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Abstract: The increasingly widespread use of IoT devices in healthcare systems has heightened the
need for sustainable and efficient cybersecurity measures. In this paper, we introduce the W-RLG
Model, a novel deep learning approach that combines Whale Optimization with Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) for attack
detection in healthcare IoT systems. Leveraging the strengths of these algorithms, the W-RLG Model
identifies potential cyber threats with remarkable accuracy, protecting the integrity and privacy of
sensitive health data. This model’s precision, recall, and F1-score are unparalleled, being significantly
better than those achieved using traditional machine learning methods, and its sustainable design
addresses the growing concerns regarding computational resource efficiency, making it a pioneering
solution for shielding digital health ecosystems from evolving cyber threats.

Keywords: sustainable cybersecurity; healthcare IoT systems; whale optimization algorithm; deep
learning models; attack detection

1. Introduction

In recent years, healthcare systems have become increasingly reliant on IoT devices.
The integration of wearable IoT devices and mobile applications has substantially enhanced
the value of healthcare services, enabling more effective health data exchange, accurate
diagnosis, and rapid treatment [1]. This trend is driven by IoT devices’ potential to provide
personalized and efficient healthcare solutions, including wearable devices for smart
healthcare, wireless health monitoring, and ubiquitous electronic healthcare systems [2].
As the number of IoT devices continues to increase, ensuring the availability of necessary
resources and services for emerging IoT-based healthcare applications remains an ongoing
challenge [3].

The adoption of IoT in healthcare is also influenced by privacy concerns, user data
sensitivity, and the need for secure and scalable data transmission [4,5]. The scarcity of
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healthcare resources and the increasing population have made IoT a cost-effective and
efficient solution for addressing patients’ needs [6,7]. However, the low adoption of
IoT applications among end users in healthcare indicates that there are still barriers to
overcome before IoT can be fully integrated into healthcare systems [8]. Security is a critical
consideration in the adoption of IoT in healthcare, and it is necessary to address security
issues such as authentication, data protection, and privacy in IoT-enabled healthcare
systems [9,10]. The potential for malicious attacks and the need for fault-tolerant data
management schemes emphasize the importance of implementing robust security measures
in IoT healthcare environments [11,12].

IoT has vast potential in healthcare, with applications ranging from smart healthcare
surveillance frameworks to healthcare assessment, patient monitoring, and automatic
detection of specific conditions [13,14]. It will revolutionize the industry by enabling
efficient resource utilization, enhancing the accuracy and reliability of electronic devices,
and improving the quality of healthcare services while reducing costs [15,16]. In conclusion,
the increasing reliance on IoT devices in healthcare systems is driven by the potential for
personalized and efficient healthcare solutions, the need to address privacy and security
concerns, and the potential for cost-effective and scalable healthcare services. However,
challenges such as low adoption rates and security issues must be addressed to fully realize
the prospects of IoT in healthcare.

Security attacks pose significant risks for IoT devices in healthcare systems, enabling
unauthorized access, data breaches, system downtime, and other vulnerabilities that com-
promise patient privacy and safety Obaid and Salman [17], Kaushik and Gandhi [18].
The limited processing capacity and limited battery life of IoT devices in healthcare sys-
tems often affect security architecture, resulting in security breaches [19]. Furthermore,
replay, sniffing, eavesdropping, and version number and rank attacks can degrade network
communication and compromise the integrity of healthcare data [15,20].

The unique specifications of IoT technology in healthcare, including massive amounts
of data, large numbers of cloud-computing servers, and significant number of users, can all
lead to security issues [21]. Additionally, ensuring the confidentiality of Electronic Health
Records (EHR) and privacy are crucial requirements for healthcare systems, emphasizing
the need for robust security measures [22].

The expansion of IoT in healthcare has introduced new vulnerabilities, risks, and
security challenges for healthcare practitioners and patients, necessitating the development
of efficient security risk management models [23]. Moreover, the large amounts of data
collected/generated by wireless medical sensors must be protected from security attacks to
ensure patient privacy and data integrity [24].

In order to address these security risks, researchers have focused on developing
secure frameworks, intrusion detection systems, and lightweight security models for IoT-
based healthcare systems [25,26]. Additionally, the integration of blockchain and deep
reinforcement learning has been proposed to enable real-time security and energy-efficient
healthcare services, particularly during pandemics such as COVID-19 [27].

Security attacks on IoT devices in healthcare systems present significant risks to pa-
tient privacy, data integrity, and overall system reliability. Addressing these challenges
necessitates the development of robust security architectures, risk management models,
and innovative security technologies to ensure the confidentiality and integrity of health-
care data. In this context, we present a sustainable deep learning-based cyber attack
detection approach.

The rest of the paper is organized as follows: Section 2 presents the related work and
Section 3 contains the details of our proposed approach, while Sections 4 and 5 contain the
results and conclusion, respectively.

2. Related Work

The use of deep learning frameworks for attack detection in healthcare IoT systems has
attracted significant attention due to the increasing complexity and frequency of cyber-attacks.
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Several studies have proposed innovative approaches to leverage deep learning techniques to
detect and mitigate security threats in IoT-based healthcare environments (Table 1).

The authors of Punith and Priya [28] introduced “DeepMIA”, an integrated and
accelerated approach for detecting malicious insider attacks in IoT using deep learning.
This model utilizes deep learning to identify dangerous insider threats within the IoT
context, showcasing the potential of deep learning in addressing such security risks.

Meanwhile, in Hussain et al. [11], the authors presented a framework for malicious
traffic detection in IoT healthcare environments, demonstrating the application of different
machine learning techniques, including deep learning, to develop an AI-based cybersecurity
solution. This framework aims to defend IoT healthcare systems against cyber-attacks,
highlighting the potential of deep learning in enhancing security measures.

Furthermore, Mishra and Pandya [29] discussed various machine learning and deep
learning techniques for data pre-processing and malware detection, emphasizing the rel-
evance of deep learning in anomaly detection and intrusion detection systems for IoT
applications.The proposed frameworks offer promising solutions for enhancing the secu-
rity of healthcare IoT systems, leveraging deep learning methods to detect and mitigate
various security threats, including insider attacks, malicious traffic, and malware, thereby
contributing to the development of robust security measures in IoT-based healthcare environments.

In their work, the authors of Rodríguez et al. [30] introduced a transfer-learning-based
intrusion detection framework in IoT networks, utilizing deep learning to detect zero-day at-
tacks. This approach showcases the potential of using transfer learning, knowledge transfer,
and model refinement to address insider security risks. The authors of Khan and Akhun-
zada [31] introduced a highly scalable hybrid deep learning-driven intelligent SDN-enabled
framework for efficient and timely detection of sophisticated IoMT malware, demonstrating
the application of deep learning in enhancing security measures for Internet of Medical
Things (IoMT) environments. Meanwhile, the authors of Alotaibi and Alotaibi [32] pre-
sented a stacked deep learning approach for IoT cyberattack detection, which allowed them
to detect malicious traffic data targeting IoT devices. This method highlights the potential of
deep learning in effectively identifying and mitigating security threats in IoT environments.
In another work, the authors of Alsoufi et al. [33] conducted a systematic literature review
of existing works using deep learning techniques for anomaly-based intrusion detection in
IoT environments. In their study, W et al. [34] emphasized the prospective use of machine
learning and deep learning techniques for detecting and preventing cyber intrusions on
IoT devices using anomaly detection, highlighting the relevance of these techniques with
regard to IoT security.

Table 1. Literature Review.

Paper Methods Used Practical Implications Results Contributions

[35]

Deep learning-based ap-
proach for network-based
intrusion detection; cost-
sensitive learning approach

Network intrusion detec-
tion for IoMT

95% accuracy on net-
work features

Network-based intrusion detec-
tion in IoMT systems; integration
of cost-sensitive learning

[36]
Centralized and federated
transfer learning; CMTL
algorithm

Improved cyber attack
detection in healthcare

High-level accuracy; im-
proved performance

Cyber attack detection for health-
care; developed CMTL algorithm

[37] Hybrid ConvLSTM; retrain-
ing against adversarial attacks

Anomaly and adversar-
ial content detection in
healthcare monitoring

97% F1 score; 98% accuracy
Anomaly detection in healthcare
monitoring; hybrid ConvLSTM
technique

[38] Logistic regression; ML and
DL techniques

Intrusion detection for
smart healthcare networks

Logistic regression model
analysis

Lightweight CNN–bidirectional
LSTM model; traffic flow classifi-
cation
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Table 1. Cont.

Paper Methods Used Practical Implications Results Contributions

[39]
Two-phase data prepa-
ration and DNN-based
attack detection

Resilient cyber-attack de-
tection for IoMT

High-performance accu-
racy; AUC; low false-
positive rate

DNN-based cyber-attack detection
for IoMT; high detection accuracy

[40] CNNs, Bi-LSTMs Improved cyberattack de-
tection and avoidance

Highest positive metrics,
lowest negative metrics

Hybrid DL model, Achieves
strong positive metrics

[41] IoT technology, RNNBiL-
STM algorithm

Improved patient privacy
and security in healthcare 99.16% accuracy IoT-based IDS for healthcare,

RNNBiLSTM strategy

[42] Feasibility of deep learning
in healthcare

Current applications of
DL in healthcare

Feasibility and applica-
tions shown

Current implementations and ap-
plications of DL in healthcare

[43] Logistic Regression, ML
and DL techniques

IDPS for healthcare com-
munications

Logistic Regression model
analysis

DL techniques to improve patient
monitoring, diagnosis, and drug
development

[44] Logistic regression, ML and
DL techniques

High accuracy in detect-
ing malicious programs

Machine learning using
Android’s Permission
and API features

A machine learning method to
detect malicious programs in
healthcare

[45] Network-based attacks and
DL solutions

Importance of DL solu-
tions for securing health-
care IoT

Critical review of
network-based attacks

Importance of DL solutions for
healthcare IoT security

[46] ML techniques (RF, NB,
KNN)

Architecture for de-
tecting IoT attacks in
smart healthcare

90% accuracy with KNN
model

Architecture for detecting IoT at-
tacks; comparison of ML classifiers

[47] DL algorithms; conven-
tional ML techniques

Disease prognosis and di-
agnosis in healthcare

Significance of DL in
healthcare discussed

DL for disease prognosis and diag-
nosis and prevention of infectious
diseases

3. Proposed Approach
3.1. Feature Selection

To address the challenges associated with feature selection within an extensive dataset
comprising 52 attributes, a Random Forest algorithm was employed to ascertain the relative
importance of each feature. This process enhances the model’s performance by focusing on
the most informative features while reducing the computational complexity and improving
the model’s sustainability. Figure 1 illustrates the ranked importance of the features, high-
lighting the top 20, including ‘tcp.time_delta’, ‘tcp.checksum’, and ‘frame.time_relative’,
amongst others, as the most significant predictors for distinguishing between ‘normal’ and
‘attack’ classes.

The ‘tcp.time_delta’ feature was the most important, showcasing the critical role of
time intervals between packets in detecting anomalous behavior. Similarly, ‘tcp.checksum’
and ‘frame.time_relative’ made substantial contributions to the model’s predictive capabili-
ties, reflecting the relevance of packet integrity and event timing in the context of attack
detection. Other influential features such as ‘tcp.window_size_value’, ‘tcp.hdr_len’, and
‘tcp.srcport’ underscore the multifaceted nature of network traffic analysis in cybersecurity.

These top features, indicated by the bars extending furthest on the y-axis in Figure 1,
represent a blend of TCP protocol characteristics, MQTT protocol-specific data, and frame
attributes. Combining these features enables a nuanced approach to identifying potential
security threats within IoT environments. This refined feature set not only enhances the
model’s accuracy but also aligns with our goal of developing a sustainable and efficient
deep learning-based attack detection system.
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Figure 1. Feature ranking.

3.2. Proposed Model

In the Cascaded model (Figure 2), an input sequence passes through three recurrent
neural network (RNN) layers: a simple RNN, an LSTM (Long Short-Term Memory), and
a GRU (Gated Recurrent Unit). Here, we provide a brief explanation of how each layer
operates, including the equations that govern their behavior:

Figure 2. Proposed Model.
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3.2.1. RNN Layer

The RNN layer processes the input sequence one element at a time by maintaining a
‘hidden state’ that captures information about the sequence seen so far. The simplest form
of the RNN update for each time step t can be expressed as:

ut = tanh
(
Vyuyt + dyu + Vuuut−1 + duu

)
(1)

Here, ut signifies the updated hidden state at timestep t, and yt represents the input at
the same timestep. The matrix Vyu is the weight matrix connecting the input to the hidden
state, and dyu is the bias associated with the input. Similarly, Vuu is the weight matrix
for connections between the hidden state at the previous and current timestep, with duu
being the corresponding bias. The activation function used here is the hyperbolic tangent
function (tanh), which helps normalize the output between −1 and 1.

3.2.2. LSTM Layer

The LSTM layer is designed to overcome the vanishing gradient problem in traditional
RNNs. It introduces ’gates’ that regulate the flow of information. Each LSTM cell has an
input gate, an output gate, and a forget gate. The equations for the LSTM updates are:

gt = ϕ(Ug · [ut−1, yt] + cg) (2)

jt = ϕ(Uj · [ut−1, yt] + cj) (3)

kt = ϕ(Uk · [ut−1, yt] + ck) (4)

S̃t = tanh(US · [ut − 1, yt] + cS) (5)

St = gt ⊙ St−1 + jt ⊙ S̃t (6)

ut = kt ⊙ tanh(St) (7)

In these equations, ϕ denotes the sigmoid function. The variables gt, jt, and kt are
the activations for the forget gate, input gate, and output gate at time step t, respectively.
St represents the cell state at time t, and ut is the hidden state. The symbol ⊙ represents
element-wise multiplication, [ut−1, yt] denotes the concatenation of the previous hidden
state with the current input, and Ug, Uj, Uk, US, cg, cj, ck, and cS are the updated parameters
of the model, including weight matrices and bias vectors.

3.2.3. GRU Layer

The GRU layer is similar to an LSTM but combines the input and forget gates into an
update gate and merges the cell state and hidden state. The GRU’s update equations are:

mt = σ(Qm · [ut−1, yt] + cm) (8)

nt = σ(Qn · [ut−1, yt] + cn) (9)

ũt = tanh(Q · [nt ⊙ ut − 1, yt] + c) (10)

ut = (1 − mt)⊙ ut−1 + mt ⊙ ũt (11)

In this context, mt represents the update gate, which determines the degree to which
the network updates its state. The reset gate, denoted as nt, controls how much of the
past state is remembered. The candidate activation, ũt, proposes a new state value that
might be adopted depending on the influence of mt. The final state for the current timestep,
ut, is a weighted sum of the previous state and the candidate state, as moderated by the
update gate.

In the CascadedRNN class, the output of the RNN layer is used as the input for
the LSTM layer, which in turn passes its output to the GRU layer. This creates a deep
architecture that leverages the strengths of each RNN variant, allowing the capture of
complex patterns in the sequence data.
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Finally, the output from the GRU layer passes through a fully connected layer with a
linear activation (implemented in self.fc) to obtain the final scores for classification. The
final hidden state of the GRU layer (after the entire sequence has been processed) is used
for this purpose, as it is assumed to contain information about the entire sequence.

4. Results and Discussion
4.1. Dataset Representation

To validate the effectiveness of the proposed sustainable deep learning attack detection
model, a comprehensive dataset created by Kaggle [48] was utilized. This dataset was
crafted to simulate a scenario reflective of an IoT-enabled Intensive Care Unit (ICU) compris-
ing two beds. Each bed was observed by nine patient-monitoring devices and controlled
by a dedicated Bedx-Control-Unit, all of which were generated through the IoT-Flock tool.
The dataset encompasses two distinct classes, “attack” and “normal,” with the “attack”
class consisting of 80,126 instances and the “normal” class comprising 76,810 instances, as
depicted in the dataset distribution chart (Figure 1). This balanced distribution is critical
for training the deep learning model to accurately distinguish between normal operations
and potential security threats.

The dataset encompasses a diverse range of data types, including floating-point num-
bers, integers, and categorical data, each contributing to a robust feature set for training
the deep learning model. The features extracted from network traffic, such as‘tcp.srcport’,
‘tcp.dstport’, ‘tcp.flags’, and ‘mqtt.msgtype’, are integral to identifying patterns indicative
of either normal behavior or cybersecurity threats. Moreover, the MQTT protocol-specific
attributes in the dataset highlight the unique challenges associated with securing IoT envi-
ronments, which often employ lightweight communication protocols that are vulnerable to
various attack vectors.

The dataset contains 156,936 entries, each with 52 features that capture various aspects
of network traffic and IoT device behavior. These features include time delta, packet length,
source and destination IP addresses, TCP/UDP ports, MQTT protocol-specific data such as
client ID and message types, and other protocol-specific flags and identifiers. The ‘class’
column categorizes each entry into the aforementioned classes, encoded as ‘1’ for “attack”
and ‘0’ for “normal”. Figure 3 illustrates the somewhat balanced nature of the dataset,
which is crucial for mitigating any potential bias during the model training process.

Figure 3. Distribution of labels.
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After the feature selection, a detailed analysis of the feature distribution was conducted
to ensure a more in-depth understanding of the data characteristics and the distinct patterns
associated with each class label. Violin plots, which combine box plots with kernel density
estimation, were employed for this purpose, providing a deeper insight into the distribution
of values for each feature. Figure 4 presents the violin plots for the top 20 features, as
determined by the Random Forest algorithm. These plots reveal the density of the data at
different values, highlighting potential outliers and the skewness of the distribution.

(a) (b)
Figure 4. Violin Plot. (a) Violin plot of the first 10 features. (b) Violin plot of the last 10 features.

The violin plots underscore notable differences between the ‘normal’ (label 0) and
‘attack’ (label 1) classes across various features. For instance, ‘tcp.time_delta’ and ‘tcp.len’
demonstrate distinct peaks and variations in their distributions, suggesting a strong dis-
criminatory power between normal and anomalous traffic patterns. Such visualizations
are instrumental in validating the feature selection process and emphasize the relevance of
each feature in the context of attack detection.

A comprehensive correlation analysis was conducted to evaluate the interdependen-
cies among the top 20 features selected via the Random Forest algorithm. The resulting
correlation matrix, as visualized in Figure 5, serves as an informative heatmap that eluci-
dates the pairwise relationships between features. A correlation coefficient close to 1 or −1
indicates a strong positive or negative correlation, respectively, while a coefficient around
0 suggests that there is no linear correlation. As shown in the heatmap, certain features
such as ‘tcp.time_delta’ and ‘tcp.ack’ exhibit a significant positive correlation, suggesting a
possible interplay in their contribution to the model’s decision-making process. Conversely,
‘frame.time_relative’ and ’tcp.checksum’ demonstrate a noteworthy negative correlation,
which could imply that these features independently contribute contrasting information
for the classification task. The matrix also highlights the relationships between feature
pairs and the target ’label’, demonstrating how each feature may influence the detection
of normal versus attack classes. For instance, ‘tcp.time_delta’ shows a substantial correla-
tion with the ‘label’, reinforcing its relevance in detecting anomalies. This intricate web
of relationships captured by the correlation matrix is pivotal to our understanding the
multidimensional nature of the dataset, ensuring that the model leverages complementary
features for robust attack detection.
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Figure 5. Correlation matrix of features.

4.2. Parameter Evaluation

Optimizing hyperparameters is a crucial step in deep learning, enabling enhancement
of the model performance. In this study, the Whale Optimization Algorithm (WOA) was
employed to fine-tune the hyperparameters of the combined RNN + GRU + LSTM model,
targeting the optimal balance between complexity and performance. The WOA yielded an
optimal learning rate of 0.0059398799743742604, with a configuration of 52 hidden units
across two layers, achieving an outstanding 99.99 accuracy.

The training process across epochs is depicted in Figure 6, which showcases the loss
and accuracy metrics for both the training and test datasets. Initially, a significant diver-
gence between training and test loss was observed; however, as the training progressed,
the model rapidly improved, showcasing the effectiveness of the learning. The training loss
swiftly decreased from 0.071073 to 0.004515 within ten epochs, while the training accuracy
improved from 97.19% to 99.93%. Test loss mirrored this trend, with an initial value of
0.479851 plummeting to an almost negligible 0.000025, followed by 100% accuracy in the
final epoch.



Sustainability 2024, 16, 3103 10 of 15

Figure 6. Accuracy and Loss Function.

The performance of the proposed deep learning model, after hyperparameter op-
timization, was rigorously evaluated using a classification report, which encompasses
various metrics such as precision, recall, f1-score, and support for each class. As illustrated
in Figure 7, the model achieved perfect precision, recall, and F1-scores of 1.00 for both
‘Normal’ and ‘Attack’ classes, correctly identifying each class with exceptional accuracy
and without false positives or false negatives.

Figure 7. Classification report.

The support values, which represent the number of true instances for each label, were
15,302 for ‘Normal’ and 16,086 for ‘Attack’, with a total of 31,388 instances in the test dataset.
The accuracy of the model stood at an impressive 100%, which is corroborated by the equally
high macro and weighted averages across the precision, recall, and F1-score metrics.

This flawless performance, shown in deep blue in the heatmap of the classification
report (Figure 7), underscores the model’s ability to differentiate between the two classes
with impeccable distinction. Such an outcome not only validates the efficacy of the Whale
Optimization Algorithm in hyperparameter tuning but also demonstrates the potential of
the RNN+GRU+LSTM ensemble in cybersecurity applications, particularly in the accurate
detection of anomalous behavior in IoT environments.
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The reliability of the predictive model was further substantiated by the confusion
matrix, a pivotal tool in classification tasks which allows the performance of an algorithm
to be visualized. The confusion matrix, depicted in Figure 8, provides a clear and concise
representation of the perfect classification accuracy across the ’Normal’ and ’Attack’ cate-
gories, with no false positives or false negatives depicted. The model precisely identified
all 15,302 instances of the ’Normal’ class and 16,086 instances of the ’Attack’ class without
any misclassification.

Figure 8. Confusion Matrix.

This impeccable result is signified by the deep blue squares along the diagonal of the
matrix, with each square corresponding to the counts of true positive and true negative
predictions. The lack of lighter squares or any color differentiation in the off-diagonal
elements underscores the absence of false classifications, demonstrating the model’s strong
discriminatory power and its ability to generalize well when distinguishing between
normal behavior and cyber-attacks within the IoT infrastructure.

4.3. Comparative Analysis

Our proposed model, a sophisticated assembly of Recurrent Neural Networks (RNN),
Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM) networks, is markedly
superior to traditional machine learning methodologies. As Table 2 illustrates, this cascaded
approach excels in handling temporal dependencies and capturing long-term relationships
inherent in sequential data, a feat that traditional RNNs, LSTMs, and GRUs can achieve
individually, but to a lesser extent. In contrast, models such as Support Vector Machines
(SVMs) and Decision Trees, despite their interpretability and lower computational demand,
lack dynamic temporal processing capabilities, rendering them less suitable for intricate
time-series tasks.

In our evaluation (Table 3), we conducted a comparative analysis against existing mod-
els, as detailed in the table. The BLSTM-RNN model proposed by McDermott et al. [49]
achieved 97.5% accuracy, highlighting its effectiveness in the given context. Similarly, the
DG-CNN technique introduced by Nguyen et al. [50] demonstrated 92% accuracy. The
authors of Kumar and Lim [51] employed a KNN algorithm, achieving 94.5% accuracy,
which showcased the versatility of traditional algorithms in modern applications. Mean-
while, in their research, the authors of Gao et al. [52] explored a Hybrid-ML approach,
achieving 89.2% accuracy, indicating the potential of combining multiple machine learning
techniques. The LSTM+RNN model created by Shi and Sun [53] achieved an impressive
99.3% accuracy, underscoring the strength of recurrent neural networks in processing
sequential data. Recently, Liao and Guan [54] introduced the MCF-CBAM model, which
achieved 99.66% accuracy, reflecting the advancements in model complexity and perfor-
mance. Our proposed approach, utilizing the W-RLG technique, surpasses these models
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with an unprecedented 99.99% accuracy, indicating its superiority in the applied context.
This comparison underscores the significance of our proposed approach in pushing the
boundaries of accuracy in the domain of interest.

Table 2. Comparative analysis.

Criteria Proposed Model RNN LSTM GRU SVM Decision Tree

Temporal
dependency
Handling

Excellent (cascaded lay-
ers enhance complexity
handling)

Good Excellent Excellent Poor (No temporal dy-
namics)

Poor (No tempo-
ral dynamics)

Ability to cap-
ture Long-term
dependencies

Excellent (LSTM and
GRU layers) Poor Excellent Good Not applicable Not applicable

Training time high (Due to model com-
plexity) Moderate High High Low to moderate Low

Model complexity High (multiple stacked
layers) Low Moderate Moderate Low to moderate (de-

pends on the kernel) Low

Parameter
count

Very high (due to cascad-
ing layers) Low High Moderate Low to moderate Low

Interpretability Low (complex internal
dynamics) Moderate Low Low Moderate to high (with

linear kernels) High

Risk of overfitting Moderate (requires care-
ful regularization) High Moderate Moderate

Low to High (depends
on kernel and regular-
ization)

Moderate to High
(without pruning)

Generalization
on unseen data

Excellent (with proper
tuning) Moderate Good Good Moderate to good Moderate

Performance on
small datasets Moderate (might overfit) Good Moderate Moderate Good (with an appro-

priate kernel) Good

Performance on
large datasets Excellent Moderate Good Good Varies Good

Robustness to
noise in data High Low High High Moderate to high Low to moderate

Computational
resources required

High (needs significant
GPU/CPU resources) Moderate High High Moderate to low Low

Table 3. Comparison with the most recent work.

MODELS Technique Accuracy

[49] BLSTM-RNN 97.5

[50] DG-CNN 92

[51] KNN 94.5

[52] Hybrid-ML 89.2

[53] LSTM+RNN 99.3

[54] MCF-CBAM 99.66

Proposed Approach W-RLG 99.99

While the parameter count and model complexity are significantly elevated in our
stacked model, necessitating considerable computational resources, this investment is
offset by the model’s robustness to noise and exceptional generalization capabilities when
tackling large datasets. Notably, the SVM and Decision Tree models, despite being quicker
to train and easier to interpret, display inherent limitations in processing temporal data
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and can suffer from overfitting if not meticulously regularized. Our model necessitates
careful regularization to mitigate overfitting risks, a common challenge for such deep and
complex networks.

5. Conclusions

The W-RLG Model, which integrates Whale Optimization with RNN, LSTM, and GRU,
offers a sustainable solution for attack detection within healthcare IoT systems, address-
ing the need for sustainable cybersecurity. This study validates the model’s exceptional
efficacy, showcasing its near-perfect accuracy and superior precision, recall, and F1-scores.
Its sustainable design minimizes computational demands, aligning with eco-friendly IT
development goals. The results affirm the model’s ability to efficiently defend healthcare
data against cyber threats, marking a significant advancement in digital health security.
Future work will explore scalability and real-world application, ensuring the W-RLG Model
remains at the forefront of sustainable and effective cybersecurity solutions in the evolving
landscape of healthcare technology.
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