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Abstract: Urban ecological efficiency stands as a pivotal indicator that mirrors the level of sus-
tainable development within cities. To unravel the sustainable development status of Chinese
cities and illuminate the factors impacting the diverse developments among them, this study lever-
aged the super-efficiency SBM (slacks-based measure) model to assess the ecological efficiency of
284 prefectural-level and above cities across China in 2019, divulging their spatial distribution. Fur-
thermore, a GWR (geographically weighted regression) model was also employed to scrutinize the
factors influencing the ecological efficiency of these cities. Key findings include: (1) The mean ecolog-
ical efficiency of Chinese cities in 2019 stood at 0.555, signaling moderate urban sustainability, with
southern cities outperforming their northern counterparts. (2) A pronounced spatial clustering of
ecological efficiency was evident, featuring positive spillover effects around high-efficiency cities and
conversely, negative spillover effects around low-efficiency cities. (3) Economic development and pop-
ulation density positively influenced urban ecological efficiency, while urbanization levels exhibited
a negative impact. The influences of industrial structure, technological level, and opening-up level
varied, showcasing both positive and negative impacts contingent upon the spatial disposition of the
cities. Hence, policymakers are advised to recognize the spatial nuances in the impacts of distinct
factors on urban ecological efficiency and tailor measures accordingly to fortify urban sustainability.

Keywords: sustainable development; ecological efficiency; spatial autocorrelation; GWR model;
influencing factors

1. Introduction

Over the past forty years, China has undergone a remarkable surge in socioeconomic
transformation, fueled by comprehensive reforms and its policy of opening up. This period
witnessed rapid urbanization and extensive urban expansion. However, these strides
have also brought forth substantial challenges related to resources and the environment,
manifesting in issues like resource depletion, ecological degradation, and pollution. These
challenges are direct outcomes of the prevailing mode of development and pose significant
threats to China’s pursuit of sustainable development.

Amidst the array of challenges and pressures confronting China, the government
has undertaken substantial initiatives in recent years to address sustainability concerns.
At the macro level, sustainability has been entrenched as a foundational strategy since
1997, with recent emphasis placed on visionary objectives such as carbon peaking and
carbon neutrality. Concurrently, the central government has underscored the imperative of
prioritizing sustainable development policies within regional development frameworks.
For instance, the Guangdong–Hong Kong–Macao Greater Bay Area has proposed the im-
plementation of a stringent ecological protection regime within its developmental blueprint,
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with a concerted focus on rectifying historical environmental legacies. Similarly, Northeast
China has enacted policies mandating the cessation of natural forest logging, diverting
attention towards leveraging natural and ecological resources for tourism purposes, thereby
facilitating the transition towards sustainable development paradigms.

Furthermore, the government has embarked on initiatives aimed at establishing sus-
tainable development demonstration zones across the nation. For example, Shenzhen City
has emerged as an exemplar of sustainable development practices within the context of
mega-cities, while Taiyuan City serves as a model for the transformation and rejuvenation
of resource-based urban centers. Guilin City, on the other hand, has been designated as a
demonstration zone for the sustainable utilization of landscape resources. The knowledge
and insights gleaned from the experiences of these model zones in advancing sustainable
development have been disseminated not only across the nation but also globally, under-
scoring China’s commitment to fostering sustainable development at both domestic and
international levels.

Moreover, the objective and scientific measurement of the current state of sustainable
development of a region or city and what factors are affected by it is an important foun-
dation and basis for us to continue to reform and upgrade. Ecological efficiency, in recent
years, has been an effective tool used to measure the level of sustainable development. The
study of ecological efficiency is conducive to improving our understanding of sustainable
development. In other words, scientifically and effectively evaluating the level of ecological
efficiency in China’s cities, discovering the differences in the level of ecological efficiency,
analyzing in depth the factors affecting the level of regional ecological efficiency, and
exploring ways to improve regional ecological efficiency are of great significance to China’s
efforts to positively transform its mode of economic development, harmonize the inherent
contradictions of the composite system of economy–resources–environment, and realize
sustainable development.

The inception of the concept of ecological efficiency dates back to 1989 when Schal-
tegger and Sturm introduced it as the ratio of economic growth to environmental impact [1].
This concept, with its simplicity and significance, prompted numerous organizations and
scholars to delve further, leading to multiple definitions and expansions of the concept [2–4].
Among these, the definition established by the WBCSD (World Business Council for Sus-
tainable Development) is widely accepted by the public. It defines ecological efficiency as
the process of gradually reducing ecological impacts and resource intensities throughout
the procedure, aiming to align with the Earth’s estimated carrying capacity while offering
products and services that meet human needs and enhance the quality of life [5].

While academic consensus on the precise definition of ecological efficiency remains
elusive, there exists a shared core idea across varied definitions: the optimization of eco-
nomic returns with minimal resource and environmental consumption, driving sustainable
economic development. The concept of ecological efficiency, thus, serves as an equilibrium
point between economic development and resource-environmental concerns, emerging
as a crucial indicator for gauging sustainable regional development. Studies revolving
around ecological efficiency yield invaluable insights into the sustainable evolution of
human society.

Over the past three decades, academic research on ecological efficiency has expanded
rapidly and achieved fruitful results. Other countries and China have significantly dif-
ferent focuses on ecological efficiency research. In foreign countries, scholars focus more
on the research object of ecological efficiency on enterprise operation [6,7] and industry
development [8,9]. In contrast, scholars in China have focused more on the three major
industries [10–15] as well as regional research on ecological efficiency, especially regional
research on ecological efficiency. This is determined by the actual situation and real needs
of China’s social and economic development over the years.

In the realm of research on regional ecological efficiency in China, scholars have
directed their investigations towards various geographic scales, including provinces [16,17],
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watersheds [18,19], and urban agglomerations or economic zones comprised of multiple
cities [20,21]. Research endeavors have predominantly focused on three principal facets.

Firstly, there is a concerted effort towards the measurement of ecological efficiency,
which serves as a foundational component underpinning subsequent inquiries. A plethora
of methodologies have been employed for this purpose, ranging from the ecological foot-
print method utilized by Shi [22] to the energy value analysis method employed by Pan [23],
as well as the construction of ecological efficiency evaluation index systems by Qiu [24] and
Li [25]. Furthermore, modeling approaches such as the SFA (Stochastic Frontier Analysis)
model and DEA (Data Envelopment Analysis) models, employed by Yang [26] and Ren [27],
respectively, have gained prominence over time. Secondly, attention has been devoted to
scrutinizing the spatiotemporal dynamics and patterns of ecological efficiency. Mathemat-
ical models including the Markov chain [28] and spatial autocorrelation [29] have been
employed to unveil the temporal evolution of regional ecological efficiency, often aided by
visualization tools such as GIS. Lastly, scholars have endeavored to elucidate the influenc-
ing factors shaping ecological efficiency. By selecting specific determinants in line with the
conceptual framework of ecological efficiency, researchers have explored the correlation
between these factors and ecological efficiency through regression modeling techniques.
Commonly employed regression models include the Tobit model [26,30], Geodetector [31],
and spatial measurement model [32,33]. Notably, numerous representative studies have
underscored the significance of factors such as economic development, industrial struc-
ture, technological advancement, and level of openness in influencing urban ecological
efficiency. Nevertheless, divergent results across specific research domains and temporal
contexts have been observed, owing to disparities in indicator selection and assessment
methodologies utilized across studies.

Extensive literature review underscores the significance of scientifically rigorous
assessment of urban ecological efficiency and examination of its spatial and temporal
distribution, along with its influencing factors, to drive sustainable urban development
forward. While past studies have contributed substantially to elucidating the interplay
between resource and environmental inputs and economic outputs within the framework
of social development, notable challenges remain.

Firstly, existing nationwide studies have predominantly utilized the province as the
primary unit for ecological efficiency assessment, potentially neglecting regional variations
in urban development. Therefore, there is a pressing need to prioritize city-level ecological
efficiency studies within China. Secondly, past research has frequently employed global
models like Geodetector and Tobit models to examine the factors influencing ecological
efficiency. However, these models assume that influencing factors are independent of the
geographic location of the research subject. In reality, regression parameters often exhibit
substantial variations across different geographic locations, making these approaches
inadequate for capturing regional disparities in ecological efficiency.

To furnish a more comprehensive understanding of sustainable development in Chi-
nese cities, this study employs the super-efficiency SBM (Slacks-Based Measure) model to
gauge the ecological efficiency of these cities. Furthermore, the study introduces the GWR
(Geographically Weighted Regression) model to scrutinize the factors influencing urban
ecological efficiency and its heterogeneity. The super-efficiency SBM model, grounded
in establishing input–output indicator systems, stands as the predominant method for
assessing ecological efficiency. Conversely, the GWR model, a variant of the local regression
model, integrates geographic information into regression parameters to elucidate spatial
disparities among influencing factors across different geographical locations. Despite the
widespread use of the GWR model, its incorporation into studies on factors influencing
ecological efficiency remains limited. Therefore, this study aims to bridge this gap by em-
ploying the GWR model to investigate influencing factors, with the objective of generating
insights beyond those gleaned from prior research endeavors.
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Through these assessments, the study aims to provide scientific references that can
facilitate the formulation of diverse regional strategies for promoting sustainable socio-
economic development in Chinese cities.

2. Methods and Data Sources
2.1. Methodology

Ecological efficiency stands as a pivotal measure of sustainable development, encapsu-
lating harmonious and integrated performance across resource utilization, environmental
impact, and economic vitality. This study, rooted in an extensive literature review, adopted
a unified definition of ecological efficiency, highlighting the holistic interplay among these
three fundamental aspects. To measure ecological efficiency, this study employed the
super-efficiency SBM model, which is a comprehensive evaluation method enabling a com-
prehensive depiction of sustainable development. Furthermore, considering the multiple
factors influencing ecological efficiency across diverse regions, this study integrated the
GWR model for further deep assessment. Unlike global spatial models, GWR accounts
for spatial variations in the impact of each factor, offering a more precise identification
of ecological efficiency determinants. This study embarked on exploring and delineating
these intricate interconnections based on the conceptual framework in Figure 1.
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2.1.1. Super-Efficiency SBM Model

Our literature review reveals three primary methods for measuring ecological effi-
ciency: the single ratio method, the indicator system method, and the modeling method.
The single ratio method, which relies on just two indicators, tends to provide a limited
perspective on ecological efficiency. The indicator system method, although more com-
prehensive, often struggles with subjectivity during analysis and in the weighting of
calculations. Over time, the modeling method has emerged as the predominant approach
for its comprehensive and objective evaluation of ecological efficiency. Among these, the
DEA model stands out as the most extensively applied technique.

DEA is a non-parametric method that evaluates the relative efficiency of entities with
multiple inputs and outputs, introduced by Charnes et al. in 1978 [34]. Its main advantage
lies in its objective analysis, eliminating the need for predetermined weights for inputs
and outputs. However, traditional DEA models have limitations, notably their inability
to account for slack variables in ineffective DMUs (decision-making units). To overcome
this, Tone introduced the SBM model in 2001 [35], a non-radial and non-angular approach
that incorporates slack variables. While the SBM model successfully addresses the issue
of slack variables, it introduces a challenge by often yielding uniform efficiency scores
across decision units, which complicates rankings and further analysis due to all efficiency
values being equal to 1. To resolve this, Tone developed the super-efficiency SBM model
in 2002 [36], which provides a nuanced evaluation of efficiency among different units by
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solving the issue of uniform efficiency scores. The formulation of the super-efficiency SBM
model is as follows:

minp =

1 + 1
m

m
∑

i=1
s−i /xik

1 − 1
s

s
∑

r=1
s+r /yrk

(1)

s.t.
n

∑
j=1,j ̸=k

xijλj − s−i ≤ xik (i = 1, 2, . . . , m)

n

∑
j=1,j ̸=k

yrjλj + s+r ≥ yrk (r = 1, 2, . . . , m)

λj ≥ 0, j = 1, 2, . . ., n (j ̸= k), s − i ≥ 0, s + r ≥ 0

where minp represents the relative efficiency; x and y denote the input and output variables,
respectively. m and s represent the number of input and output indicators. S−

i and S+
r

represents the slack variables for input and output, respectively. λj is the weight vector.
The evaluated decision unit is considered relatively efficient if the relative efficiency is
greater than 1.0, and relatively inefficient if the relative efficiency value is lower than 1.0,
indicating that input and output adjustments are required.

2.1.2. Spatial Autocorrelation Analysis

The “First Law of Geography” posits that spatial proximity fosters stronger correla-
tions among entities compared to those farther apart [37]. Spatial autocorrelation analysis,
as a method to assess the degree of spatial clustering for a specific attribute within spatial
units, encompasses two types: global and local measurements. Global spatial autocorre-
lation depicts the overall spatial correlation within an entire region, while local spatial
autocorrelation gauges spatial relationships among sub-regions. In this study, we utilized
both global and local spatial autocorrelation to investigate the spatial clustering of urban
ecological efficiency [38]. The global Moran’s Index evaluates the overall spatial clustering
across the entire spatial sequence, while the local Moran’s Index assesses clustering con-
cerning neighboring areas within specific sub-regions. Their respective formulas are as
follows:

I = [
n

∑
i=1,j=1

Wij
(
xj − x

)(
xj − x

)
]/S2

n

∑
i=1,j=1

Wij (2)

Ii = [
n

∑
i=1,j=1

Wij
(

xj − xi
)
]/S2 (3)

where I represents the global Moran’s Index; S2 = 1
n

n
∑

i=1
(xi − x)2 denotes the sample

variance. n is the number of study units (number of cities in this study). xi and xj represent
the ecological efficiencies of cities i and j, respectively, while x represents the mean ecological
efficiency of all cities. Wij represents the spatial weight matrix. The global Moran’s Index
I ranges between −1 and 1. A positive value indicates positive spatial autocorrelation,
while a negative value indicates negative spatial autocorrelation. Ii represents the value
of the local Moran’s Index. By plotting a local Moran scatterplot, the spatial clustering of
ecological efficiency for each city can be visually displayed. The local spatial correlation
of regions can be visualized by plotting LISA clustering maps in four cases: “High–High
(H-H)” clustering, which means that cells with high observations are also surrounded
by cells with high observations; “Low-High (L–H)” clustering, which indicates that cells
with low observations are surrounded by cells with high observations; “low-low (L–L)”
clustering, which indicates that cells with low observations are surrounded by cells with low
observations; The “High-Low (H–L)” clustering indicates that cells with high observations
are surrounded by cells with low observations.
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2.1.3. GWR Model

It is evident that urban ecological efficiency possesses geospatial attributes, necessitat-
ing a regression model that can adeptly handle data with spatial characteristics. Brunsdon
et al. introduced the GWR model, employing local smoothing techniques to account for
these attributes [39]. Unlike traditional models that rely on global averaging, GWR acknowl-
edges the variability in local changes associated with regional locations, incorporating
geographical information of sample points into parameter estimations. Consequently, GWR
proves highly effective for analyzing the determinants of urban ecological efficiency. The
formula for the GWR model is presented as follows:

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi (4)

In the equation: yi represents the dependent variable’s explanatory value for city i;
(ui, vi) represents the geographic coordinates of city i; xik represents the explanatory values
of the independent variables for city i; βk (ui, vi) represents the regression parameters at
the centroid (ui, vi) of research unit i, which is a function of geographical location; and εi
represents the random error term.

To avoid the bias of the estimation results caused by the interaction between the
indicators, it is necessary to carry out the covariance test of the above indicators before
carrying out the geographically weighted regression, and if there is a strong covariance
of the indicators, it is necessary to exclude them. At the same time, the data need to be
standardized before regression to maintain the smoothness of the data.

2.2. Ecological Efficiency Measurement Indicators and Data Sources
2.2.1. Construction of the Ecological Efficiency Measurement Indicator System

Developing a scientific and comprehensive indicator system for measuring urban
ecological efficiency is crucial for research, necessitating an analysis rooted in the concept
of ecological efficiency. Urban ecological efficiency can be succinctly defined as the ratio of
a city’s economic output to its resource and environmental consumption, encompassing
three key dimensions: economy, resources, and environment. Drawing from the analysis
of seminal literature [26,27,40], this study similarly adopts these three dimensions in
designing the ecological efficiency measurement indicator system: economic, resource, and
environmental pollution categories. The economic category serves as the output indicator,
resource consumption as the input indicator, and environmental pollution, though an
outcome of economic activities, is considered an additional input factor for its impact on
the environment.

(1) Economic indicators primarily capture the value of products and services generated
by the economic system, represented in this study by each city’s GDP (Gross Domestic
Product). (2) Resource-based indicators encompass a broad range of material, financial,
and human elements available within a country or region, categorized into natural and
social resources. This study focuses on three natural resources—energy, water, and land—
due to their significant relevance to human economic activities. Energy consumption is
indicated by the city’s total electricity consumption; water consumption by the social water
consumption index; and land resources by the area of urban construction land. Social
resources are represented by labor and capital, measured by the number of employees and
fixed asset investment, respectively. (3) Environmental impact indicators are quantified
by the societal emissions of wastewater, exhaust gas, and solid waste—the ”three wastes”.
Given the lack of comprehensive data publication in China, this study follows the approach
of most Chinese researchers, selecting sewage discharge, industrial sulfur dioxide emissions,
and garbage generation as markers for environmental pollution indicators (Table 1).
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Table 1. The indicator descriptions for the ecological efficiency evaluation.

Indicator Composition of Indicator Concrete Content Unit

Input

Resource consumption
Total electricity consumption KWh

Total water consumption 104 tons
Construction land area km2

Labor force consumption Number of employed personnel 104 People

Capital consumption Fixed asset investment 104 Yuan

Environmental consumption
Sewage discharge Ton

Industrial sulfur dioxide emissions Ton
Garbage generation Ton

Output City economic output GDP of each city 108 Yuan

2.2.2. Factors Affecting Ecological Efficiency

The city represents a holistic and intricate system, encapsulating elements of ecology,
economy, and environment. The determinants of urban ecological efficiency are multi-
faceted, prompting this study to undertake indicator selection from two main perspectives.
Firstly, leveraging insights from prior literature, we conducted a comprehensive review of
recent scholarly work on urban ecological efficiency, synthesizing and categorizing iden-
tified influencing factors. Secondly, informed by the essence of ecological efficiency and
the principles of sustainable development, we refined our indicator selection process. An
examination of key literature [26,32,40,41] reveals a consensus among researchers on sev-
eral core factors affecting urban ecological efficiency, including economic level, industrial
structure, level of openness, technological advancement, and urbanization rate. Additional
considerations by some scholars include urban compactness and marketization degree.
Therefore, grounded in the aforementioned analysis and the principle of data availability,
this study opts to explore six dimensions—economic level, industrial structure, techno-
logical advancement, level of openness, population density, and urbanization rate—as the
pivotal influencers of urban ecological efficiency. Table 2 presents the specific indices used
to characterize each dimension.

Table 2. Factors affecting urban ecological efficiency.

Factor Measurement Methods Unit

Economic level GDP per capita Yuan
Industrial structure GDP of secondary industry/GDP %

Technological level Science and Technology
expenditures/Financial expenditure %

Opening-up level Foreign direct investment/GDP %
Population density Population/Urban built-up area People/km2

Urbanization level Urban population/Total population %

2.2.3. Data Sources

The research object of this study is Chinese cities at the prefecture level and above, but
the following types of regions were excluded from the study due to serious data missing:
(1) Hong Kong, Macau, and Taiwan, the three regions outside mainland China. (2) Seven
prefectures, such as Da Hinggan Ling Prefecture and Kashgar Prefecture; three leagues,
including Xilingol League, Alxa League, and Hinggan League; and thirty Autonomous
Prefectures, such as Yanbian Korean Autonomous Prefecture and Enshi Tujia and Miao
Autonomous Prefecture. (3) Thirteen prefecture-level cities such as Xiantao and Tianmen.
These regions are mainly located in the western part of China such as Xinjiang, Tibet,
Qinghai, Sichuan, Yunnan, and Guizhou. Finally, 280 prefecture-level cities and four
municipalities totaling 284 cities were selected for this study, as shown in Figure 2.
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Figure 2. Study area.

This study aims to study the ecological efficiency of Chinese cities in recent years,
and the data used are all social and economic data. However, there has been a worldwide
outbreak of the COVID-19 Pandemic since 2020, which has had a great impact on the
economy and society, and the related data have also changed abnormally. For the sake of
scientificity and accuracy, this study adopts the data of 2019, and the data mentioned above
are all obtained from the 2020 China Urban Statistical Yearbook (which reflects the economic
data of 2019), the 2019 China Urban Construction Statistical Yearbook and the statistical
yearbooks of each province, and the sources of specific indicators are detailed in Table 3.
The few outliers in the yearbooks are adjusted through the data of the official regional
website or supplemented by the use of the interpolation method. Finally, descriptive
statistics are provided for the data in this study, as shown in Table 4.

Table 3. List of sources of data.

Data Sources Year of Data Name of Data Units

China Urban Statistical
Yearbook

2020

GDP of each city 108 Yuan
GDP per capita Yuan

Fixed asset investment 104 Yuan
Number of employed personnel 104 People

Industrial sulfur dioxide emissions Ton
Sewage discharge Ton

Garbage generation Ton
Financial expenditure 108 Yuan

Science and Technology expenditures 108 Yuan
Foreign direct investment 104 Dollar

China Urban Construction
Statistical Yearbook

2019
Construction land area km2

Urban built-up area km2

Total water consumption 104 tons

Provincial statistical yearbooks 2020

Total electricity consumption KWh
Industrial structure %

Population 104 People
Urbanization level %
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Table 4. Data descriptive statistics.

Name of Data Units Maximum Minimum Mean Value

GDP of each city 108 Yuan 38,156.00 231.00 3326.07
GDP per capita Yuan 203,489.00 14,746.00 63,542.69

Fixed asset investment 104 Yuan 19,724.00 72.00 2325.43
Number of employed personnel 104 People 791.30 5.86 59.74

Industrial sulfur dioxide emissions Ton 115,089.00 75.00 11,587.27
Sewage discharge Ton 96,501.00 48.00 4405.27

Garbage generation Ton 213,693.00 79.00 14,323.64
Financial expenditure 108 Yuan 8179.28 31.86 574.82

Science and Technology expenditures 108 Yuan 548.42 0.18 18.39
Foreign direct investment 104 Dollar 190.47 0.00 9.53

Construction land area km2 1495.00 13.00 197.00
Urban built-up area km2 1515.41 13.80 202.68

Total water consumption 104 tons 297,923.20 763.00 21,403.70
Total electricity consumption KWh 1568.58 24.96 229.99

Industrial structure % 67.04 10.68 39.46
Population 104 People 3113.00 30.49 460.37

Urbanization level % 99.52 34.67 60.40

3. Results
3.1. Urban Ecological Efficiency Assessment

Using the data from 284 Chinese cities in 2019, the ecological efficiency of these cities
was measured using the super-efficiency SBM model of MAX-DEA 9.1 software. Regarding
the efficiency measurement division standard of existing studies [28], they were divided
into low efficiency, medium efficiency, relatively high efficiency, and high efficiency with
critical values of 0.50, 0.75, and 1. The results show that the average value of ecological
efficiency of Chinese cities is 0.555, which is in the state of medium efficiency, and there are
only 33 cities that reach high efficiency, with the overall low ecological efficiency of cities
and poor coordination between economic development and nature and ecology. To explore
the ecological efficiency status of Chinese cities from different perspectives, this study will
analyze three perspectives: the overall situation, the four major economic zones, and cities
at multiple scales.

(1) Overall situation. The measurement results were visualized using ArcGIS 10.8 soft-
ware, as shown in Figure 3a. From the overall spatial distribution, the ecological efficiency
of cities in southern China is significantly better than that of northern cities. The number
of cities with high ecological efficiency is small, but most of them have obvious clustering
characteristics. For example, the southern part of Henan Province (Figure 3(b1)), the east-
ern and southern parts of Jiangsu Province (Figure 3(b2)), Fujian Province (Figure 3(b3)),
and the core cities of the Pearl River Delta (Figure 3(b4)) are the main areas of high eco-
logical efficiency distribution. Relying on the advantages of location and policies, these
cities have achieved high economic outputs. With advanced management measures, they
have gained a first-mover advantage in sustainable development and have formed a high
ecological efficiency agglomeration. High ecological efficiency agglomerations have also
been formed in several cities neighboring Inner Mongolia, Shanxi and Gansu provinces
(Figure 3(b5)), which have achieved high ecological efficiency by virtue of their lower
resource and environmental consumption, even though their economic output is not high.

Cities with low ecological efficiency show more obvious agglomeration characteristics
in spatial distribution. The ecological efficiency of cities in several provinces in a row,
such as Jilin, Heilongjiang, Liaoning, Hebei, Shanxi, Shandong, etc. (Figure 3(c1)), is
almost at the low-efficiency level, and only Beijing and Yangquan are at the high-efficiency
status in these regions. Yantai and Qingdao in Shandong are at a relatively high efficiency
status. These cities located in northeastern China have been relying on heavy industries
for a long time for their economic development, with serious resource consumption and
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environmental pollution. With a gradual loss of population in recent years, the vitality
of urban development and the rate of economic growth has declined, resulting in the
formation of low-efficiency agglomerations. Cities in the provinces of Inner Mongolia,
Gansu, and Ningxia Province (Figure 3(c2)) are also in a state of low ecological efficiency;
in addition, there are also many cities with low ecological efficiency concentrated in several
provinces, such as Jiangxi, Guangdong, Guangxi, and Yunnan Province (Figure 3(c3)).
Mainly due to the low level of economic development, the cities located in the northwest
and southwest of the study area maintain current low-efficiency levels.
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China’s eastern coastal provinces are more economically developed, but most of
these cities are not in a state of high efficiency. In addition, like the inner distribution
of Guangdong Province, the cities located in the center (Guangzhou, Foshan, Shenzhen,
etc.) have a large gap between the ecological efficiency of the cities and other cities in the
province, which indicates that the resources and environmental costs for cities in China
to obtain economic benefits are still high. This implies that the economic structure and
industrial development need to continue to be optimized and upgraded. At the same
time, resource and environmental allocations of the regional differences or inequitable
distribution are more prominent. In general, the overall ecological efficiency of Chinese
cities is in the medium efficiency range, with a large number of low-efficiency cities and
a small number of high-efficiency cities. How to reduce the consumption of resources
and environmental pollution, realize sustainable development, and reduce the differences
between regions while taking into account economic development is an important topic for
the future.

(2) The situation of the four major economic zones. In alignment with China’s eco-
nomic geography and geospatial characteristics, the country is categorized into four distinct
economic zones: East, Central, West, and Northeast. As illustrated in Figure 4, the average
ecological efficiency values for these zones are 0.638, 0.593, 0.523, and 0.320, respectively, in
descending order of East > Central > West > Northeast.
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Eastern Region: This area, as the crux of China’s economic and social development,
leads with its rapid economic growth and substantial overall output. Boasting abundant
labor, capital, technological advances, and human resources, the Eastern region effectively
mitigates resource consumption and environmental pollution. Despite having the high-
est ecological efficiency among the zones, it still operates at a medium efficiency level,
indicating room for significant improvement.

Central Region: Rich in resources and labor, the Central region has been absorbing
industrial transfers from the East, bolstering its economic growth. However, its economic
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foundation and scale pale in comparison to the East. Additionally, it grapples with en-
vironmental pollution resulting from these industrial transfers, which explains its lower
ecological efficiency relative to the Eastern zone.

Western Region: Geographical, infrastructural, and transportational limitations mark
this region. Coupled with a smaller economic scale, later development start, weaker
economic base, and a homogenous development model, the Western region’s ecological
environment is less resilient, resulting in lower ecological efficiency than the East and
Central regions.

Northeast Region: Historically a pivotal part of China’s economic growth, the North-
east has the lowest ecological efficiency among the four zones. Its focus on heavy industry,
alongside a relatively rudimentary development model, has led to significant ecological and
environmental challenges. The region’s declining development momentum and economic
vitality in recent years further exacerbate its position as the least ecologically efficient zone.

(3) The situation of multi-class size cities. According to the Green Paper on Small
and Medium-sized Cities [42], Chinese cities are categorized into super-city (more than
10 million), mega-city (5–10 million), large city (1–5 million), and small and medium-sized
city (less than 1 million) in accordance with the resident population of the cities.

The results show that the ecological efficiency of cities is positively correlated with city
size, exhibiting the hierarchical characteristics of super-cities > mega-cities > large cities >
small and medium-sized cities, with their mean ecological efficiency values of 0.675, 0.640,
0.527, and 0.289, respectively, showing an obvious decreasing pattern. Thus, it can be seen
that the larger the city scale, the more obvious the agglomeration ability for its resource
allocation, and the different resource agglomeration ability plays a role in all aspects of
the resource–environment–economy composite system, which ultimately affects the city’s
ecological efficiency. Therefore, to improve urban ecological efficiency, it is also necessary
to consider the differences between cities of different sizes for regulation and management.

3.2. Spatial Correlation Analysis of Urban Ecological Efficiency

The overall level of China’s urban ecological efficiency is low and shows obvious
regional differences. In order to deeply explore the spatial correlation of urban ecological
efficiency in China, this study carries out a global autocorrelation analysis based on ArcGIS
10.8 software. The spatial autocorrelation analysis of urban ecological efficiency is carried
out by using Formula (2), in which the Moran’s I index is 0.225, and the standardized
test Z(I) value is 5.736, which passes the test at the significance level of 0.01. The results
show that the spatial distribution of ecological efficiency presents significant positive
autocorrelation, and the clustering state is obvious.

In order to further identify the typical agglomeration types of urban ecological effi-
ciency, the local spatial autocorrelation analysis of ecological efficiency in cities across the
country is conducted using Formula (3), and LISA significance maps are drawn, as shown
in Figure 5a.

Cities of the high–high clustering type are mainly located in the south of Henan
Province (Figure 5(b1)), the middle of Jiangsu Province (Figure 5(b2)), the southwest
of Fujian Province (Figure 5(b3)), the neighboring area of Hunan and Hubei Province
(Figure 5(b4)), and sporadically in Shaanxi Province (Yulin) (Figure 5(b5)), Yunnan Province
(Puer) (Figure 5(b6)), and so on. The low–low clustering area is distributed in the north-
ern part of China and is relatively concentrated, basically covering the three northeast-
ern provinces (Jilin, Liaoning, and Heilongjiang) and affecting the neighboring cities
(Figure 5(c1)).

The phenomenon of low–low clustering also occurs in the northwestern part of Gansu
Province (Figure 5(c2)), and in the neighboring areas of Inner Mongolia and Shanxi Province
(Figure 5(c3)).

The high–low clustering area and low–high clustering areas are smaller in scope and
are mainly distributed in the periphery of the high–high and low–low clustering areas.
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From the results of local spatial autocorrelation, it can be seen that both high–high
clustering areas and low–low clustering areas have very obvious spatial clustering charac-
teristics. High–high clustering areas are mostly dominated by neighboring cities in the same
province. The number of cities in a single cluster is small, which proves that the radiation
scope of synergistic promotion of ecological efficiency development is relatively small, and
the radiation surface should be expanded in the future to drive more cities in the periphery
to improve ecological efficiency. The formation of low–low clustering zones in the three
northeastern provinces and surrounding cities shows that the northeastern economic zone
has a strong spatial dependence on ecological efficiency. In the future, guided by the idea
of “revitalization of northeastern China in the new era”, it might still be coordinated to
improve its ecological efficiency from the perspective of the three northeastern provinces
and the entire northeastern economic zone. Other low–low clustering zones, given the
necessity for improving their ecological efficiency, also might be taken into account.

3.3. Analysis of Factors Affecting Urban Ecological Efficiency

Before regression analysis, each variable needs to be tested for multicollinearity, as
shown in Table 5, the VIF (Variance Inflation Factor) of each variable is less than 5, which
indicates that there is no multicollinearity, so regression analysis can be performed directly.
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Table 5. Multicollinearity test.

Variable VIF 1/VIF

Economic level 3.634 0.275
Industrial structure 1.212 0.825
Technological level 2.138 0.468
Opening-up level 1.179 0.848

Population density 1.662 0.602
Urbanization level 2.984 0.335

ArcGIS software was used to construct the OLS (ordinary least squares) and GWR
model. The results showed that the goodness-of-fit (adjusted R2) of the OLS was 0.43
with an AIC value of −134.87. In comparison, the GWR model demonstrated a superior
goodness-of-fit (adjusted R2) of 0.52 with an AIC value of −164.84, indicating better model
performance over the OLS. The results of the GWR model were thus selected for analysis.
In order to more intuitively portray the local effects of each driver on urban ecological
efficiency, the regression coefficients of each indicator in the GWR model results were
visualized and analyzed with ArcGIS software. The spatial distributions of the coefficients
of each influencing factor were obtained, as shown in Figure 6. The analysis of the regression
coefficients’ positive and negative values revealed that certain influencing factors exert
both positive and negative effects on urban ecological efficiency. The varying proportions
of these effects underscore the spatial instability and heterogeneity of these factors. This
finding highlights the complex interplay of regional dynamics influencing urban ecological
efficiency.

(1) Effect of economic level on ecological efficiency (Figure 6a): The per capita GDP
indicator was positively correlated with urban ecological efficiency in China, with coeffi-
cients increasing from the southeast coastal areas to the northwest. From the perspective of
input and output dynamics, the trajectory of economic development inevitably mandates
heightened resource, capital, and factor inputs. However, the beneficial ramifications
stemming from enhanced output outweigh the attendant negative repercussions. Primar-
ily, amidst escalating resource scarcity, a gradual transition away from haphazard and
unregulated resource and environmental inputs is observed, concomitant with an aug-
mentation in the methodological precision underlying the deployment of diverse factors.
Simultaneously, heightened emphasis is placed on the adoption of clean energy sources
and the mitigation of environmental pollution. Furthermore, as developmental progression
deepens, China’s economy of scale effectively enhances the efficiency of resource utilization
across various domains. Additionally, the amelioration of economic conditions facilitates
increased allocation of capital and human resources towards environmental enhancement
initiatives and the adoption of cleaner production methodologies. Consequently, a virtuous
cycle ensues wherein elevated economic output is attained through diminished resource
and environmental inputs, thus bolstering the foundation for sustainable development
endeavors.

(2) Effect of industrial structure on ecological efficiency (Figure 6b): The secondary
industry is a vital pillar of the national economy. In this study, we used the proportion of the
secondary industry’s output value to GDP to measure the industrial structure. The results
indicated that ecological efficiency was positively correlated with the industrial structure in
over 90% of cities. Only a few cities in northeastern China displayed a negative correlation.
Although the secondary industry, including sectors such as manufacturing and construction,
consumes a large amount of energy and resources, it has undergone a transformation from
high-speed growth to high-quality development driven by national strategies such as
sustainable development and innovation-driven growth. This transformation involves
a shift from labor-intensive to capital-intensive and knowledge-intensive sectors. The
development of high-tech industries has also promoted informatization, which in turn has
driven the secondary industry toward higher value-added outputs. The output has shifted
from low value-added to high value-added sectors, resulting in significant progress in
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industrial upgradation. This transformation is favorable for energy conservation, emissions
reduction, and environmental protection. Moreover, although China’s economy is gradually
shifting toward the dominance of the tertiary industry, the secondary industry is also
seeking and improving organic connections with other industries, exploring and promoting
the rationalized development of industries. Therefore, a transition toward a more advanced
and rationalized secondary industry plays an important role in enhancing urban ecological
efficiency. For the few cities in northeastern China where industrial structure and ecological
efficiency exhibited a negative correlation, efforts should also be made to accelerate the
advancement of industrial structure toward higher quality and rationalization, promoting
the development of an enhanced quality-oriented secondary industry.

(3) Effect of technological level on ecological efficiency (Figure 6c): The regression re-
sults regarding technological level showed both positive and negative correlations. Positive
correlations were mainly observed in regions such as Guizhou, Yunnan, Ningxia, Xinjiang,
and northeastern China—areas that were relatively economically underdeveloped. By
improving their technological levels, these provinces and cities could achieve significant
economic development and effectively enhance ecological efficiency. Conversely, most
provinces and cities showed a negative correlation, which might differ from common per-
ceptions. It is often assumed that producers can reduce resource input and environmental
pollution through technological advancements. However, in the current Chinese context,
the primary goal of improving technological levels remains focused on enhancing economic
benefits, with less attention to resource and environmental consumption. Technological
progress has not proportionally led to reductions in resource consumption and environ-
mental pollution. Alternatively, one might argue that the cost-effectiveness of improving
technological levels is relatively low, as it has not yet achieved a balance between costs and
benefits. Moreover, the average proportion of urban technological expenditures to fiscal
expenditures in China is less than 2%, which is insufficient to support rapid advancements
in urban innovation capabilities and technological levels. It has also not effectively offset
the negative effects of long-term extensive resource and environmental consumption. Con-
tinuous investment and time are required to improve technological levels in key areas and
create economic benefits characterized by lower resource consumption, reduced pollution,
and higher quality. Additionally, the transformation of scientific technology into practical
productivity is a gradual process and can disrupt the inherent development balance of
specific industries and sectors. It exhibits a certain lag and volatility. Therefore, the nega-
tive impact of future science and technology on ecological efficiency is likely to gradually
decrease and eventually become positive.

(4) Effect of opening-up level on ecological efficiency (Figure 6d): The regression re-
sults regarding openness showed both positive and negative correlations, with coefficients
increasing from south to north, showing significant regional variations. The southern
regions showed a negative correlation, while the northern regions showed a positive cor-
relation. The “Pollution Haven” hypothesis suggests that developed countries transfer
highly polluting industries to developing countries, leading to environmental degradation
in the receiving countries [43]. Since Southern China opened up to the world earlier and to
a greater extent during periods of rapid economic and industrial development, southern
and coastal cities attracted a large amount of foreign investment and created numerous
employment opportunities, contributing significantly to urban economic growth. As land
became scarce and industries upgraded in the core cities, foreign-invested industries moved
to surrounding cities, further promoting economic development in these areas. However,
as regional economies transitioned toward higher quality, the drawbacks of traditional
labor-intensive and pollution-intensive foreign-invested industries became apparent. The
negative impacts of extensive industrialization and industrial relocation on resources and
the environment surpassed the positive effects on economic growth. This aligned with the
“Pollution Haven” hypothesis and was detrimental to improving urban ecological efficiency.
Moreover, the negative effects of the “Pollution Haven” hypothesis were persistent and
required continuous policy and technological improvements. In contrast, cities in northern
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regions were limited by geographical conditions, opened up later, and to a lesser extent,
lagging significantly behind their southern counterparts. However, national policies re-
garding openness also changed. For foreign investment, the focus was not only on meeting
economic development needs but also on avoiding excessive resource and environmental
consumption. Northern cities, therefore, prioritized attracting foreign enterprises with
higher added value, green and clean technologies, and advanced management practices.
They reaped the positive benefits of openness on urban ecological efficiency and aimed to
reduce or mitigate the negative effects of the “Pollution Haven” through policy measures.
With China’s changing and implemented policies for openness, advanced foreign invest-
ments could be efficiently utilized, while outdated foreign investments continued to move
to other countries. Consequently, the impact of openness on urban ecological efficiency
was expected to increasingly shift toward positive outcomes in the future.

(5) Effect of population density on ecological efficiency (Figure 6e): The regression
results for population density showed a positive correlation, with the regression coeffi-
cient generally increasing from west to east. The augmentation of population density
denotes the clustering of inhabitants, a phenomenon delineated by Williamson’s hypothe-
sis, positing that the impact of population clustering on urban economic growth exhibits
a stage-dependent nature. Notably, spatial agglomeration of the population during the
initial and intermediate stages of development can profoundly bolster economic efficiency.
However, upon surpassing a certain threshold, population agglomeration may attenuate
its positive influence on economic growth or even act as a deterrent [44]. Scholarly inves-
tigations have underscored the present phase of population agglomeration in China as
conducive to economic expansion [45,46]. This sentiment is corroborated by the observable
surge in demand consequent to heightened population density, thereby engendering a
stimulatory effect on consumption growth. Furthermore, the escalation in industrial con-
centration and resultant economies of scale are notable outcomes of increased population
density. Moreover, the enduring proliferation of knowledge spillovers, fostered by robust
competition and collaborative exchange within densely populated locales, furnishes an
auspicious milieu for augmenting economic output. Regarding input dynamics, population
agglomeration facilitates cost mitigation across various resource inputs, encompassing
transportation, transactions, and infrastructure development, thereby curbing superfluous
consumption and waste.

(6) Effect of urbanization level on ecological efficiency (Figure 6f): The regression
results for urbanization level showed a negative correlation, with coefficients decreasing
from south to north. Since the beginning of economic reforms and opening-up policies,
China has experienced a remarkable increase in its urbanization level. During the urban-
ization process, there has been a significant increase in the “quantity” of urban economic
benefits. However, this process has largely been characterized by extensive and primary
urbanization, which, in many cases, has sacrificed excessive amounts of land, resources,
and the environment. There has been relatively less attention to enhancing the “quality”
of economic benefits. Consequently, this approach has led to issues such as an irrational
land and resource structure, resource allocation constraints, and inadequate urban infras-
tructure, commonly referred to as “urban diseases.” Moreover, with continued population
growth and the increasing constraints of the ecological environment, these “urban diseases”
have worsened over time. Therefore, this type of urbanization, which prioritizes speed
over quality, is detrimental to improving ecological efficiency and achieving sustainable
urban development. China’s economic development in the new era is transitioning from a
high-speed growth phase to a high-quality development phase. To reverse the negative
impact of urbanization on ecological efficiency, it is imperative to promote a transformation
of urbanization toward higher-quality development. In this process, government and stake-
holders should place greater emphasis on the coordination and sustainability of resources
and the environment, creating higher economic benefits while simultaneously reducing
resource and environmental consumption.
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4. Discussion
4.1. About the Methodology

To measure urban ecological efficiency, this study adopted the super-efficiency SBM
method, which is a widely used mathematical method for efficiency evaluation. Although
some scholars have applied other methods, such as SFA or the ratio method, to measure
ecological efficiency, these methods have some limitations, such as requiring a small number
of study objects, complex data processing, or low discrimination ability. Considering that
this study involved 284 cities in China, which is a large and diverse study area, the
availability and convenience of data were important factors in choosing the measurement
method. Therefore, the super-efficiency SBM method was more suitable for this study.

This study constructed an ecological efficiency evaluation index system using the
super-efficiency SBM method, which mainly sets inputs and outputs based on the spe-
cific indicators of resource consumption, environmental pollution, and economic outputs.
Resource consumption was the input indicator, and economic outputs were the output
indicator. As for environmental pollution, different scholars have different treatments.
Some scholars considered it as an input indicator, such as Fu and Pan, who calculated the
ecological efficiency by treating environmental pollution as an input [32,47]. Some scholars
considered it as a “non-desired output” and treated it as an output indicator, such as Ren,
who studied the ecological efficiency of urban agglomerations by treating environmental
pollution as a non-desired output [27]. This study chose to treat environmental pollu-
tion indicators as input indicators for the following reasons. First, from the concept and
connotation of ecological efficiency, it can be simply understood as the ratio of economic
output to resource and environmental consumption, so this study thought that treating
environmental pollution indicators as input indicators was more consistent with the con-
notation of ecological efficiency. Second, Pan and Long mentioned that pollution was
inevitable in socio-economic activities, which was the cost or price that had to be invested
in economic output. Therefore, environmental pollution was actually the input of the “cost
of environmental degradation”, which should be regarded as an input indicator [47,48].
Third, regarding the practical application of the model, it is customary to treat indicators
with positive effects as outputs, where larger values are preferable. Conversely, indicators
with negative impacts are treated as inputs, with smaller values being more desirable.
Based on the above points, this study treated environmental pollution type indicators as
inputs.

Moreover, this study used the GWR model to explore the influencing factors of eco-
logical efficiency; it is a new attempt. The GWR model is a local model that can capture
the spatial heterogeneity of the study area. Compared with some global models, the GWR
model was more reasonable for this study.

4.2. About the Results

The results of this study were partly consistent with the studies of Yang and Yan [26,41],
who also found that China’s overall ecological efficiency was low and showed a spatial
pattern of high in the south and low in the north. However, there were some discrepancies
in the regional rankings of ecological efficiency. Yan ranked the regions as east > west >
northeast > central [41], while this study ranked them as east > central > west > northeast,
which was in line with the existing literature that suggested: “the east is the highest, the
center is the second, and the west is the worst”. The differences could be attributed to
various factors, such as the selection of indicators, the measurement methods, and the
research periods. The methodology and the evaluation indicator system used in this
study were based on the understanding of the connotation of ecological efficiency and the
previous research findings, and the data were derived from the official statistics. Therefore,
the results of this study had a certain degree of scientific validity and reliability.

This study selected the influencing factors based on the existing research results and
used the GWR model to explore their effects on urban ecological efficiency. Factors such as
economic development level, population density, and urbanization level were generally
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consistent with the previous studies and formed a common view: the improvement of urban
economic development level could provide financial support for environmental governance,
energy-saving and consumption-reducing technologies, and environmental protection
public infrastructure, which could enhance the urban ecological protection capacity and
effectiveness, as well as the environmental awareness and green consumption of urban
residents [49]. This reflected the importance of coordinating economic development and
environmental protection. The increase in population density implied the agglomeration
of the urban population, which could improve the resource utilization and sharing rate
and reduce pollution. The current rapid urbanization process might bring serious urban
problems and should focus on improving the urbanization quality. The effects of factors
such as industrial structure, science and technology level, and openness level still need
further exploration in future research.

The share of the secondary industry in the gross urban product indicates the industrial
structure, while some studies used the share of the tertiary industry. This choice was based
on the fact that the secondary industry had been the main driver of China’s economic
growth for a long time and that it was still an essential part of China’s development. The
results showed that industrial structure had a positive effect on urban ecological efficiency
in most regions of China, except the northeast. This observation contrasts with Zhang’s
findings, where the secondary industry was identified as having a negative impact on
ecological efficiency within five major urban agglomerations [49]. On the other hand, Yan’s
research presented a different perspective, indicating that the secondary industry actually
contributed positively to ecological efficiency [41]. For developed cities, despite the tertiary
industry’s dominance, the secondary industry remains vital. The retained portion of this
sector is primarily composed of high-tech enterprises, which are typically more resource-
efficient and environmentally friendly. In contrast, for ordinary cities, the secondary
industry was still the main pillar of economic growth. Its contribution to economic output
was greater than its consumption of resources and environment. Moreover, under the
national policy of industrial upgrading, the pollution caused by the secondary industry
has been greatly reduced. The situation is notably different in the Northeast, which was a
traditional heavy industry area, it faced the challenges of slow economic development and
talent loss. Here, how to revitalize the northeast was also a critical and complex issue in
China’s development.

For the factor of technological level, most of the existing studies agreed that the tech-
nological level had a positive effect on the improvement of ecological efficiency, but there
were also some different empirical results. For example, Yang found that the technologi-
cal level had a significant positive effect on the ecological efficiency of mega-cities, but a
negative effect on the large, medium, and small cities [26]. Zhou also showed that techno-
logical innovation had a significant inhibitory effect on the green development efficiency
of Chinese cities, suggesting that improving environmental quality through technological
innovation was currently not feasible in China [28]. Contrarily, the regression results of
this study indicated that technological progress positively influenced some cities in the
less developed western and northeastern regions, while the rest of the country showed
a negative impact. This could be explained by the fact that technological progress had a
strong enhancement effect on the less developed cities, particularly in the Northeast, where
it serves as a crucial mechanism for optimizing industrial structure and spurring economic
growth. However, for most cities, the proportion of science and technology expenditure
was relatively low. As a result, the effectiveness of technological progress was limited and
its translation into actual productivity is slow. So, this limitation was unfavorable to the
short-term improvement of ecological efficiency in these regions.

The opening-up level factor in this study presents a south-negative and north-positive
pattern across China, the possible reasons for the formation of this pattern have been
discussed above. It is noteworthy that empirical studies have shown different or even
diametrically opposite results in the analysis of this factor, although many of them use
global models which do not adequately reveal the internal differentiation within the study
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area. Consequently, the results of this paper’s use of a local model can serve as a reference
for an in-depth study.

In addition, different from other countries or regions, China’s economic development
is very unique and has great differences. In terms of sustainable development, there is a
need for correct theoretical guidance, so the question of whether the economic theories of
developed Western countries are applicable in China is particularly important. For example,
in the study of factors affecting ecological efficiency mentioned above, will the opening-up
factor create a “pollution paradise” in China? In the existing research, some scholars in the
domain of regional ecological efficiency insisted that there is no “pollution paradise” [28],
and some scholars believe that this is a stage of evolution [49]. This paper tries to reveal the
impact of opening-up on the ecological efficiency of Chinese cities through a local model at
the scale of the whole of China. The empirical analysis shows that the level of opening-up
has a positive impact on the cities in the north, while it negatively impacts those in the
south. These findings suggest that the “Pollution Paradise Hypothesis” holds true for the
cities in the south. This may be caused by the dual influence of geographic location and
policy in southern China. However, it is important to note that the scope of this study is
limited by its short research period, rendering our findings a preliminary exploration and
analysis of the applicability of the hypothesis. Similar theoretical tests such as “Porter’s
Hypothesis” and the “Environment-Technology Paradox” can be more accurately answered
through the analysis of a long time series in future research.

Various studies conducted by scholars outside of China offer valuable insights into
ecological efficiency, enriching the scope of our study. For instance, Xia’s investigation into
Mongolia’s ecological efficiency underscores several significant correlations. Economic
development, industrial structure, population density, and the adoption of green technol-
ogy were identified as positively influencing ecological efficiency, while capital investment
exhibited a negative correlation [50]. Similarly, Amowine’s research spanning 44 economies
in Africa revealed a U-shaped relationship between ecological efficiency and economic
development. Industrial structure was found to be positively associated with ecologi-
cal efficiency, whereas total foreign investment and urbanization demonstrated negative
correlations [51]. Bianchi’s examination of 282 European regions elucidated the positive
impact of high urbanization and technological advancements on ecological efficiency [52].
These findings, drawn from diverse geographic contexts, offer valuable reference points for
contextualizing and enriching our understanding of ecological efficiency dynamics within
China.

4.3. About the Limitations

This study, while contributing valuable insights, acknowledges certain limitations that
pave the way for future research.

Firstly, the evaluation index system of ecological efficiency needs further improvement
and optimization. Apparently, our analysis, in alignment with the existing empirical
studies to a large extent, primarily revolves around the triad of resources, environment, and
economy. This approach overlooks the social dimension, which is increasingly fundamental
considering the complexity of urban human–land systems. To fully examine ecological
efficiency, it is necessary to broaden the scope of factors including both ecological and social
aspects, therefore offering a more comprehensive insight. In addition, the methodological
diversity in measuring ecological efficiency implies a challenge. Currently, there are several
methods for measuring ecological efficiency, but there is no unified evaluation method,
which is not conducive to comparative analysis and theoretical deepening of ecological
efficiency research. Hence, how to comprehensively and scientifically evaluate urban
ecological efficiency remains a vital and challenging objective for future research.

Secondly, for the analysis of influencing factors, some results obtained in the empirical
analysis of this paper are different from those of previous studies. Due to the complexity of
urban development, the intersection and connection between various systems are very close,
and this study has not yet analyzed in depth the underlying principles and conduction
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paths of the influencing factors. Future research is advised to investigate the potential
connections between these factors and dissect the mechanisms and pathways through
which they impact ecological efficiency.

5. Conclusions

This study explores the ecological efficiency of Chinese cities and its influencing
factors through the super-efficiency SBM model and the GWR model, and finally draws
the following conclusions. First, China’s overall low ecological efficiency in 2019 indicates
that China is currently in a period of adaptation and transition from rapid economic
growth to high-quality development. The crude development model characterized by
high consumption and pollution formed in the previous stage has not yet been completely
changed. Secondly, there are obvious disparities in the sustainable development levels
across different economic regions and among cities of varying sizes. Third, urban ecological
efficiency is spatially relevant, with the direction and intensity of influencing factors
displaying spatial heterogeneity.

The following insights can be gleaned from the aforementioned findings: (1) En-
hancing Resource Utilization Efficiency. A multifaceted approach is necessary to improve
resource utilization efficiency. This involves modernizing production technologies in key
industries, scrutinizing new projects to minimize resource consumption and pollution, and
promoting sustainable urban development through policy enactment and public awareness
campaigns. (2) Prioritizing Science and Technological Innovation. Science and techno-
logical innovation are paramount for sustainable development. Increasing investment
in research and development, particularly in green technology, is crucial. Additionally,
fostering innovative talent through targeted training programs and creating an enabling
environment for innovation are essential. (3) Enhancing Urbanization Quality. Improving
urbanization quality requires tailored approaches for each city. This includes enhancing
the scientific rigor of urban planning, optimizing urban spatial configurations, and co-
ordinating population dynamics, economic activities, and environmental resources for
sustainable urban development. (4) Reforming Ecological Construction Paradigms. Rec-
ognizing urban agglomerations as crucial for China’s development underscores the need
to integrate ecological construction and environmental preservation efforts. This involves
addressing management inefficiencies between cities, establishing regional resource and
environmental co-construction mechanisms, and leveraging urban agglomerations to pro-
mote regional sustainability while considering regional heterogeneity and adhering to
categorized guidance for effective implementation.
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