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Abstract: Integrating a grid-connected battery into a renewable energy community amplifies the
collective self-consumption of photovoltaic energy and facilitates energy arbitrage in the electricity
markets. However, how much can energy independence really increase? Is it a cost-effective
investment? The answer to these questions represents a novelty in the literature due to the innovative
nature of the asset under consideration and the market and regulatory framework in which it is
evaluated. Employing a net present value assessment, our analysis incorporated aging effects and
conducts sensitivity analyses across various parameters: the number of community customers,
electricity market prices, battery cost and size, and the decision to engage in energy arbitrage. Each
scenario underwent a 20-year hourly simulation using an aging-aware rolling-horizon 24 h-looking-
ahead scheduling, optimized with mixed-integer linear programming. Simulations conducted on
the Italian market indicate that dedicating a battery solely to collective self-consumption is the most
efficient solution for promoting a community’s energy independence, but it lacks economic appeal.
However, integrating energy arbitrage, despite slight compromises in self-sufficiency and battery
longevity, halves the payback period and enhances the attractiveness of larger battery investments.
The net present value is contingent upon the battery size, customer number, and market prices.
Nevertheless, if the battery cost does not exceed 200 EUR/kWh, the investment becomes cost-effective
across all scenarios.

Keywords: renewable energy community; battery energy storage system; scheduling; aging;
collective self-consumption; energy arbitrage

1. Introduction

The electricity system is undergoing a shift from centralized to decentralized produc-
tion. However, integrating decentralized renewable energy systems into the grid poses
challenges due to resource intermittency. Battery Energy Storage Systems (BESS) and
renewable energy communities (RECs) play crucial roles in tackling these challenges.

European directives incentivize active consumer participation in renewable energy
production. RECs promote aggregation for energy production, consumption, storage,
and sharing, often leveraging photovoltaic systems. Collective self-consumption (CSC),
incentivized monetarily, encourages consumers to align usage with production, enhancing
incentives and grid independence. REC not only focuses on CSC incentives but also seeks
to engage in electricity markets. This study examines conditions for REC investment in a
community battery to enhance CSC and participate in day-ahead and intra-day electricity
markets through energy arbitrage (EA), aiming to profit by buying low and selling high.
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1.1. Legislative Framework and Literature Review

The evolving EU energy policies, guided by regulations and directives, prioritize re-
ducing greenhouse gas emissions and enhancing energy efficiency by increasing renewable
energy sources (RES) in electricity production [1]. This transition toward RES integra-
tion in the grid focuses on two strategies: enhancing demand flexibility through Battery
Energy Storage Systems (BESS) and fostering renewable energy communities (RECs) [2].
Directives 2019/944 [3] and 2018/2001 [4] facilitate citizen engagement with the electricity
system, encouraging active involvement and aggregation within RECs. These communities
engage in various market activities, including generation, consumption, sharing, trad-
ing, and providing flexibility services via demand response and energy storage. Member
States, in compliance with these directives, are devising mechanisms to enable consumer
participation in energy communities, offering incentives to expedite their deployment.

Italy has implemented REC legislation through specific legal provisions and reg-
ulations [5–9]. In Italy, a REC constitutes a virtual community where consumers and
producers collectively produce, consume, store, and share energy from renewable sources.
Energy sharing, termed collective self-consumption (CSC), is incentivized by the Italian
government at approximately EUR 110/MWh and can be utilized for community activ-
ities or redistributed among members. To optimize CSC, a grid-connected BESS can be
utilized [8,9], whereby energy withdrawn for subsequent feed-in is added to the collective
self-consumption calculation. Participation in electricity markets is necessary for BESS to ex-
change energy with the grid, with operational details governed by Italian regulators [10,11].

There is a noticeable gap in the literature concerning Battery Energy Storage Systems
(BESS) within renewable energy communities (RECs). While interdisciplinary literature
on RECs is growing, it often overlooks the specific role of BESS within RECs. Conversely,
extensive research exists on utility-scale grid-connected BESS providing multiple services,
yet its application to RECs remains unexplored.

RECs across Europe vary due to factors such as energy technology, sources, and
regional regulations [12,13]. They can be physically or virtually configured, with only the
virtual option permitted in Italy, as it utilizes the national grid [14,15]. This study focuses
on the virtual configuration, employing energy from photovoltaic panels or the national
grid. Economic aspects dominate REC literature, comparing various business models and
addressing incentive redistribution and cost allocation [16–21]. Some explore peer-to-peer
trading, demand-side management, and REC composition and configuration [22–27]. The
primary research question concerns the economic conditions necessary for REC viability
and how stakeholders contribute to community sustainability [19,20,27,28]. While economic
evaluations in these studies rely on energy simulations, few delve into the role of the battery.
Some assess battery sizing’s influence on self-consumption and REC gains [29,30]. Others
investigate the battery’s impact on the distribution grid, scheduling processes, and the
possibility of aggregating multiple batteries or even heat pumps [31–36]. However, the
use of grid-connected BESS within RECs remains underexplored. Contributions in this
field propose community BESS for energy arbitrage and peak shaving [37]. However, these
perspectives focus on Distribution System Operators (DSOs) rather than RECs and do not
integrate collective self-consumption into scheduling algorithms. Moreover, the literature
lacks assessments of investment costs and battery aging [38].

A review highlights the need for community BESS to cater to multiple services to
optimize utility and economic gains [39]. However, the literature on BESS providing
multiple services primarily focuses on utility-scale applications rather than RECs. These
services can be classified into four mainstream categories:

• The provision of ancillary services (AS) to the grid operator to enhance the system reli-
ability (e.g., frequency containment, frequency restoration, and replacement reserve).

• Dispatching, i.e., real-time coverage of dispatching errors.
• The achievement of local objectives, such as self-consumption and collective-self-

consumption (CSC).
• Energy arbitrage (EA), i.e., buying and selling electricity to generate revenue.
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Models in the literature mainly focus on AS and dispatching. Ref. [40] proposes a
general framework for the scheduling and control of a BESS to provide multiple services
and uses it in the problem of providing dispatchability. This problem is explored in more
detail in [41], adding grid constraints and proposing a two-level control layer to avoid
battery saturation. In [42], the provision of AS is also added to the problem’s formulation.
For a review of the possibility of providing AS using BESS focused on Italy’s market and
regulation, see [43]: a market price sensitivity analysis compared to the economic feasibility
of the investment is performed. Instead, the BESS modeling methodology for stacking
more than one ancillary service is described in [44]. A more comprehensive overview of
how a BESS can provide multiple services and the programming methodologies used in
various cases is beyond the scope of this article (see [45]).

Meanwhile, the use of a community battery for multiple services is overlooked, and
scheduling algorithms for multiple services have not yet been applied to CSC and EA in
REC literature.

1.2. Novelties

In this context, this paper’s contributions can be summarized as follows:

• It introduces a new aging-aware rolling-horizon model for the hourly scheduling of a
community battery. While existing battery scheduling models cover multiple services,
integrating CSC and EA into these models is a novel addition. This novelty stems
from the recent emergence of both CSC and EA concepts. The former is obviously
related to the new appearance of RECs. The latter has only recently become feasible
with the development of the intraday market, allowing bidding up to an hour before
delivery based on reliable forecasts and knowledge of the day-ahead market prices.

• It conducts an extensive sensitivity analysis on various scenarios to explore the eco-
nomic feasibility of investing in a community battery. Five key parameters are consid-
ered: community size, electricity market prices, battery cost, size, and the decision to
engage in energy arbitrage. Such a comprehensive techno-economic analysis of this
asset has not yet been proposed in the literature on RECs.

• Additionally, the scheduling model takes into account battery aging, as does the
investment assessment. The combined effects of the provision of EA and CSC services
on aging have not been previously studied.

1.3. Limitations

The primary limitations are as follows:

• Forecast errors are not considered. Indeed, scheduling assumes deterministic knowl-
edge of future load and production. However, considering that scheduling is a rolling
horizon and takes place one hour before delivery, i.e., at the close of the intraday
market, forecast errors should be limited.

• Real-time control is not implemented, and at the same time, the costs of imbalances
are not included in the economic calculation. This point is complicit with the previous
assumption because if the forecasts are perfect, there are no imbalances and no need
for a control to reduce them, performing dispatching.

• Simplified participation in the day-ahead and intraday markets is assumed, where all
bids can be submitted at the closure of the latter market without differences in prices
between the two markets. However, in reality, initial scheduling should occur at the
closure of the day-ahead market, followed by continuous rescheduling during the
intraday market as the delivery time approaches. The cost of rescheduling due to price
differences between the two markets, albeit low in the Italian context, is not included
in the economic evaluation.

• The provision of ancillary services in the balancing market is not evaluated, but it
could certainly serve as an additional revenue stream for a community battery.
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• The electricity grid is not modeled, which is definitely an aspect to consider to fully
complete evaluations like those proposed. Scheduling without considering grid con-
straints could lead to bidding solutions that are technically undeliverable.

These limitations foreshadow future articles and the direction for further developments
in broader research, positioning this study as an initial building block.

2. Materials and Methods

The chapter begins by introducing the selected case study for simulations, detailing
the concept of a renewable energy community (REC) within Italian regulatory frameworks.
It explains how a Battery Energy Storage System (BESS) can actively engage in collective
self-consumption (CSC) and energy arbitrage (EA).

After the case study introduction, the BESS model is elaborated upon. A mixed-integer
linear programming (MILP) approach is utilized to compute BESS scheduling, considering
relevant parameters and techniques to address battery aging effects.

Next, the economic evaluation formulations are presented to assess the financial
feasibility of the proposed system. Finally, simulated scenarios are introduced, followed by
a comparative analysis of these scenarios in the Results chapter.

2.1. Case Study

A renewable energy community (REC) fueled by photovoltaic systems with an overall
power of 100 kWp is examined, exclusively comprising residential customers. Photovoltaic
power is the REC reference size and is kept constant during simulations. However, the
results are scalable to RECs with higher production. On the other hand, battery size
and number of consumers are the subject of sensitivity studies. According to the Italian
regulation, collective self-consumption (CSC), which is the virtual self-consumption of the
whole community, is an incentive at about 110 EUR/MWh. It is specifically defined as the
minimum on an hourly basis between the feeding and withdrawal by all members of the
REC. The energy withdrawn from a grid-connected Battery Energy System (BESS) for the
purpose of subsequent feed-in (green row in Figure 1) is added to the energy withdrawn to
calculate the CSC. This is why this article assesses using a BESS to increase the CSC and
thus the incentive.
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Figure 1. Case study definition. Figure 1. Case study definition.

In order to be able to exchange energy with the grid, the BESS must participate in
electricity markets. In particular, this article considers participation in the day-ahead and
intraday markets. This introduces the possibility of performing energy arbitrage (EA) by
buying energy when prices are low and reselling it when they are high.
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2.2. BESS Scheduling Model

According to the definition of CSC and the electricity market, the simulations per-
formed have an hourly time step. However, in the near future, the market will become
quarter-hourly. Considering that the intraday market closes an hour before delivery [46],
the optimal battery scheduling for the next 24 h is calculated every hour, and the first
hour is used as simulation. The scheduling problem is defined as a mixed-integer linear
programming (MILP) optimization model. This problem is rolling horizon, because it
is solved each hour, and it looks 24 h ahead. Such problem is solved for each hour of
the yeas (8760 h) for 20 years, so each simulation is a combination of 8760 per 20 MILP
optimizations. A deterministic knowledge of production, load, and energy price for the
next 24 h is considered. These series serve as inputs for the MILP problems.

A thorough description of the scheduling optimization model follows objective func-
tions (Equations (1)–(4)) and constraints (Equations (5)–(8)).

fobj(Ebess) =
24

∑
h=1

EAh + CSCh − APh [€] (1)

EAh = Ebess,h·EPh (2)

CSCh = min[Esur,h, max(0, Ebess,h)]·inc (3)

APh =

∣∣Ebess,h
∣∣·AC

2
(4)

The objective function fobj is an economic one. It is the sum on 24 h of the revenue
obtained from energy arbitrage (EA) and collective self-consumption (CSC) minus an
Activation Penalty (AP), which is linked with BESS aging and replacement cost. Aim of the
optimization problem is to maximize the objective function.

The hourly energy BESS exchanges with the grid (Ebess) is the variable to be optimized:
a vector of length 24 representing the scheduling of the battery. Ebess,h is negative if the
battery feeds energy into the grid, or positive if the battery draws energy.

EPh represents the hourly Energy Price. The price is always negative, so if energy is
withdrawn, the product Ebess,h·EPh is a cost, while when it is fed, it is a gain.

The gain for CSC is the product between the value of the incentive (inc = 110 EUR/MWh)
and the energy drawn from BESS that is counted as CSC. The latter is the minimum between
the REC energy surplus (Esur,h) and the energy drawn by BESS, i.e., the positive values of
Ebess,h (max(0, Ebess,h)).

The penalty due to activation linked with aging is the product of the amount of energy
fed or withdrawn (|Ebess,h|) and the Activation Cost (AC) parameter, whose function will
be explained in the next subsession.

The constrains of the model are the following:

SoCh+1 = SoCh + Ebess,h·η (5)

Define the State of Charge (SoC) variable, which is dependent on parameter Ebess and
considers an average charging and discharging efficiency (η) of 0.90 [47].

Cmax·DoD ≤ SoCh ≤ Cmax (6)∣∣Ebess,h
∣∣ ≤ Cmax (7)

SoC and Ebess box constrains consider BESS maximum capacity (Cmax) and depth of
discharge (DoD). DoD is fixed to 0.10, while Cmax is equal to size of BESS at the beginning
of each simulation but then decrease due to aging effects. Therefore, it is assumed in
Equation (7) that the battery can be fully charged or discharged in one hour, with an average
q-rate = 1.

−Eneed ≤ Ebess,h ≤ Esur (8)
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This constraint obliges the battery to only be able to charge with the energy surplus of
REC (Esur) and to only discharge to meet the REC’s energy need (Eneed). This constraint
is aimed at preventing EA through the purchase or sale of energy from outside the REC,
which is not necessary for CSC. The constraint is active in scenarios with only CSC and
inactive when EA is also desired.

There are also additional constraints and dummy variables in the model that serve for
the linearization of the functions absolute value, minimum, and maximum.

2.3. BESS Aging Awareness

Figure 2 explains the effect of Activation Cost (AC) added to the MILP model (see
Equation (4)) and its connection to BESS aging. Essentially, the AC value represents
the minimum price difference required for executing a charge and discharge cycle to be
advantageous. The division by 2 in Equation (4) precisely aligns the AC value with the
buy-and-sell price difference. A high AC value corresponds to a low number of cycles, and
vice versa (Figure 2c). However, a low number of cycles results in lower earnings in EA
(Figure 2a). These effects can be evaluated over several years considering the Net Present
Value (NPV) evolution (Figure 2b). Year after year, the available battery capacity decreases,
and so does the cash flow. When end of life is reached, the battery needs to be replaced
(decline steps in Figure 2b). As explained in the next paragraph, in the calculation of the
NPV, a replacement is included as an additional cost that is subtracted from the regular
cash. For this reason, in the year of replacement, the cash flow is negative, and in fact, there
are “decline-steps” in the NPV graph in corresponding to the years when replacement is
necessary. With high AC values, the battery ages more rapidly, but annual earnings are
higher; with low AC values, the battery lasts longer, but the earnings are lower.
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To calculate battery aging, a rain flow counting method [48] has been used to calculate
the equivalent number of cycles undergone by the BESS. Assuming that the BESS reaches
its end of life after 8000 cycles with 80% remaining capacity [49], the available capacity
is recalculated weekly in proportion to the number of equivalent cycles reached. Upon
reaching 8000 cycles, the BESS is replaced (decline steps in Figure 2b). This empirical and
macroscopic approach to calculating aging is considered sufficient for the purposes of this
paper. While using equivalent circuit models or physical (i.e., electrochemical) models
could provide more precise estimates of aging, they are difficult to generalize to different
storage technologies and require higher computational costs. The proposed approach,
however, is simple to implement; one only needs to write the rain flow counting algorithm
and enter the end-of-life information on the battery, which is easily obtainable from any
manufacturer. Although the aging estimate may be rough, it is sufficient for the purposes
of this paper.
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2.4. Economic Analysis

The economic assessment of BESS investment is based on the Net Present Value (NPV),
calculate for 20 years (y) using Equations (9)–(11).

NPVy = NPVy−1 +
CFy

(1 + i)y (9)

CFy = EAy + CSCy − Costrepl ·R (10)

NPV0 = Sizebess·Costbess = Costrepl (11)

NPV0 represents the initial investment for BESS, and CFy denotes the annual cash
flow, encompassing the sum gains from EA and CSC. The annual interest rate, denoted as
i, is set at 5%. When BESS replacement occurs (R = 1; otherwise, R = 0), replacement cost
(Costrepl) is incorporated into CFy·Costrepl is assumed to be equal to the initial installation
cost (NPV0), which is equal to Sizebess per Costbess.

To facilitate the comparison of diverse investments with replacements occurring in
different years, a transformation of NPV is employed in this study. Looking at the left-
hand image in Figure 3, it is difficult to identify the value of the activation cost (AC) that
determines the optimal NPV, because the choice depends on the specific year in which the
NPV is compared. However, using the transform shown in the image on the right clarifies
the most favorable AC value (i.e., ac = 35).
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different Activation Costs (ACs).

The transformation used for NPV can be explained by observing Figure 4. The invest-
ment presented by the NPV line in blue can be transformed into the equivalent investment
of the orange line, which does not have discontinuity due to the lack of replacement of the
initial investment, which is equal to zero. To compute the transformation, it is essential to
consider that both the initial investment cost and the replacement costs are not paid up-
front. Instead, they are financed through a loan with a duration equivalent to the battery’s
lifespan and a loan interest rate chosen so that the original NPV and the transformed NPV
are equal in the years when replacements occur. Thus, the transformed Cash Flow (CF*)
for the transformed NPV must be recalculated with respect such conditions. Equations
(12)–(15) synthesize how the NPV transformation can be calculated, where LF is the Loan
Factor to be considered in the transformed cash flow.

NPV∗
y = NPV∗

y−1 +
CF∗

y

(1 + i)y (12)

CF∗
y = EAy + CSCy–LF (13)
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LF =
Sizebess·Costbess

∑
li f espambess
y=0

1
(1+i)y

(14)

NPV0 = Costrepl = 0 (15)

Figure 3 shows that the variation of NPV with AC values is not strictly monotonic
but exhibits a global maximum (35 in the example), alongside several local peaks. This
peculiar trend primarily stems from the non-uniform distribution of energy prices in the
electricity market, which, contingent upon the AC value, impacts both cash flow and
battery aging, consequently exerting further influence on cash flow. The outcome of such
intricate interplay can only be computed through simulations employing a detailed time
step and spanning a lengthy time horizon, such as those proposed.
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2.5. Simulated Scenarios

This study encompasses the simulation of 36 distinct scenarios aimed at evaluating
the impact of 4 key parameters (Table 1): number of customers in the renewable energy
community (REC), energy price, battery cost, and the possibility of performing energy
arbitrage (EA). The first parameter pertains to the REC energy surplus (Esur) and needs
(Eneed), which the BESS can harness to derive gains through CSC. The second parameter
influences earnings from EA. Battery cost (Costbess) has an impact on initial investment
and replacement cost, and thus on NPV. Performing EA influences cash flow.

Table 1. Simulated scenarios.

Parameter Scenarios

Customer number (CN) 80, 135, 205 residential customers
Energy price (EP) Low and high prices (2020 and 2023)

Battery cost (Costbess) 200, 400, 600 EUR/kWh
Energy arbitrage (EA) CSC + EA vs. CSC

Within each scenario, a substantial number of simulations are conducted to perform
sensitivity analysis on two primary variables (Table 2): Sizebess and AC. Therefore, for every
combination of scenarios, Sizebess values, and AC settings, a simulation spanning 20 years is
executed. Within this simulation, each hour is an outcome of a MILP optimization process.

Table 2. Sensitivity analysis.

Variable Range

Battery size (Sizebess) 20 to 300 kWh
Activation cost (AC) 5 to 60 EUR/MWh
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Energy Price (EP) is an array comprising 8760 values, corresponding to the number of
hours in a year, and is repeated over 20 years. Also, the vectors representing REC energy
surplus (Esur) and need (Eneed), which are calculated depending on customer number (CN),
have the same dimension. What evolves annually is the available capacity of the BESS,
which diminishes due to aging. The procedure for selecting the two EP scenarios and the
three CN scenarios (from which Esur and Eneed are dependent) is outlined below.

Considering the information about Energy Price (EP) in the Italian electricity market
reported in Figures 5 and 6 [46], two different scenarios are selected. As a low-price scenario,
the EP of 2020 is chosen as the worst-case scenario, and as a high-price scenario, 2023 prices
are considered. The years 2021 and 2022 were excluded due to their excessive anomalies
and randomness.
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Dataset used for photovoltaic production downloaded from PVgis [50] are also from
2020 and 2023. This correspondence ensured that the price trends remained consistent with
the fluctuations in production. The input parameters for PVgis included the geographical
coordinates of Florence, a tilt angle of 30◦, an azimuth angle of 0◦, and losses of 14%.

To calculate the Esur and Eneed of the REC, in addition to the photovoltaic production
series, the aggregated consumption series of all community customers is required. A load
series representing a 3 kWp typical residential consumers from Tuscany is generated by
utilizing average hourly profiles provided by the Italian regulatory authority [51] (Figure 7).
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These profiles are differentiated based on the month and the type of day. The resulting
load series is subsequently scaled by the number of customers within the considered REC,
aggregating the total consumption pattern.
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Using the open-source multi-energy simulation software “MESSpy” [52,53], a sensitiv-
ity analysis was conducted on varying the number of customers within the REC (Figure 8).
Based on this analysis, three scenarios were selected (Table 3) to be simulated with the
BESS, representing collective self-consumption indices of 40%, 60%, and 80%.
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Table 3. Three scenarios selected with regard to customer number.

Number of
Customers [CN]

CSCi
[%]

CSSi
[%]

Esur
[MWh/year]

Eneed
[MWh/year]

80 40 38 82 89
135 60 34 55 160
205 80 30 27 258

Considering that collective self-consumption (CSC) is defined as the minimum be-
tween the energy injected into the grid by the community and the energy withdrawn
(including that withdrawn from the battery), we consequently defined the following two
relative indices: the collective self-consumption index (CSCi) is defined as the ratio of
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CSC to the total electricity production from photovoltaic sources, while the collective self-
sufficiency index (CSCi) is the ratio of CSC to the total energy demand of the customers.
These two indexes are representative of the REC’s independence from the national grid. On
the other hand, the incentive associated with CSC is the multiplication of CSC by a value of
approximately 110 EUR/MWh.

Figure 8 not only identifies three potential scenarios but also elucidates why evalu-
ating a battery within future RECs is sensible: as the number of customers increases, so
does the demand. With the withdrawal of electricity, the CSC, the total incentive, and
CSCi rise while the CSSi diminishes. Moreover, the incentive per customer decreases.
In practical terms, with more users, the metaphorical “pie” must be divided into more
portions, leading to smaller individual slices. This observation highlights the impracticality
of considering RECs with excessively high CSCi levels, suggesting that surplus energy
(Esur) will persist in future RECs. This raises the question of who will harness this surplus
if not through grid-connected community batteries. Thus, the graph underscores that RECs
will consistently have surplus energy, justifying the evaluation of introducing a BESS to
harness and capitalize on this surplus.

3. Results

The outcomes are delineated across three segments. Firstly, we elucidated the impact
of the Battery Energy Storage System (BESS) on renewable energy community (REC) energy
balances. Secondly, we delineated the significance of the activation cost (AC) parameter
with regard to battery degradation and the Net Present Value (NPV). Lastly, we conducted
economic optimization of battery sizing within each scenario and appraised potential
investments by performing energy arbitrage (EA) or dedicating the BESS only to collective
self-consumption (CSC).

3.1. Energy Balances

Upon integrating a BESS into a REC, its grid independence increases. The collective
self-consumption (CSC) and collective self-sufficiency (CSS) indices, reflecting REC auton-
omy from the grid, increase with larger battery sizes (Figure 9). However, the degree of
increase varies with the performance of EA: the augmentation of CSS is constrained by
regulations pertaining to access to incentives via the battery. Notably, while withdrawing
energy during surplus periods is incentivized, injection during times of need lacks similar
encouragement. Consequently, injections may not necessarily occur during these energy
needs, which could otherwise enhance CSS, but rather during periods of elevated pricing.
Conversely, in the absence of EA, the battery is limited to utilizing surplus energy from the
REC and injecting it when required, thereby aligning the enhancement of CSC and CSS in
this scenario.
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Figures 10 and 11 underscore a key revelation from this study. The REC’s reliance on
the grid, considering the BESS as part of the REC, paradoxically rises instead of declining.
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Over a 20-year span, both the energy fed into and withdrawn from the grid increase due
to the battery’s independent EA activities, notwithstanding decreases in energy exchange
within the REC. To address this, the approach advocated in the right-hand graphs restricts
the battery to charge solely from the REC surplus and discharge solely to meet community
needs. This strategy of non-EA reduces overall energy fed into and withdrawn from the
grid, thus mitigating REC energy dependence.
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3.2. Activation Cost and Energy Arbitrage

Adjusting the Activation Cost (AC) parameter across various levels results in the
computation of diverse optimal BESS schedules. Over a 20-year analysis period, these
variations in AC values significantly impact cash flows and BESS lifetimes, consequently
influencing the Net Present Value (NPV), which is highly dependent on AC. Simulations
encompassing each scenario and BESS size have been conducted with AC values ranging
from 5 to 60.

Figure 12 provides a summary of the optimal AC values, maximizing the NPV trans-
formation (NPV*) over 20 years. These simulations focus on scenarios performing EA.
Since AC does not influence the gain from CSC (see Figure 2), there is no point in studying
its effects in scenarios without EA. The results are presented with confidence intervals,
wherein NPV* values differ by less than 1% of the NPV* value. The battery cost, equivalent
to the replacement cost at the end of its life, emerges as the most influential parameter. For
BESS costs around 200 EUR/kWh, it is advisable to set AC values between 20 and 30 to en-
hance EA profits, albeit at the expense of accelerating battery consumption with numerous
cycles. Conversely, for higher costs, optimal values shift toward 50, indicating fewer cycles
but highly profitable ones, ensuring prolonged battery longevity. The graph also illustrates
that the battery size and energy price do not significantly influence AC selection.
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Summing up, the importance of optimizing battery scheduling considering the ex-
pected replacement cost is evident. One way to achieve this is proposed in this study by
optimizing the AC parameter entered as a penalty of the objective function.

3.3. Economic Feasibility

The findings presented in this concluding paragraph exclusively pertain to configura-
tions with optimal Activation Cost (AC) values. Figures 13 and 14 delineate the respective
contributions of the two principal cash flows, energy arbitrage (EA) and collective self-
consumption (CSC), to the investment’s returns.
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The analysis reveals that in scenarios featuring EA (Figure 13) and characterized by
low energy prices, the gain derived from CSC significantly surpasses that of EA, exceeding
it by approximately fivefold. Consequently, investments in such scenarios are primarily
driven by REC incentives and are contingent upon the evolution of customer numbers over
time. In other words, it is crucial to match the BESS to a REC with a lot of energy surplus.
However, with high energy prices, the profit from EA may indeed outstrip that from CSC.

In scenarios without EA use (Figure 14), the EA gain is only due to the buying and
selling of energy at times of surplus and need in the REC and not to an actual EA that
exploits electricity market price fluctuations. In these cases, the total cash flow experiences
a decline by several thousand EUR per year (see y-axis scale), chiefly due to reduced EA
profits but also due to lower CSC levels. However, if energy prices are high, EA continues
to make an important contribution of about one-third of the total cash flow.

Figures 15 and 16 depict the transformed Net Present Value (NPV*) as it relates to
BESS size, offering insights into optimal BESS sizes for each scenario of Table 1.
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In scenarios using EA (Figure 15), a BESS cost of 600 EUR/kWh renders BESS in-
stallation economically unviable, while 400 EUR/kWh proves attractive, especially in
scenarios with high energy prices. A larger BESS size is recommended for setups with a
substantial surplus, while scenarios with low energy prices favor smaller BESS units. A
cost of 200 EUR/kWh strikes a balance, rendering BESS integration cost-efficient across
various scenarios.

Not performing EA (Figure 16) diminishes battery investment attractiveness. At 400
EUR/kWh, only smaller batteries are feasible, while 200 EUR/kWh remains appealing,
even if the NPV* values achieved are lower than in the case with EA.

An intriguing observation arises regarding the impact of the customer number on
battery investment. In EA scenarios, it becomes apparent that as the number of customers
decreases (and REC surplus consequently increases), the NPV* of the investment rises.
This trend stems from the augmented income attributed to the withdrawal by the BESS
of the REC surplus energy that becomes CSC. However, in instances where EA is not
implemented, this assertion holds only partially true. This is because for the BESS to be
able to utilize such surplus, there must also be REC energy needs to justify its re-injection
later. Consequently, it is implied that batteries should be matched to REC converging
toward an equilibrium point between surplus and need, thereby optimizing both collective
self-consumption (CSC) and collective self-sufficiency (CSS), i.e., with neither too many
nor too few customers (Figure 16, bottom left).

Figures 17 and 18 provide further clarity by illustrating the progression of NPV, focus-
ing on the original NPV rather than the transformed version and considering the optimal
BESS size solution for each scenario. These curves offer a comprehensive perspective on
investments, encompassing NPV, payback time, and battery lifetime.

In scenarios using EA (Figure 17), a BESS cost of 200 EUR/kWh presents compelling
investments, ensuring a 5-year payback period in low-price scenarios and even shorter
periods in high-price scenarios. A cost of 400 EUR/kWh also allows for investments with
payback times of less than 10 years, albeit with more significant impacts from energy prices
and customers. However, 600 EUR/kWh is evidently excessive.

Without EA (Figure 18), investments become less attractive, with payback periods
extending by approximately 5 years and optimal battery sizes decreasing alongside NPV.
Here, the battery cost must be around 200 EUR/kWh or less for attractiveness.



Sustainability 2024, 16, 3111 16 of 19
Sustainability 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 
Figure 17. CSC + EA: optimal investments assessment for varying Energy Price (EP), BESS cost (BC), 
and number of customers (CN). 

 
Figure 18. CSC: optimal investments assessment for varying Energy Price (EP), BESS cost (BC), and 
number of customers (CN). 

4. Discussion 
In a residential renewable energy community (REC) powered by 100 kWp of 

photovoltaic systems, a comprehensive techno-economic analysis was used to assess the 
energy and economic impact of integrating a grid-connected Battery Energy Storage 
System (BESS). Various scenarios were examined, accounting for factors like community 
size, market prices, battery characteristics, and the choice to engage in energy arbitrage 
(EA), with the Italian market and regulations serving as a reference.  

The analysis focused on two main revenue sources: the increase in collective self-
consumption (CSC) incentives resulting from BESS surplus energy withdrawal and EA, 
involving participation in electricity markets to capitalize on price differentials. A 20-year 
simulation, considering battery aging and optimized scheduling, revealed the significance 
of a shared battery in enhancing collective self-consumption and sufficiency. However, 
scenarios with EA demonstrated higher total energy transactions compared to those 
without a battery. 

Activation costs played a crucial role in EA scenarios, emphasizing the importance 
of optimizing battery scheduling and considering replacement costs. Economic findings 
highlighted optimal battery sizes and cost-effectiveness thresholds, with dedicated CSC 
batteries requiring a maximum cost of 200 EUR/kWh. Conversely, EA enabled viable 
investments even with costs around 400 EUR/kWh, halving the payback period and 
emphasizing the market’s dependence on incentives. 

Figure 17. CSC + EA: optimal investments assessment for varying Energy Price (EP), BESS cost (BC),
and number of customers (CN).

Sustainability 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 
Figure 17. CSC + EA: optimal investments assessment for varying Energy Price (EP), BESS cost (BC), 
and number of customers (CN). 

 
Figure 18. CSC: optimal investments assessment for varying Energy Price (EP), BESS cost (BC), and 
number of customers (CN). 

4. Discussion 
In a residential renewable energy community (REC) powered by 100 kWp of 

photovoltaic systems, a comprehensive techno-economic analysis was used to assess the 
energy and economic impact of integrating a grid-connected Battery Energy Storage 
System (BESS). Various scenarios were examined, accounting for factors like community 
size, market prices, battery characteristics, and the choice to engage in energy arbitrage 
(EA), with the Italian market and regulations serving as a reference.  

The analysis focused on two main revenue sources: the increase in collective self-
consumption (CSC) incentives resulting from BESS surplus energy withdrawal and EA, 
involving participation in electricity markets to capitalize on price differentials. A 20-year 
simulation, considering battery aging and optimized scheduling, revealed the significance 
of a shared battery in enhancing collective self-consumption and sufficiency. However, 
scenarios with EA demonstrated higher total energy transactions compared to those 
without a battery. 

Activation costs played a crucial role in EA scenarios, emphasizing the importance 
of optimizing battery scheduling and considering replacement costs. Economic findings 
highlighted optimal battery sizes and cost-effectiveness thresholds, with dedicated CSC 
batteries requiring a maximum cost of 200 EUR/kWh. Conversely, EA enabled viable 
investments even with costs around 400 EUR/kWh, halving the payback period and 
emphasizing the market’s dependence on incentives. 

Figure 18. CSC: optimal investments assessment for varying Energy Price (EP), BESS cost (BC), and
number of customers (CN).

Battery lifetimes exhibit steps due to replacement costs. Without EA, batteries can
last about 20 years or longer; while performing EA, lifetimes vary between 7 and 13 years.
Despite reduced lifetimes, the increase in cash flow, payback time, and NPV over 20 years
compensates, rendering the investment more attractive overall.

4. Discussion

In a residential renewable energy community (REC) powered by 100 kWp of photo-
voltaic systems, a comprehensive techno-economic analysis was used to assess the energy
and economic impact of integrating a grid-connected Battery Energy Storage System (BESS).
Various scenarios were examined, accounting for factors like community size, market prices,
battery characteristics, and the choice to engage in energy arbitrage (EA), with the Italian
market and regulations serving as a reference.

The analysis focused on two main revenue sources: the increase in collective self-
consumption (CSC) incentives resulting from BESS surplus energy withdrawal and EA,
involving participation in electricity markets to capitalize on price differentials. A 20-year
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simulation, considering battery aging and optimized scheduling, revealed the significance
of a shared battery in enhancing collective self-consumption and sufficiency. However,
scenarios with EA demonstrated higher total energy transactions compared to those without
a battery.

Activation costs played a crucial role in EA scenarios, emphasizing the importance
of optimizing battery scheduling and considering replacement costs. Economic findings
highlighted optimal battery sizes and cost-effectiveness thresholds, with dedicated CSC
batteries requiring a maximum cost of 200 EUR/kWh. Conversely, EA enabled viable
investments even with costs around 400 EUR/kWh, halving the payback period and
emphasizing the market’s dependence on incentives.

Interestingly, the most suitable REC for BESS integration featured an intermediate
number of customers, balancing surplus and demand levels unless EA was involved. In
that case, REC with low customer numbers or high surpluses was preferable.

Battery aging analysis revealed that while a BESS dedicated to CSC could last 20 years,
EA halved its lifespan. However, increased cash flow and net present value compensated
for this reduction, rendering the investment more attractive overall.

A comparison between energy and economic optimality highlighted discrepancies,
indicating the need for further reductions in battery prices, enhanced market incentives,
and regulatory reviews concerning the role of grid-connected BESS within RECs.

Future studies could explore BESS potential in RECs beyond CSC and EA, considering
additional revenue streams such as ancillary services. Moreover, battery management
strategies should integrate real-time control for dispatching and address forecast errors and
grid constraints for a comprehensive analysis.
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