to mitigate these
emissions [9]. Moreover, compared to other sources of tourism carbon emissions, such as
energy consumption in accommodation and attractions, research into transport-related CO2
emissions is crucial for understanding the tourism industry’s specific role in climate change
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and for devising effective mitigation strategies. By studying transport-related carbon dioxide
emissions in tourism, specific methods and strategies can be identified to reduce this type of
emissions and lower the overall carbon emissions of the tourism industry [10].

Many researchers have studied how economic growth may influence transport CO2
emissions inspired by the Environmental Kuznets Curve (EKC) hypothesis [11–14]. The
tourism industry also constitutes a significant contributor to transport CO2 emissions [8–10].
Using the Logarithmic Mean Divisia Index (LMDI) method [15–17], the changes in tourism
transport-related CO2 emissions could be decomposed to underlying driving effects. An
inner driving effect is the change in CO2 emissions caused by a specific inner driving
factor [9]. This paper aims to examine the relationship between economic growth and
tourism transport-related CO2 emissions at a more in-depth level. Specifically, it aims to
explore how economic growth affects each decomposing driving effect of tourism transport-
related CO2 emissions. Knowing the influence of economic growth on these driving effects
is important. It can facilitate a better and deeper understanding of the mechanisms by
which the economic growth could affect tourism transport-related CO2 emissions. Then
policymakers and industry stakeholders can develop relevant targeted interventions to
reduce tourism CO2 emissions and formulate policies for sustainable development in the
tourism industry.

This paper tackles an important research void by investigating the deeper mechanisms
by which economic growth influences tourism transport-related CO2 emissions through
innovative technical approaches. While the existing body of research provides some
insights, there is a lack of comprehensive analysis using the methodologies of LMDI
and panel vector autoregression (PVAR) models. This study aims to bridge this gap
by employing these techniques. First, we will collect raw data from relevant Chinese
yearbooks, official reports, etc. Then, we will calculate the elements that constitute CO2
emissions from tourism transport. Next, the LMDI approach will be used to decompose
CO2 emissions into several important driving effects. Furthermore, this paper’s major
contribution is marked by the application of LMDI and PVAR techniques, aiming to
establish a connection between each driving effect of CO2 emissions from tourism transport
and economic growth indicators such as per capita gross regional product. Through the
dissemination of driving effects, industry practitioners and policymakers can illuminate
the intricate relationship that exists between carbon emissions and economic growth in the
tourism transport sector. This will enable them to determine which elements of driving
effects can be utilized as strategies to mitigate CO2 emissions while determining which
elements should be decelerating without compromising economic growth in the tourism
industry, a fundamental tenant of sustainability.

The subsequent sections are organized as follows: Section 2 provides the literature
review. Section 3 outlines the processing methods employed and describes the data utilized.
Section 4 presents the results and engages in a discussion of the findings. Finally, the
conclusions are articulated.

2. Literature Review

In typical assessments of CO2 emissions from tourism transport, researchers focus
on the mode of transport (air, rail, car, etc.) and calculate emissions based on passenger
kilometers (pkm) for each mode [15,18]. Gunter et al. [8] introduced a method to eval-
uate CO2 emissions from transportation in European city tourism, taking into account
travel distance and transportation modes. Yang et al. [9] considered three transport modes,
including train, road, and civil aviation, and then calculated the tourism traffic carbon
emissions in Dunhuang, China. Safaa et al. [19] calculated the carbon footprint of travel to
Marrakech, Morocco, based on the means of transportation and the distances traveled. A
key aspect of these studies above involves establishing the CO2 emission factors (kg/pkm)
for each transport mode, assuming these emission factors remain constant over time. How-
ever, this assumption can lead to inaccuracies, as CO2 emission factors change with shifts
towards cleaner energy sources, like the transition from fuel-based to electric vehicles.
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This paper responds to this evolving landscape by employing a direct measurement tech-
nique for CO2 emissions, focusing on fuel type and consumption. This approach not only
tackles the fluctuating nature of emission factors but also ensures a more accurate mea-
surement of CO2 emissions, an important consideration in the context of rapidly changing
transportation technologies. This approach is commonly used in other applications of
CO2 emissions [17,20,21], but is relatively rare in the context of tourism transport-related
CO2 emissions.

The Logarithmic Mean Divisia Index (LMDI) decomposition analysis is a widely used
method to understand the driving effects behind changes in energy consumption or CO2
emissions, notable for its capacity to fully eliminate the residual term, which guarantees a
comprehensive factorization of effects [22]. This is in contrast to the conventional Laspeyres
technique, which fails to achieve perfect decomposition and leaves a residual term [16].
This constraint is not only addressed by LMDI, but it also blends mathematical accuracy
with the usefulness of typical index decomposition techniques [17]. Li [20] studied the
factors that affected CO2 emissions in China’s transportation sector using the LMDI model
and the Cobb–Douglas production function. Chen et al. [23] examined carbon emissions
from land use and applied LMDI to analyze the influencing factors in the area of northeast
China. Gołaś [24] decomposed the changes in agricultural CO2 emissions to six factors
using LMDI in Polish agriculture. However, the application of LMDI to transport-related
CO2 emissions within the tourism sector has rarely been examined before. We intend
to provide valuable insights into the underlying driving effects of transport-related CO2
emissions in tourism.

The exploration of the relationship between economic growth and carbon emissions
is becoming a hot research topic [11,25]. Many scholars have used the Tapio decoupling
model to study this relationship [26–28]. However, the Tapio decoupling model is a
non-parametric model, unable to accurately characterize the extent of the impact of eco-
nomic growth on carbon emissions. In addition, some scholars have used traditional
linear regression models to study the relationship between economic growth and carbon
emissions [12–14]. However, traditional linear regression models have difficulties in dis-
tinguishing between endogenous and exogenous variables, as well as in handling lagged
effects. The vector autoregression (VAR) model does not require explicit assumptions about
the functional form. All variables are treated as endogenous, allowing for the analysis of
the impact of each variable and its lagged effects on other variables [29]. The panel vector
autoregression (PVAR) model is an extension of the traditional vector autoregression (VAR)
model, incorporating the advantages of both panel data analysis and VAR modeling [30].
The advantages include: first, it fully accounts for individual fixed effects and time effects,
ensuring better control of individual heterogeneity; second, the PVAR model effectively
utilizes panel data, overcoming the requirement of long time series in the traditional VAR
model [31]. Li et al. [32] examined the dynamic relationship between economic growth,
CO2 emissions and clean energy in China using the PVAR model. Jahanger et al. [33]
utilized the PVAR method to analyze the influence of economic development, transporta-
tion, renewable energy, and globalization on the tourism sector and carbon emissions in
the region around the Bay of Bengal. Zhang et al. [34] investigated the application of the
PVAR model to analyze the relationship among economic growth, urbanization, energy
consumption, and carbon emissions from 30 provinces in China. However, few studies
have used the PVAR model to examine the decomposing driving effect of tourism transport
CO2 emissions.

Therefore, this study will choose the PVAR and LMDI techniques to investigate the
impact of economic growth on each decomposing driving effect. It could reveal the deeper
mechanisms by which economic growth affects tourism transport-related CO2 emissions.
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3. Materials and Methods
3.1. Measuring Transport-Related CO2 Emissions in Tourism

The indicator used to characterize CO2 emissions is tourism transport CO2 emis-
sions. In order to calculate tourism transport CO2 emissions, the most commonly used
method is to first calculate transport CO2 emissions, and then separate the tourism-related
part according to the tourism stripping coefficient [35–37]. This calculation employs the
formula below:

C(i,t) = s(i,t) ∑
j

(
F(i,t)

j αjβ j

)
(1)

where s(i,t) is the tourism stripping coefficient [35]; F is the fuel consumption in the transport
sector measured in the original physical unit; j is the fuel type; αj is the conversion factor
from physical unit to coal equivalent, as shown in Table 1; β j stands for carbon dioxide
emission factors, as shown in Table 2.

Table 1. Conversion factor to coal equivalent. (source China Energy Statistical Yearbook).

No. Type Factor Unit

1 Raw coal 0.7143 kgCE/kg
2 Gasoline 1.4714 kgCE/kg
3 Kerosene 1.4714 kgCE/kg
4 Diesel 1.4571 kgCE/kg
5 Fuel oil 1.4286 kgCE/kg
6 Liquefied petroleum gas 1.7143 kgCE/kg
7 Natural gas 1.2150 kgCE/m3

8 Liquefied natural gas 1.7572 kgCE/kg
9 Heat 0.0341 kgCE/MJ
10 Electricity 0.1229 kgCE/(kW·h)

Table 2. Carbon dioxide emission factors. (source 2006 IPCC Guidelines).

No. Type Factor Unit

1 Raw coal 2.7724 kgCO2/kgCE
2 Gasoline 2.0310 kgCO2/kgCE
3 Kerosene 2.0955 kgCO2/kgCE
4 Diesel 2.1716 kgCO2/kgCE
5 Fuel oil 2.2684 kgCO2/kgCE
6 Liquefied petroleum gas 1.8493 kgCO2/kgCE
7 Natural gas 1.6441 kgCO2/kgCE
8 Liquefied natural gas 1.6441 kgCO2/kgCE
9 Heat 0.0000 kgCO2/kgCE
10 Electricity 0.0000 kgCO2/kgCE

3.2. LMDI

The Logarithmic Mean Divisia Index (LMDI) technique is a valuable method of as-
sessing changing trends in carbon dioxide emissions [16]. By decomposing overall changes
into individual driving effects, LMDI allows for a more detailed analysis of carbon dioxide
emission changes [17]. Through decomposition, we gain insight into the individual contri-
butions of different driving effects to carbon dioxide emissions, enabling targeted measures
to be taken to reduce carbon dioxide emissions within the tourism industry [15,22].

The formula of the LMDI method can be derived from the Kaya identity [38]. The Kaya
identity is a commonly used mathematical model to express carbon dioxide emissions,
which decomposes carbon dioxide emissions into the product of four driving factors:
energy structure effect, energy intensity effect, expenditure effect and scale effect.

The formula for Kaya identity [38] is given by:

C =
C
E
· E

G
· G

P
· P (2)
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where C denotes transport-related CO2 emissions in tourism, E denotes transport-related
energy consumption emissions in tourism, G denotes earnings from tourism, P denotes
number of tourists.

Let x1 = C/E , x2 = E/G , x3 = G/P , x4 = P, then Equation (2) can be rewritten as:

C = x1 · x2 · x3 · x4 (3)

where x1, x2, x3, x4 are four driving factors, which are energy structure, energy intensity,
expenditure and scale, respectively.

At a specific region i and time t0, the CO2 emissions are:

C(i,t0) = x1
(i,t0) · x2

(i,t0) · x3
(i,t0) · x4

(i,t0) (4)

At a specific region i and time t, the CO2 emissions are:

C(i,t) = x1
(i,t) · x2

(i,t) · x3
(i,t) · x4

(i,t) (5)

DC(i,t) denotes the change in CO2 emissions from t0 to t, which can be written as:

DC(i,t) = C(i,t) − C(i,t0) (6)

Let L(i,t) = C(i,t)−C(i,t0)

ln C(i,t)−ln C(i,t0)
, then Equation (6) can be rewritten as:

DC(i,t) = C(i,t)−C(i,t0)

ln C(i,t)−ln C(i,t0)

(
ln C(i,t) − ln C(i,t0)

)
= L(i,t)

[
ln
(

x1
(i,t) · x2

(i,t) · x3
(i,t) · x4

(i,t)
)
− ln

(
x1

(i,t0) · x2
(i,t0) · x3

(i,t0) · x4
(i,t0)

)]
= L(i,t)

(
ln x1

(i,t)

x1
(i,t0)

+ ln x2
(i,t)

x2
(i,t0)

+ ln x3
(i,t)

x3
(i,t0)

+ ln x4
(i,t)

x4
(i,t0)

)
= L(i,t) ln x1

(i,t)

x1
(i,t0)

+ L(i,t) ln x2
(i,t)

x2
(i,t0)

+ L(i,t) ln x3
(i,t)

x3
(i,t0)

+ L(i,t) ln x4
(i,t)

x4
(i,t0)

= DC(i,t)
x1 + DC(i,t)

x2 + DC(i,t)
x3 + DC(i,t)

x4

(7)

where DCx1 , DCx2 , DCx3 , DCx4 are four driving effects, which are defined as follows.

DC(i,t)
x1 = L(i,t) ln x1

(i,t)

x1
(i,t0)

, represents energy structure effect;

DC(i,t)
x2 = L(i,t) ln x2

(i,t)

x2
(i,t0)

, represents energy intensity effect;

DC(i,t)
x3 = L(i,t) ln x3

(i,t)

x3
(i,t0)

, represents expenditure effect;

DC(i,t)
x4 = L(i,t) ln x4

(i,t)

x4
(i,t0)

, represents scale effect.

Through the LMDI formula, the change in carbon dioxide emission could decompose
into four driving effects. By assessing the relative importance of each driving effect, the
targeted policy implications and suggestions can be provided. Definitions of the LMDI
variables are summarized in Table 3.
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Table 3. Definitions of the LMDI variables.

Symbol Variable Indicator Unit

C CO2 emissions Transport-related CO2 emissions in tourism 104 ton

E Energy consumption Transport-related energy consumption in
tourism 104 tonCE

G Gross economic output Earnings from tourism 100 million CNY
P Population Number of tourist arrivals 104 person-times
x1 Energy structure factor Ratio of C to E ton/tonCE
x2 Energy intensity factor Ratio of E to G tonCE/104 CNY
x3 Expenditure factor Ratio of G to P 104 CNY/person
x4 Scale factor P 104 persons

DCx1 Energy structure effect L(i,t) ln
(

x1
(i,t)/x1

(i,t0)
)

104 ton

DCx2 Energy intensity effect L(i,t) ln
(

x2
(i,t)/x2

(i,t0)
)

104 ton

DCx3 Expenditure effect L(i,t) ln(x3
(i,t)/x3

(i,t0)) 104 ton
DCx4 Scale effect L(i,t) ln(x4

(i,t)/x4
(i,t0)) 104 ton

To facilitate a more comprehensive understanding of the LMDI approach, an in-depth
description of each variable’s definition, measurement, and calculation procedures is
provided below.

(1) Energy consumption

The indicator we used here to characterize energy consumption is transport-related
energy consumption in tourism, which is calculated using the following formula:

E(i,t) = s(t) ∑
j

(
F(i,t)

j αj

)
(8)

in the usual notation.

(2) Gross economic output

The indicator we used here to characterize gross economic output is the earnings from
tourism, including domestic tourism and international tourism. The values have been
converted into 2010 prices using the consumer price index (CPI) [39].

(3) Population

The indicator we chose to characterize the population is the number of tourist arrivals,
including domestic and overseas tourists.

3.3. PVAR Model

In recent years, the panel vector autoregression (PVAR) model has been widely ap-
plied in economic research [32]. The PVAR model is an extension of the traditional vector
autoregression (VAR) model, incorporating the advantages of both panel data analysis
and VAR modeling [34]. The VAR model does not require the prior specification of causal
relationships among variables [29]. Instead, all variables are treated as endogenous, allow-
ing for the analysis of the impact of each variable and its lagged values on other variables
within the model. This approach reduces the need for specific causal assumptions and
enhances the flexibility and freedom of the model. Compared to the VAR model, the PVAR
model has several distinctive advantages [40]. Firstly, it fully accounts for individual fixed
effects and time effects, ensuring better control of individual heterogeneity. Secondly, the
PVAR model effectively utilizes panel data, overcoming the requirement of long time series
in the traditional VAR model. It is particularly useful when dealing with datasets that have
a large cross-sectional dimension and relatively short time span.

The PVAR model in this paper focused on two variables: the driving effect of change
in carbon dioxide emissions (DCxk ) and per capita gross regional product (PG). Per capita
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gross regional product is a widely used indicator of economic growth [41,42]. The equation
of the PVAR model can be given as follows:[

DC(i,t)
xk

PG(i,t)

]
= A(0) + A(1)

[
DC(i,t−1)

x1

PG(i,t−1)

]
+ A(2)

[
DC(i,t−2)

x1

PG(i,t−2)

]
+ . . . + A(n)

[
DC(i,t−n)

x1

PG(i,t−n)

]
+

[
ε1
ε2

]
(9)

where i represents the region; t represents the time; k = 1, 2, 3, 4; ε1 and ε2 are the error
terms; PG represents per capita gross regional product in CNY 10,000, which has been
transformed into the 2010 price using the CPI [39]; A(0), A(1), . . ., A(n) denote the coefficient
parameter matrices. The coefficient parameter matrices are defined below:

A(0) =

[
a(0)1

a(0)2

]

A(1) =

[
a(1)11 a(1)12

a(1)21 a(1)22

]

A(2) =

[
a(2)11 a(2)12

a(2)21 a(2)22

]

A(n) =

[
a(n)11 a(n)12

a(n)21 a(n)22

]
(10)

Generally, the key steps involved in the analysis of PVAR model are as follows:

• Panel variable stationarity test: Before applying PVAR model, it is important to test
whether the data of each variable are stationary. This can be achieved using unit root
tests such as the Im-Pesaran-Shin (IPS) test or Hadri LM test.

• Cointegration test: If two or more variables are found to be non-stationary, then it
is necessary to test for cointegration among them. Cointegration implies a long-run
relationship between the variables, and it is tested using methods such as the Pedroni
test [40].

• Model order selection: Once the cointegration tests are complete, the next step is to
determine the appropriate order of the PVAR model. This can be achieved using infor-
mation criteria such as the Akaike information criterion (AIC), Bayesian information
criterion (BIC), and Hannan–Quinn information criterion (HQIC).

• Parameter estimation: After selecting the appropriate order of the PVAR model, the
next step is to estimate the parameters of the model. This can be achieved using the
generalized method of moment (GMM).

• Impulse response function: The direction and magnitude of an impulse response
are crucial to understanding the dynamic relationships between variables. Impulse
response function could examine how a shock to one variable affects another variable
over time and can help in identifying the direction and magnitude of the impact.

3.4. Technical Route

The technical route of this research can be summarized into the following steps:

• The raw data are obtained from relevant yearbooks, official reports, etc.;
• The raw data are then processed to calculate the driving factors;
• The LMDI method is then used to decompose the changes in carbon dioxide emissions;
• PVAR models are used to analyze the relationship between each driving effect and

gross regional product per capita.

3.5. Data

This paper studied the tourism development in China. During the period from 2010
to 2018, China’s tourism industry experienced rapid development. According to data from
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the National Bureau of Statistics of China (http://www.stats.gov.cn/, accessed on 6 January
2024), the number of domestic tourists received nationwide increased from 2.27 billion in
2010 to 5.74 billion in 2018, an increase of 153%. At the same time, the number of inbound
tourists increased from 13.59 million in 2010 to 30.69 million in 2018, an increase of 126%. The
development of the tourism industry has made an increasingly significant contribution to
China’s economy. The direct contribution of the tourism industry to gross domestic product
(GDP) was CNY 1.38 trillion and accounted for 2.6% of GDP in 2010, while in 2018, the direct
contribution of the tourism industry to GDP was CNY 5.97 trillion and accounted for 4.5%
of GDP. The timeframe of 2010 to 2018 was chosen because it depicts a growth of China’s
tourism industry of four times in size and an increasing contribution to the national economy.
Furthermore, this period predates the disruptive effects of COVID-19 and related disease
control policy on tourism, capturing the industry’s expansion phase in China. However, this
rapid expansion also highlighted the negative environmental externalities.

China has 34 provincial-level administrative regions. This paper studied 30 provincial
regions in view of the data availability. The other four regions, namely Xi Zang, Xiang
Gang, Tai Wan and Ao Men, were not studied in this article because the data in these
regions are partially missing. Figure 1 shows the position of these 30 provincial regions.
According to data from the National Bureau of Statistics of China, the international tourism
earnings of these 30 regions went from USD 51.87 billion in 2010 to USD 77.76 billion in
2018. At the same time, the gross regional product (GRP) of these 30 regions went from
CNY 43.65 trillion in 2010 to CNY 91.32 trillion in 2018. The raw data for calculating CO2
emissions and driving factors were collected from the China Statistical Yearbook, Yearbook
of China Tourism Statistics, China Energy Statistical Yearbook, Statistical Yearbook of each
province and relevant official reports. Some software (e.g., MATLAB R2019b, STATA 15)
was also utilized in this experiment.
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4. Results and Discussion
4.1. Transport-Related CO2 Emissions in Tourism

According to the methods and raw data described in Section 3, the transport-related
CO2 emissions in tourism were calculated, along with their four driving factors. Table 4
reports the results of the transport-related carbon dioxide emissions in tourism and their
influencing factors.

Table 4. Carbon dioxide emissions and its driving factors.

Variables Sample Size Min Max Mean Std. Dev Unit

C 270 65.2891 4213.2916 1047.7088 716.7502 104 ton
x1 270 1.7772 2.2669 2.0260 0.0869 ton/tonCE
x2 270 0.0473 0.8204 0.2290 0.1387 tonCE/104 CNY
x3 270 0.0428 0.8275 0.1031 0.0607 104 CNY/person
x4 270 1020.6000 96,779.5744 30,675.5945 9223.3720 104 persons

4.2. LMDI

In Equation (7), let t0 = 2010. Then the change in transport-related CO2 emis-
sions in tourism could decompose every year. The results of driving effects are reported
in Table 5. From the table, it can be seen that DCx1 tends to be negative on average,
while DCx2 , DCx3 and DCx4 tend to be positive on average.

Table 5. Driving effects.

Variable Symbol Sample Size Min Max Mean Std. Dev Unit

Energy structure effect DCx1 240 −102.6507 87.8050 −12.8585 26.9944 104 ton
Energy intensity effect DCx2 240 −1019.9881 1570.5697 53.9291 369.1905 104 ton
Expenditure effect DCx3 240 −551.4894 1472.7198 45.5760 169.8453 104 ton
Scale effect DCx4 240 −724.4963 2569.3748 513.4557 447.8619 104 ton

Table 6 shows the driving effects and contribution values. The contribution value is
the ratio of one driving effect’s value to the sum of all driving effects’ values. From the
table, it can be seen that:

(1) Between 2010 and 2018, a negative cumulative energy structure effect was observed,
indicating a decline in tourism transport-related CO2 emissions during this period.
Specifically, there was a reduction of 939.9393 × 104 tons of CO2 emissions correlated
with the energy structure factor between 2010 and 2018. This study aligns with
previous research conducted by Yang et al. [9], where they reported that the growth in
CO2 emissions was depressed by the energy structure during 2010–2019 in Dunhuang
City, China. A likely explanation for this trend is the escalated adoption of clean
energy in China’s tourism sector, as suggested in the work of Yang et al. [9].

(2) During the same period, a negative energy intensity effect was noted. Specifically, the
tourism transport-related CO2 emissions contributed by the energy intensity factor
decreased by 8392.0915 × 104 tons over the study period. This outcome notably
echoes the findings of Luo et al. [15], which highlighted that the tourism industry in
China has become more energy-efficient.

(3) The expenditure effect has shown a growing influence on tourism transport CO2 emis-
sions, with the expenditure factor contributing to a cumulative increase in CO2 emissions
of more than 4233 × 104 tons between 2010 and 2018. This underscores the importance
of investigating the connection between regional economic growth and carbon emissions
from the tourism sector, which is further discussed in the subsequent section.

(4) The scale effect emerges as the most significant factor influencing tourism transport
CO2 emissions. The increase in CO2 emissions correlated with the scale factor is
24,559.3081 × 104 tons cumulatively between 2010 and 2018. This highlights the
critical need to examine the relationship between regional economic growth and
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carbon emissions from the tourism sector. The rationale is that economic growth is a
key driver of tourist arrivals within a region, a topic that is further explored in the
following section.

Table 6. Driving effects of the change in tourism transport CO2 emissions.

Year
Energy Structure Effect Energy Intensity Effect Expenditure Effect Scale Effect Total

ChangeΣiDC(i,t)
x1

Contribution ΣiDC(i,t)
x2

Contribution ΣiDC(i,t)
x3

Contribution ΣiDC(i,t)
x4

Contribution

2010–2011 −17.0439 −0.263% 3266.5335 50.368% −74.1370 −1.143% 3309.9447 51.038% 6485.2974
2010–2012 −75.7983 −0.640% 4560.6609 38.528% 248.7661 2.102% 7103.6776 60.011% 11,837.3062
2010–2013 −152.0454 −1.412% 1166.8241 10.835% 264.1418 2.453% 9490.1247 88.124% 10,769.0452
2010–2014 −198.1050 −1.369% 1239.1720 8.563% 442.5625 3.058% 12,988.2170 89.748% 14,471.8464
2010–2015 −327.9754 −1.361% 5813.5724 24.125% 841.5373 3.492% 17,770.7531 73.744% 24,097.8875
2010–2016 −530.3513 −1.893% 4552.1470 16.251% 2032.3190 7.255% 21,957.2047 78.387% 28,011.3193
2010–2017 −844.7706 −2.924% 736.1765 2.548% 2949.9474 10.210% 26,050.1501 90.165% 28,891.5035
2010–2018 −939.9393 −4.830% −8392.0915 −43.124% 4233.1111 21.752% 24,559.3081 126.202% 19,460.3885

Notes: the contribution is the ratio of one effect’s value to sum of all.

4.3. PVAR

To obtain reliable and meaningful results, the PVAR model requires further consid-
eration of stationarity, cointegration, model order selection, parameter estimation, and
impulse response analysis.

Table 7 shows the results of the stationarity test. As shown in this table, we conducted
the stationarity test using two methods, the Im-Pesaran-Shin (IPS) test and the Hadri LM
test. The utilization of both tests is aimed at validating the outcome’s robustness. In the IPS
test, the null hypothesis is that panels have a unit root, which are nonstationary. Whereas,
in the Hadri LM test, the null hypothesis is that all the panels are stationary. As for DCx1 ,
the p-value of the IPS test is more than 10%. This means that the null hypothesis could not
be rejected, indicating that the panel data DCx1 might be nonstationary. Meanwhile, the
p-value of the Hadri LM test is less than 5%. THis means that the null hypothesis could
be rejected, also indicating that the panel data DCx1 are nonstationary. By applying the
same approach, we can conclude that DCx2 , DCx3 , DCx4 and PG are also nonstationary.
When it comes to ∆DCx1 , the first-order difference of DCx1 , the p-value of the IPS test is
less than 5% and the p-value of the Hadri LM test is more than 10%. It can be rejected
that ∆DCx1 is nonstationary; thus, ∆DCx1 is stationary. By applying the same approach,
we can conclude that ∆DCx3 and ∆DCx4 are also nonstationary. For ∆DCx2 , the p-value of
the IPS test is greater than 10% and the p-value of the Hadri LM test is less than 10%. It
cannot reject that ∆DCx2 is nonstationary; thus, ∆DCx2 is regarded as nonstationary. When
it comes to ∆PG, the p-value of the IPS test is less than 10% and the p-value of the Hadri
LM test is greater than 10%. It can be accepted that ∆PG is stationary.

Table 7. Stationarity test.

Variable
IPS Hadri LM

Stationary?
Statistic p-Value Statistic p-Value

DCx1 −0.5465 0.2924 6.3764 0.0000 No
DCx2 1.9141 0.9722 3.8648 0.0001 No
DCx3 3.9890 1.0000 3.6910 0.0001 No
DCx4 −0.9035 0.1831 3.6189 0.0001 No
PG 1.2782 0.8994 7.4962 0.0000 No

∆DCx1 −3.7011 0.0001 −0.0754 0.5300 Yes
∆DCx2 −0.8035 0.2108 1.3990 0.0809 No
∆DCx3 −1.9946 0.0230 1.0105 0.1561 Yes
∆DCx4 −2.2975 0.0108 1.0667 0.1430 Yes
∆PG −1.5575 0.0597 0.5273 0.2990 Yes
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If there are non-stationary variables, it is essential to perform cointegration tests to ascer-
tain the existence of a long-term relationship among them [40]. The presence of cointegration
guarantees that the model is not spurious and helps us to prevent making inaccurate con-
clusions. The PVAR models we intend to build in this paper consist of four two-variable
models (see Equation (9)). For a two-variable model, the variables must be integrated in
the same order, which is a prerequisite for conducting cointegration tests. It is discovered
that DCx1 , DCx3 , DCx4 and PG are all integrated in the same order, but DCx2 is not. Thus
only DCx1 , DCx3 , DCx4 and PG can be used to conduct further cointegration tests.

Table 8 presents the results of the Pedroni cointegration test. As shown in this table, the
p-values in the Modified Phillips–Perron (MPP) test, the Phillips–Perron (PP) test and the
Augmented Dickey–Fuller (ADF) test are all less than 5%. The null hypothesis of no coin-
tegration could be rejected. This provides strong evidence that DCx1 , DCx3 and DCx4 are
cointegrated with PG, respectively, implying that they individually have long-run relation-
ships with PG.

Table 8. Pedroni cointegration test.

Model Variables
MPP PP ADF

Cointegrated?
Statistic p-Value Statistic p-Value Statistic p-Value

Model A DCx1 ~PG 4.5384 0.0000 −12.8980 0.0000 −13.1437 0.0000 Yes
Model B DCx3 ~PG 4.3562 0.0000 −3.5046 0.0002 −6.5566 0.0000 Yes
Model C DCx4 ~PG 4.8180 0.0000 −5.7338 0.0000 −5.6927 0.0000 Yes

The information criteria method is a commonly used method to determine the lag order
of a PVAR model. This method involves selecting the lag order that minimizes a specific
information criterion, such as the Akaike information criterion (AIC), Bayesian information
criterion (BIC) or Hannan–Quinn information criterion (HQIC) [40]. We estimate PVAR
models with different lag orders and compute the AIC, BIC and HQIC values for each
model. The results are reported in Table 9.

Table 9. Lag order selection.

Model Variables Lag AIC BIC HQIC

Model A DCx1 ~PG

1 8.035 9.1703 * 8.4953
2 7.8960 * 9.2608 8.4505 *
3 8.1849 9.8574 8.86407
4 9.2733 11.3843 10.1246

Model B DCx3 ~PG

1 12.4656 13.6008 * 12.9259 *
2 12.3905 * 13.7553 12.9449
3 12.6664 14.3389 13.3457
4 13.6119 15.7229 14.4632

Model C DCx4 ~PG

1 14.4839 15.6192 14.9442
2 16.4120 17.7768 16.9664
3 14.2679 15.9404 14.9471
4 13.0424 * 15.1534 * 13.8937 *

Notes: * denotes the minimum value.

As shown in Table 9, the best lag order is 2 for Model A. Similarly, the best lag order is 1
for Model B and 4 for Model C. Thus, we can construct the PVAR models in the following
way: [

DC(i,t)
x2

PG(i,t)

]
= A(0) + A(1)

[
DC(i,t−1)

x1

PG(i,t−1)

]
+ A(2)

[
DC(i,t−2)

x1

PG(i,t−2)

]
+

[
ε1
ε2

]
(11)

[
DC(i,t)

x3

PG(i,t)

]
= B(0) + B(1)

[
DC(i,t−1)

x1

PG(i,t−1)

]
+

[
ε1
ε2

]
(12)



Sustainability 2024, 16, 3135 12 of 16

[
DC(i,t)

x4

PG(i,t)

]
= C(0) + C(1)

[
DC(i,t−1)

x1

PG(i,t−1)

]
+ C(2)

[
DC(i,t−2)

x1

PG(i,t−2)

]
+ C(3)

[
DC(i,t−3)

x1

PG(i,t−3)

]
+ C(4)

[
DC(i,t−4)

x1

PG(i,t−4)

]
+

[
ε1
ε2

]
(13)

In this paper, the generalized method of moment (GMM) method is used to estimate
the PVAR models. Table 10 reports the estimation results. Unlike traditional structural
models, the PVAR model is essentially a reduced form model which does not require precise
theoretical framework. This implies that the coefficients may not have explicit economic
meanings. Therefore, analysis of the regression results should not focus on individual
coefficients, but on the dynamic interactions among variables. This helps in understanding
how change in per capita GRP leads to dynamic impacts on variables. Thus, to gain further
insights, it is crucial to employ techniques like impulse response analysis.

Table 10. Estimation results.

Variable DCx1 DCx3 DCx4

DCx1 (−1) 0.9855 (4.25) - -
DCx1 (−2) −0.1840 (−1.89) - -
DCx3 (−1) - 0.7239 (1.75) -
DCx4 (−1) - - 0.7068 (4.16)
DCx4 (−2) - - −0.1373 (−1.08)
DCx4 (−3) - - 0.0869 (0.63)
DCx4 (−4) - - −0.0610 (−0.75)
PG (−1) 10.1423 (1.04) 9.3295 (0.25) 41.4307 (0.29)
PG (−2) −8.4300 (−1.50) - −145.0264 (−1.98)
PG (−3) - - 174.1642 (1.52)
PG (−4) - - −75.5860 (−0.63)

Notes: z-values in parentheses.

Figure 2 shows the impulse response function (IRF). The IRF depicts the reaction of
each driving effect when there is an impulse in per capita GRP (PG). DCx1 , DCx3 , DCx4 and
PG are all integrated in the same order, but DCx2 is not. Thus, only DCx1 , DCx3 , DCx4 and
PG can be used to conduct impulse response function analysis.

As shown in Figure 2, the energy structure effect (DCx1) demonstrates a consistently
positive response to economic growth, indicating that when economic growth is subjected
to a positive impulse, the energy structure effect in the tourism transport sector tends
to increase. This effect reached its peak during the second period, suggesting a strong
correlation between economic expansion and carbon emissions during this phase. However,
it is noteworthy that this effect gradually declines after reaching its peak. This decline
could be attributed to the implementation of more efficient technologies or a shift towards
greener practices within the tourism industry as the economic growth continues [9].

The expenditure effect (DCx3) also shows a consistent positive response to economic
growth. This suggests that increased spending in the tourism sector, likely driven by higher
disposable incomes and economic prosperity, contributes to an increase in CO2 emissions.
The variable response of the scale effect suggests that while economic growth can lead to
an increase in tourist numbers, the resultant impact on CO2 emissions can be moderated by
implementing sustainable tourism and transportation policies [26,28].

Unlike the energy structure, expenditure and scale effects, which exhibit varying
degrees of responsiveness to economic growth, the energy intensity effect (DCx2), does
not demonstrate a statistically significant long-term relationship with regional economic
development. This divergence is noteworthy because it suggests that changes in the energy
efficiency of tourism-related transport do not necessarily move in tandem with the regional
economic growth.

These findings are significant because they challenge the assumption that economic
growth inevitably leads to increased energy consumption and, by extension, increased
carbon emissions in the tourism sector. It opens avenues for further research into the factors
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that drive energy efficiency in tourism-related transport and how these can be leveraged
to decouple economic development from environmental impacts. For policymakers, it
highlights the potential for targeted interventions to improve energy efficiency without
hindering economic growth and provides a pathway towards sustainable development in
the tourism industry.
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5. Conclusions and Policy Implications

Carbon emissions in tourism are essential for climate change. Existing research only
studies the relationship between economic growth and tourism carbon emissions. But
we have conducted a more in-depth study of the relationship between economic growth
and the driving effects behind tourism carbon emissions. This can more deeply reveal the
mechanism of how economic growth influences tourism carbon emissions. This is one of the
most important contributions of our work. In addition, the driving effects behind tourism
carbon emissions are obtained using the LMDI method. In order to reveal the mechanism
of how economic growth influences tourism transport-related CO2 emissions, this paper
has adopted a method using LMDI and PVAR models. An empirical study was conducted
in China from 2010 to 2018. Firstly, this paper decomposed the transport-related tourism
CO2 emissions into four driving effects using the LMDI method. Secondly, in response to
the deficiency that few studies have examined in the dynamic interactions between the
transport-related tourism CO2 emissions and per capita GRP, this paper established PVAR
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models based on each driving effect and per capita GRP. This is the major contribution of
our work.

This study found that there was a reduction of 939.9393 × 104 tons of CO2 emis-
sions correlated with the energy structure factor between 2010 and 2018. Meanwhile, the
tourism transport CO2 emissions contributed by the energy intensity factor decreased by
8392.0915 × 104 tons. The adoption of cleaner and more efficient energy has contributed to
this trend, mitigating CO2 emissions by a substantial margin. However, the growth in tourism
expenditure and scale has increased CO2 emissions, underscoring the complex interplay
between economic development and environmental sustainability in the tourism sector.

These findings underscore the importance of strategic policies to promote sustainable
energy use and efficiency in the tourism transport sector. It acknowledges the adverse
impacts of tourism growth on environmental sustainability, particularly through expendi-
ture and scale effects. However, the significant reduction in CO2 emissions attributed to
improved energy structure and efficiency underlines the critical role of promoting green
infrastructure, encouraging energy-efficient transport and incentivizing carbon footprint
reduction efforts. These strategies are pivotal in reversing the upward trend in carbon
emissions and ensuring a sustainable trajectory for the tourism industry.

This study also found a complex interplay between economic growth and CO2 emis-
sions within the tourism transport sector. Economic growth promotes an increase in CO2
emissions through the energy structure, expenditure and scale effects, but the lack of a
significant cointegration in the energy intensity effect suggests an opportunity to decouple
economic development from environmental degradation. This indicates that technological
advances and shifts towards sustainable practices can mitigate environmental impacts with-
out compromising economic growth, challenging the assumption that economic prosperity
inevitably leads to increased emissions.

These findings also advocate for strategic policy measures to foster green and efficient
energy use in the tourism transport sector. Admittedly, the negative impacts of tourism
growth on environmental sustainability are recognized, in particular the expenditure
effect and scale effect. However, this reduction in CO2 emissions through improved
energy structure and efficiency is important and highlights the important role of promoting
advances in green infrastructure and energy-efficient transport and incentivizing carbon
footprint reduction efforts. Such strategies would play a critical role in reversing the
upward trajectory of emissions and putting the tourism industry on a new and sustainable
downward trajectory.

While this paper provides a comprehensive analysis of the driving effects behind
tourism transport CO2 emissions and economic growth, a potential issue is the limited
generalizability of the findings. This study also has certain limitations that should be taken
into account.

1. The data used in this study came from China. More studies should be conducted using
the same methodology to ensure the generalizability of the results. It would increase
the work’s contribution to the larger subject of sustainable tourism if it addressed
potential contextual differences in other countries.

2. This study focused on CO2 emissions from transport in the tourism sector and did
not include CO2 emissions from other tourism activities, such as accommodation. To
properly mitigate carbon footprint, a thorough assessment of all CO2 emissions from
tourism is necessary. Further research should fully integrate these aspects.

3. It is crucial to acknowledge that external factors such as policy changes or global
economic shifts may have an impact on the observed dynamics.

Therefore, further studies emerging from this manuscript should consider the follow-
ing avenues. First, similar analyses should be conducted in other countries to determine
whether the findings presented here are globally representative or unique to China’s pre-
pandemic context. Second, the scope of the investigation should extend beyond the trans-
portation segment of tourism to include the accommodation and entertainment industries,
both of which play critical roles in the tourism sector and contribute to its environmental
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footprint. Finally, the study’s finding of a significant reduction in CO2 emissions due to
improved energy structures within the tourism transportation industry requires further
investigation. Future research should incorporate micro-level data to pinpoint which
sustainable practices effectively suppress CO2 emissions. Identifying these practices can
suggest solid strategies for promoting energy efficiency not just in tourism transport but
across the entire tourism sector, offering insights into sustainable development practices
and guiding future efforts to minimize environmental impacts.
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