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Abstract: Examining the impacts of accident characteristics and differentiated built environment
factors on accident severity at inherent accident hotspots within cities can help managers to adjust
traffic control measures through urban planning and design, thereby reducing accident casualties.
In this study, time series clustering was used to identify traffic accident hotspots in Changsha City.
Based on the hotspot identification results, Kruskal–Wallis tests were used to select differentiated
built environment factors among different accident areas within the city. A severity analysis model
for road crashes in Changsha’s hotspots, taking into account the built environment, was constructed
using a Light gradient boosting machine (LightGBM). In addition, Shapley additive explanations
(SHAP) were used to reveal the influences of accident characteristics and built environment factors
on accident severity. The results showed that different accident characteristics and built environment
factors affect accident severity in different urban accident areas. Factors such as type of accident,
visibility, period of time, land use mixing degree, population density, density of commercial places,
and density of industrial places showed varying degrees of importance in influencing accident
severity, while the overall impact trends remained consistent. On the other hand, transportation
accessibility, road network density, landform, and accident location showed significant differences in
their impacts on accident severity between different accident areas within the city.

Keywords: traffic accident; accident hotspot; built environments; LightGBM; SHAP

1. Introduction

In urban areas, various zones and road segments often display distinct characteristics,
including the frequency and severity of road traffic accidents [1–3]. The occurrence and
consequences of accidents are often influenced by a combination of factors such as the
built environment (physical environments created and altered by human activities, such as
buildings and public spaces, etc.) and the road conditions. Therefore, there are usually some
accident-intensive areas within cities, namely accident hotspots. An in-depth examination
of the characteristics of these traffic hotspots helps the traffic management department
to comprehend the overall geographical distribution of urban traffic accidents and build
focused governance policies.

Currently, researchers have conducted many studies on the identification and fea-
ture analysis of traffic accident hotspots. Afghari synthesized two models, crash count
and crash severity, to develop a weighted risk-scoring methodology to more effectively
identify serious injuries and fatalities in accident hotspots [4]. Ghezelbash applied kernel
density estimation, combined with a hierarchical analysis method and an ideal solution
similarity order preference technique based on both accident locations and spatio-temporal
interactions, to provide a more comprehensive identification of accident hotspots [5]. Hu
analysed pedestrian accidents in Changsha using kernel density analysis combined with
binary logistic regression and tree-based modelling, and found that pedestrian accidents
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showed several cluster distributions in urban spaces, and were significantly correlated with
population density, road network density, and social service activities [6]. Lin offered a
method for accident hotspot identification and causation analysis, taking into account the
spatio-temporal aspects of traffic accidents, and found that intersection highway type, lane
type, two-wheeler type, and hit-and-run factors have varied affects in different accident lo-
cations [7]. Lu used density analysis to identify accident hotspots for both cases of whether
or not to consider the density of the road network, and obtained that the distribution of
accidents per unit length in the suburbs is denser and has a higher accident severity [8].
Wang used a bivariate negative binomial spatial conditional autoregressive model and the
potential for safety improvement method to identify accident hotspots and violation-prone
areas, and found that the number of traffic police officers and the duration of daily pa-
trols had the greatest effects on accident hotspots and violation-prone areas [9]. Using a
Geographic-Information-System-based framework for analysing spatio-temporal trends in
accidents, Hamami innovatively introduced a spatio-temporal aggregation methodology
to effectively analyse the evolution of accident hotspots in time and space [10].

However, the aforementioned studies do not fully account for the impact of built
environment factors on traffic accidents. As a key factor influencing urban transportation
travel demand and behaviour [11–13], it exerts a significant impact on traffic accidents. Lee
investigated Seoul’s built environment features in South Korea that impact the likelihood
of pedestrian accidents among older people, indicating that the influence of the built
environment differs based on pedestrian age and regional characteristics [14]. Wang
examined the influence of the built environment on Vehicle-to-Vehicle Accidents and
discovered that factors such as commercial, urban/rural, and road types notably heightened
the probability of fatal accidents [15]. Yang delved into the connection between the built
environment and the spatial distribution of truck-related collisions utilizing the XGBoost
and SHAP methodologies, unveiling a significant correlation between demographics, land
utilization, and roadway networks with truck accidents across all injury categories [16].
Chen examined the connection between the built environment and the severity of bicyclist
injuries and identified a negative correlation between land use diversity, residential areas,
and green spaces with the occurrence of serious bicycle injuries [17]. Employing the
XGBoost algorithm and SHAP attribution analysis, JI delved into the influence of the
built environment surrounding subway stations on the risk of traffic accidents. The study
highlighted that areas with high concentrations of recreational points of interest (POI) tend
to exhibit higher accident risks [18].

In summary, scholars’ investigations and analyses of accident hotspots primarily
centre on enhancing identification accuracy and scrutinizing the influences of personnel,
roadways, and environmental factors on accidents. In parallel, research of the impact of
the built environment on accidents predominantly concentrates on the census tract [14,16]
or the surrounding areas of accident occurrences [15,17,18]. Few studies have seized
upon the inherent existence of traffic accident hotspots within urban settings as a starting
point to delve deeply into the influence of varied built environment factors on accident
severity across diverse accident zones. Consequently, this paper identifies the hotspots of
traffic accidents in Changsha City and offers a comprehensive analysis of how accident
characteristics and distinct built environments influence the severity of accidents in various
regions, so as to furnish more tailored recommendations for enhancing urban traffic safety.

The Technology Roadmap of the article can be obtained as shown in Figure 1 below:
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2. Data Preprocessing
2.1. Traffic Accident Hotspot Identification in Changsha

In this study, Changsha City in Hunan Province, China, serves as the study area,
utilizing traffic accident data gathered by the Traffic Police Detachment of the Changsha
Municipal Public Security Bureau from 1 January 2017 to 31 December 2019 for hotspot
identification analysis. As the traffic police reports solely encompass address descrip-
tions of the accidents, this study preserves 6164 accidents with elevated precision after
latitude/longitude conversion.

To precisely account for the temporal characteristics of accident hotspots, we employed
Lin’s time-series-based spatio-temporal method for identifying traffic accident hotspots
and utilized the spatio-temporal cube in ArcGIS 2022 for time-series clustering [7]. Drawing
upon prior research and subsequent parameter fine-tuning, the spatial dimension of the
spatio-temporal cube was ultimately designated as 1000 meters, the temporal interval as
3 months, and the clustering attribute as the similarity in the number of periodic accidents.

To ascertain the ideal quantity of clustered groupings, this document employs the
pseudo F-statistic to evaluate the clustering impact, as depicted in Figure 2. The pseudo F-
statistic illustrates the intra-group similarity and inter-group dissimilarity. Greater pseudo
F-statistic values indicate improved clustering, amplified distinctions between groups, and
heightened intra-group similarity [19]. The findings illustrated in Figure 2 reveal that the
pseudo F-statistic peaks at a cluster count of 2, indicating that these particular Changsha
traffic accident hotspots are best categorized into two distinct zones: high-accident areas
(HAAs) and low-accident areas (LAAs).
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Figure 3 shows the results of identifying road accident hotspots in Changsha. The red
squares denote regions of HAAs, comprising 99 blocks with 1811 recorded accidents, while
the white squares symbolise LAAs, comprising 1533 blocks with 4353 recorded accidents.
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Figure 3. Results of identifying road accident hotspots in Changsha.

Figure 4 shows the fluctuation in the number of accidents over the different accident
area cycles. Within the HAAs, the total number of accidents shows a greater volatility,
in contrast to the LAAs, where the fluctuations are more subdued. A comparison of the
number of cycles between the two areas shows that the minimum accident frequency in the
HAAs is 0.97, while the maximum in the LAAs is 0.34. In particular, the incidence rate in
the HAAs is much higher than that in the LAAs.
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2.2. Variable Selections

The dataset collected by the Traffic Police Detachment of the Changsha Municipal
Public Security Bureau includes more than 60 fields, covering details such as accident
descriptions, accident timing, road infrastructure, and environmental conditions, but does
not directly include built environment factors. Therefore, this study extracted the Point
of Interests (POI) data of the HAAs and LAAs, which cover many types of facility points,
such as shopping centres and leisure facilities, etc. This study uses ArcGIS 2022 to quantify
the population density, road network density, land use mixing degree, and density of each
facility point within the HAAs and LAAs, based on POI data and the ‘5D’ built environment
framework [20]. Furthermore, identifying the influences of different built environments in
distinct accident areas of the city on accident severity will enable policy makers to initiate
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urban planning and design interventions and propose more targeted measures to reduce
road casualties. Accordingly, this study used the Kruskal–Wallis test to identify differences
in built environment factors between HAAs and LAAs. This non-parametric method is
suitable for the data structure of this study, as it does not require assumptions of normal
distribution and equal variance [21].

Table 1 shows the results of the Kruskal–Wallis test for the built environment factors
of the HAAs and LAAs. The test statistic indicates the degree of divergence between
the built environment characteristics of the two areas, with a larger value indicating a
greater divergence. The p-value indicates the degree of confidence in the results of that
test statistic. If the p-value falls below the significance threshold (usually set at 0.05), it
can be concluded that there is a difference between the two. As can be seen from Table 1,
the p-values for public accessibility, business accessibility, density of greenfield places,
and density of residential places are all greater than 0.05. This indicates that there is no
significant difference in these factors between the two areas. Consequently, these factors
are excluded from the following analyses.

Table 1. Results of the Kruskal–Wallis test.

Built Environment Factors
Kruskal-Wallis Test Results

Test Statistic p-Value

Population density 64.464 0.0001
Transportation accessibility 4.193 0.0406

Public accessibility 3.133 0.0767
Business accessibility 0.765 0.3819

Density of public places 41.314 0.0001
Intersection density 6.242 0.0125

Density of greenfield places 0.042 0.8386
Density of industrial places 5.943 0.0148
Density of residential places 0.167 0.6828

Density of traffic places 5.510 0.0189
Density of commercial places 41.204 0.0001

Road network density 25.652 0.0001
Land use mixing degree 12.171 0.0005

Previous research has shown that a thorough understanding of the mechanisms un-
derlying the influences of factors such as accident time, road facilities, and the environment
on accident severity is essential for improving road safety [22–25]. When building the
model, accident characteristics should be included in the analysis to provide more compre-
hensive results. The final combination of accident characteristics and differentiated built
environment elements resulted in the detailed variable descriptions in Table 2.

Table 2. Variable descriptions.

Variable Variable Description Variable Coding
Number of Variables

HAA LAA

Built environment factors

Population density
Population density in the area

(people/km2)

1 = 0–1641 917 2846
2 = 1642–12064 814 1215

3 = >12064 80 292

Transportation accessibility Distance from accident point to traffic
places (m)

1 = 0–678 717 1647
2 = 678–1658 565 1378

3 = 1658–3000 356 703
4 = >3000 173 625
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Table 2. Cont.

Variable Variable Description Variable Coding
Number of Variables

HAA LAA

Density of public places
Density of public places in the area

(pcs/km2)

1 = 0–22 1348 3690
2 = 23–79 386 560
3 = >79 77 103

Intersection density
Density of intersections in the area

(pcs/km2)

1 = 0–228 1242 3164
2 = 229–722 455 941

3 = >722 114 248

Density of industrial places
Density of industrial places in the area

(pcs/km2)

1 = 0–54 1595 4001
2 = 55–316 178 325
3 = >316 38 27

Density of traffic places
Density of traffic places in the area

(pcs/km2)

1 = 0–4 1526 3828
2 = 5–17 237 468
3 = >17 48 57

Density of commercial places
Density of commercial places in the

area (pcs/km2)

1 = 0–132 1383 3777
2 = 133–496 361 479

3 = >496 67 97

Road network density
Density of road network in the area

(m/km2)

1 = 0–5392 1019 2653
2 = 5392–12093 381 1166

3 = >12093 411 534

Land use mixing degree The degree of mixing of different
types of land uses in the area

1 = 0–0.305 317 1195
2 = 0.305–0.914 683 1216

3 = >0.914 811 1942
Accident characterization factors

Type of accident Type of collision parties

1 = Vehicle-Pedestrian
accidents 555 1326

2 = Vehicle-Non-
motorized Vehicle

accidents
432 1014

3 = Vehicle-Vehicle
accidents 824 2013

Season Season in which the accident occurred

1 = spring (3–5) 543 1261
2 = summers (6–8) 465 1127

3 = fall (9–11) 427 1031
4 = winters (12–2) 376 934

Periods of time Time of accident

1 = midnight (0–5) 211 469
2 = morning (6–11) 518 1202

3 = afternoon (12–17) 565 1385
4 = evening (18–24) 517 1297

Accident location Location of the road cross-section of
the accident

1 = motorized road 1283 3093
2 = non-motorized road 87 155

3 = mixed motorized
and non-motorized

road
314 757

4 = sidewalk 40 128
5 = other 87 220

Traffic controls Whether there is traffic control on the
accident road

1 = uncontrolled 571 1230
2 = controlled 1240 3123

Road structure Accident road material
1 = bitumen 1442 3478
2 = cement 338 744
3 = other 31 131

Type of intersection section Type of intersection section where the
accident occurred

1 = fork in road 119 213
2 = crossroad 309 446

3 = section 1360 3606
4 = ramps or roadway

entrances and exits 23 88
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Table 2. Cont.

Variable Variable Description Variable Coding
Number of Variables

HAA LAA

Road alignment Type of accident road

1 = straight 1084 3028
2 = curve road 666 1210

3 = ramp 56 89
4 = Curve and Ramp 5 26

Weather Weather at the time of the accident

1 = sunny 1117 2657
2 = cloudy 305 810
3 = rainy 382 854
4 = other 7 32

Visibility Visibility at the time of the accident
(m)

1 = <50 m 354 762
2 = 50 − 100 m 665 1408

3 = 100 − 200 m 394 1011
4 = >200 m 398 1172

Landform landform of the accident road
1 = plain 637 1645
2 = hilly 1132 2599

3 = mountain 42 109

Lighting conditions Light conditions at the time of the
accident

1 = daytime 1076 2642
2 = street lights at night 447 1122

3 = no street lights at
night 165 412

4 = dawn or dusk 123 177

Accident severity Consequences of accidents 0 = non-fatal 1372 3276
1 = fatal 439 1077

2.3. Data Imbalance Treatment

From Table 2, it can be seen that there is an obvious data imbalance between the
accident datasets of the HAAs and LAAs, which will directly affect the training of the model
and will lead to a more biased classification towards the majority class and inaccurate
classification results. To solve this problem, many researchers use a hybrid sampling
method to balance the data. Within this range of techniques, SMOTEENN, which is
based on SMOTE and uses the ENN algorithm to meticulously sift the resulting data,
has demonstrated its superiority over conventional sampling methods through empirical
evidence from several canonical datasets [26]. SMOTEENN was, therefore, used to achieve
data equalisation in this paper. The process is described below:

1. SMOTE

(1) For each minority class sample, find its K nearest neighbours.
(2) A number of samples are randomly selected for the K nearest neighbours, and

a new sample is generated by randomly selecting a point on the line connecting
them to their nearest neighbours.

(3) Repeat until balanced.

2. ENN

(1) Calculate the majority class sample proportion of its K nearest neighbours for
newly generated samples from SMOTE.

(2) If the sample is a minority class sample and has more than 50% of its nearest
neighbours in the majority class, remove it.

(3) Integration to generate new data.

After data adjustment by SMOTEENN, the imbalance ratio was reduced from 3.1 to
1.7 and the data imbalance was significantly improved.
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3. Methods
3.1. LightGBM

LightGBM (light gradient boosting machine) is an integrated learning model based on
gradient boosting tree (GBDT), which was proposed by Ke in 2017 [27]. Compared with
models such as GBDT and XGBoost, it discretizes the values of each feature by using a
histogram algorithm with a binning method, and then divides the values within a certain
range into a certain bin, discretizes the continuous floating-point feature values into k
integers, and, at the same time, constructs a histogram of width k instead of the original
data, which can search for the optimal segmentation point by calculating the gradient
traversal of each bucket. In addition, when calculating the histogram, the histogram of
a leaf can be obtained by making a difference between the histogram of its parent node
and the histogram of its sibling, and the above improvement can significantly reduce the
computational effort as well as the memory occupancy and improve the computation rate.

GBDT [28] and XGBoost [29] models typically use a grow-by-layer strategy during the
in-built decision tree growth. This strategy splits leaves of the same layer at the same time
by calculating the gain of each node, which has the advantages of good parallelism and
easy control of the model complexity, but its efficiency is poor, and it does not discriminate
between treating leaves of the same layer and still continues to split the search for leaves
with very low splitting gain. LightGBM reduces the error with the same number of splits by
using a grow-by-leaf strategy that only splits the leaf with the highest node gain. However,
its grow-by-leaf strategy can grow a deeper decision tree, leading to overfitting; LightGBM
sets the maximum depth of the tree for this case to prevent overfitting while maintaining a
high efficiency.

3.2. SHAP

SHAP (Shapley Additive Explanations) is a machine learning explanation method
based on game theory. The core idea is to calculate the contribution of each feature to
the model output and then explain the “black box model” at both the global and local
levels [30]. When analysing traffic accidents, the use of SHAP values to describe the severity
of a traffic accident can be used to efficiently investigate the impacts of various factors on
the severity of the accident, thus improving the understanding of the factors that aggravate
accident casualties. The specific formula for SHAP is as follows:

Given that the i-th data point in the accident dataset is denoted as xi, the j-th accident
characteristic variable of the ith data point is xij, and the predicted value of the model
after training is yi, the distribution of SHAP values associated with the model can be
represented as:

yi = ybase + f (xi1) + f (xi2) + . . . + f
(
xij

)
where ybase denotes the average output of the model in the absence of the input features
and f (xij) denotes the SHAP value attributed to the j-th incident feature variable in the i-th
sample. The formula for f (xij) is shown below:

f
(

xij
)
= ∑

S⊆n\{j}

|S|!(n − |S| − 1)!
n!

[v(S ∪ {j})− v(S)]

where n is the set containing all random feature variables present in sample xi and S is the
subset of features composed of all random feature variables of sample xi. v(S) is the sum of
the contribution values of the feature variables within the subset S, where v(S ∪ {j})− v(S)
is the contribution value of the random feature variable j to the overall model. SHAP values
are both positive and negative: a positive value symbolises an increase in the severity of
the accident due to the characterised variable, while a negative value indicates a decrease
in the severity of the accident due to the characterised variable.
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4. Result and Discussion
4.1. Result

The experimental data were divided into test and training sets. In order to ensure
the comprehensive use of the data for model training, while preserving sufficient data
to evaluate the model’s ability to generalise to unseen data, this paper splits the test
set/training set ratio into 70% and 30%, based on lessons learned from previous studies [15].
In this paper, the evaluation metrics commonly used in machine learning were used,
including accuracy, precision, recall, f1-score, and area under the curve (AUC). Typically, a
model’s performance is considered as excellent if each metric exceeds the 80% threshold [31].
The model constructed from the HAA data showed an accuracy of 95.8%, precision of
96.1%, recall of 97.3%, f1-score of 96.7%, and AUC of 95.3%. The model constructed from
the LAA data showed an accuracy of 91.6%, precision of 91.5%, recall of 96.2%, f1-score
of 93.8%, and AUC of 89.4%. All of the above exceed the 80% threshold, indicating the
overall effectiveness and suitability of the model for further exploration of the key factors
influencing accident severity.

4.2. Discussion

The model uses a summary plot of SHAP values to establish the relationship between
the importance of each contributing factor to an incident and its precise impact. Each data
point in Figure 5 represents an individual sample of accident data, with the frequency
of the data points reflecting the percentage of each characteristic value sampled. The
colour scheme represents the coded value of the feature variable, with red indicating higher
coded values and blue indicating lower coded values. For example, for the Traffic Controls
feature, a low blue value represents 1 (uncontrolled), while a high red value represents 2
(controlled). The horizontal coordinate represents the SHAP value, which quantifies the
influence of each feature on the results. The magnitude of the SHAP value indicates the
magnitude of this influence.
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As can be seen in Figure 5, there are significant differences in the impacts of accident
characteristics and built environment factors on accident severity in different accident areas
of the city. In HAAs, type of accident, visibility, land use mixing degree, weather, period of
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time, and population density are the main influencing factors. In LAAs, type of accident,
period of time, visibility, landform, weather, and intersection density are the decisive factors.
Despite the differences in the main influencing factors between the different accident zones
within the city, there is a consistent trend in the impact of certain factors on the severity
of accidents.

Collisions between vehicles and pedestrians and between vehicles and non-motorised
vehicles are more likely to result in fatalities, while collisions between vehicles are more
likely to result in non-fatal injuries [32]. This is due to the vulnerability of pedestrians
and non-motorised users as road users, who lack the protective barriers of motor vehi-
cles and are, therefore, directly exposed to collisions, increasing the likelihood of fatal
accidents [33,34].

Visibility shows a trend where increased visibility correlates with a reduced likelihood
of a fatal crash. Poor visibility (<50 m) has a positive SHAP value in both the HAA and
LAA contexts, indicating a significant escalation in accident severity. Poor visibility limits
human vision, giving insufficient time and distance to avoid a collision [7].

The degree of land use mixing shows a pattern in which increased mixing correlates
with a reduced impact on fatalities, consistent with the findings of Fatmi [35] and Chen [17].
This can be linked to the fact that increased land use contributes to shorter commuting
distances, lower vehicle speeds, and more efficient use of space.

Sunny weather conditions tend to increase the risk of fatal accidents, while other
weather conditions reduce the likelihood of fatal accidents. The conclusion differs from
subjective perceptions, which may be related to the distribution of accidents. As fewer
people venture out in bad weather than on sunny days, the number of such accidents
remains comparatively low.

Non-fatal accidents are more likely to occur in the morning, afternoon, and evening,
while midnight accidents are more likely to result in fatalities. The reason for this trend
is the tendency towards drowsiness and fatigue during the late hours, coupled with a
reduction in vehicle and pedestrian traffic. This may encourage drivers to drive more
carelessly, leading to increased speeds and an increase in the number of casualties [36].

Population density shows a tendency for the impact of non-fatal accidents to increase
progressively with a higher density. This is attributed to the lower speed limits on roads in
densely populated regions, thus reducing the likelihood of fatal accidents [37].

The density of commercial places, the density of industrial places, the density of
intersections, the density of traffic places, and the density of public places show that the
likelihood of non-fatal accidents increases with density. This may be due to the high volume
of traffic at these locations, which results in lower speed limits on the roads [38].

Contrasting Figure 5 highlights the presence of certain factors that have different effects
in the two models. In order to allow for a more precise comparison of these differences,
they are analysed quantitatively using SHAP partial dependency plots.

The different effects of built environment factors on the severity of HAA and LAA
accidents are shown in Figures 6 and 7. In Figure 6a, it can be seen that, within HAAs,
the probability of a fatal accident decreases when the transportation accessibility code
value is 2 (678–1658 m). Conversely, as shown in Figure 6b, within LAAs, a lower value
of transportation accessibility (indicating proximity to traffic places) corresponds to an
increased risk of fatal accidents. This phenomenon may be due to the fact that, in LAAs, an
increase in the number of traffic-like places around accidents increases the risk of accidents
occurring, leading to more fatal accidents [39].

Figure 7 shows the SHAP partial dependency plot under the influence of road network
density. Within HAAs, there is no discernible correlation between road network density
and accident severity. Conversely, within LAAs, there is a tendency for road casualties to
decrease as the road network density increases [40].
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The influences of accident characterisation factors on the severity of accidents in
different regions are illustrated in Figures 8 and 9. Figure 8 shows the effect of landform
on accident severity. In HAAs, the presence of plain and mountainous terrain generally
reduces the severity of accidents, while hilly terrain can lead to increased accident casualties.
This phenomenon can be attributed to drivers’ reduced visibility due to the undulating
nature of hilly terrain [41]. Conversely, in LAAs, hilly and mountainous terrain reduces the
likelihood of fatal accidents, while accidents in plain areas are more likely to be fatal.

Figure 9 shows the differences in the impact of the location of the accident on the
severity of the accident. In high-accident areas, accidents on motorised and non-motorised
roads are often fatal, while accidents on motorised and non-motorised roads, footpaths, and
other locations are predominantly non-fatal. Conversely, this pattern follows an opposite
trajectory in regions with low accident rates. This dynamic is closely related to the spatial
arrangement of the high-crash areas, which are mainly concentrated in the main urban
areas of Changsha, where speed limits on motorised and non-motorised roads, footpaths,
and alternative locations are lower, thereby reducing the risk of fatal crashes.
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5. Conclusions

In order to explore the potential impacts of built environment factors on accident sever-
ity within traffic accident hotspots, this paper first classified the traffic accident hotspots in
Changsha City using a time-series clustering method. Then, relevant built environment
factors were extracted for the identified accident hotspots, and the LightGBM and SHAP
models were used to investigate the differences in accident severity between different
urban accident zones under the influence of accident characteristics and differentiated built
environment factors.

(1) In different accident areas within the city, the features influencing accident severity
and the built environment factors differ. In HAAs, the primary influencing factors
include type of accident, visibility, land use mixing degree, weather, period of time,
and population density. Conversely, in LAAs, the key factors revolve around type of
accident, period of time, visibility, landform, weather, and intersection density.

(2) The importance of certain factors in influencing the severity of accidents varies be-
tween different accident hotspots. However, the overall trend in their impact on
accidents remains consistent. With regard to factors related to accident characteristics,
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vehicle–pedestrian accidents, vehicle–non-motorized vehicle accidents, poor visibility,
and midnight driving exacerbate accident severity. Among the factors related to the
built environment, an increase in the land use mixing degree, population density,
density of commercial places, density of industrial places, density of intersections,
density of traffic places, and density of public places correlates positively with a
decrease in fatal accidents.

(3) There are significant differences in the trends of the impacts of certain factors on
accident severity between different urban accident areas. With regard to the built
environment, transportation accessibility and road network density exhibit varying
effects on accident severity. Meanwhile, differences in landform and accident location
lead to an inconsistent impact on accident severity in terms of accident characteristics.
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