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Abstract: Natural disasters pose significant threats to power distribution systems, intensified by the
increasing impacts of climate changes. Resilience-enhancement strategies are crucial in mitigating
the resulting social and economic damages. Hence, this review paper presents a comprehensive
exploration of weather management strategies, augmented by recent advancements in machine
learning algorithms, to show a sustainable resilience assessment. By addressing the unique challenges
posed by diverse weather conditions, we propose flexible and intelligent solutions to navigate
disaster complications effectively. This proposition emphasizes sustainable practices that not only
address immediate disaster complications, but also prioritize long-term resilience and adaptability.
Furthermore, the focus extends to mitigation strategies and microgrid technologies adapted to
distribution systems. Through statistical analysis and mathematical formulations, we highlight
the critical role of these advancements in mitigating severe weather conditions and ensuring the
system reliability.

Keywords: resilience-enhancement strategies; resilient microgrid operation; sustainable disaster
management; sustainable resilience assessment; weather conditions

1. Introduction

In contemporary power systems, the primary emphasis has traditionally been on
ensuring a reliable, affordable, flexible, and efficient electricity supply to consumers. How-
ever, this priority has largely overlooked the impacts of severe climate events. In recent
times, assessment and improvement techniques for power system resilience have gained
considerable traction due to amplified concerns stemming from high-impact low-frequency
events. These events are recognized for their rapid and devastating nature, leading to
widespread damage across multiple components over expansive regions [1,2]. A survey
conducted by the United States Government Accountability Office (GAO) presented find-
ings on the profound impact of climate change on the resilience of the power system
in 2021. The released report projected a significant escalation in annual costs incurred by
utility customers due to outages. Estimates indicated an increase from approximately USD
55 billion over the period of 2006–2019 to a staggering USD 480 billion during the span
of 2080–2099 [3]. Historical data reveal that weather and climate factors predominantly
contribute to power outages. Approximately 75% of these interruptions stem directly from
weather events (e.g., lightning, wind, and heavy rain) or indirectly from infrastructure
failures due to weather conditions such as overheating and winter storms. Notably, an
estimated 80% of significant power disruptions between 2003 and 2012 were attributed to
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extreme weather occurrences [2,4,5]. The entirety of the power system infrastructure expe-
riences repercussions from extreme events, with each disaster type significantly impacting
specific equipment within the power system. For instance, events such as wildfires directly
affect transmission systems, leading to outages due to heightened fault risks. Elevated
temperatures escalate the probability of line-to-line faults, while line slaps can cause sparks
and drastically reduce the lifespan of power equipment [6]. These scenarios worsen in
correlation with the intensity of wildfires [7]. Likewise, following hurricane events, the
government allocated USD 3.2 billion for the construction of new poles and feeders and
USD 4.7 billion for power plant repairs.

Understanding and forecasting impending disasters, interpreting their potential occur-
rence, and preparing the power system to withstand the consequences of such high-impact,
low-frequency events pose significant challenges. To tackle these issues effectively, it is cru-
cial first to comprehend the concept of resilience and to identify the factors that influence
this specific type of resilience [8]. These considerations have initiated a crucial move toward
studying the resilience of power systems and formulating strategies to counter the looming
threats posed by extreme weather conditions in the future. However, achieving this is not
a simple task, as numerous factors come into play in sustaining the resilience of the power
system. The term “resilience” refers to the system’s capacity to swiftly return to its inherent
characteristics following any form of disturbance or disruption. So, resilience is contingent
upon several factors, including the size of the distribution system, the diversity of resources,
the network structure, geographical placement, weather conditions, types of loads, geopolitical
concerns, and interconnections with other crucial infrastructure [9]. Considering these factors,
it is essential to identify, develop, and implement strategies that effectively counteract the
impacts of extreme disasters and prolonged power outages on power distribution systems.

In order to achieve a resilient distribution system, it is crucial to address five essential
requirements, which include creating metrics to measure resilience effectively, strengthen-
ing system design to enhance resilience, upgrading preparedness and mitigation strategies,
enhancing system response and recovery capabilities, and analyzing and managing inter-
connections between elements [10]. The initial requirement involves measuring a metric
with which to make decisions and assess the power system network’s vulnerability. This
metric is crucial for guiding investment and operational planning. The subsequent require-
ment focuses on fortifying the system design, which entails reinforcing existing equipment
and infrastructure. This reinforcement involves physical alterations to the power sys-
tem infrastructure to withstand unforeseen hazards. In this case, several methods are
employed, including tree pruning, vegetation management, upgrades to segments of trans-
mission and distribution networks, replacing overhead lines with underground cables,
and enhancing the redundancy of the distribution network system. The next requirement
involves enhancing preparedness and mitigation strategies, encompassing power system
forecasting models that improve the capability to evaluate faults, outages, and loads in
renewable power systems [11,12]. For instance, emerging energy technologies (e.g., digital
twins) create peer-to-peer digital models for structural modifications and data transfer [13].
Another highly efficient restoration strategy during unpredictable events involves MGs,
which serve as the foundation of numerous smart grid technologies. Their integration
is anticipated to significantly enhance energy resilience and security. In particular, the
integration of renewable energy systems enables critical loads to receive uninterrupted
power through the establishment of islanding mode during blackout events [14]. This
approach guarantees the production of robust, secure, and eco-friendly energy, even in
the face of uncertainties. However, attaining the desired performance level necessitates
a comprehensive understanding of the diverse uncertainties inherent in their planning,
design, and operation. Moreover, recognizing and accounting for the impact of power
electronic interfaces, integral components within these systems, is crucial. These interfaces,
which are employed in MGs to link different distributed resources to loads via the dis-
tribution network, play a pivotal role in influencing resilience metrics [15]. As a result,
recent research has put forward various methods to evaluate and improve the resilience of
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power systems. These methods can be summarized into a standard five-phase analysis for
resilience, including defining threats, assessing vulnerabilities in components, analyzing
system responses, evaluating baseline resilience, and measuring the impact of strategies to
enhance resilience. Yet, variations in assumptions and modeling techniques have resulted
in discrepancies in the results and their understanding.

Numerous comprehensive review papers have significantly contributed to the current
research, offering an in-depth understanding of severe climatic conditions and their impacts
on power distribution systems [16–18]. However, much of this literature tends to concen-
trate on specific problems, proposing limited solutions tailored to those issues. For instance,
some studies have exclusively addressed the challenges posed by wildfires, snowstorms,
hurricanes, and typhoons, focusing on a singular aspect of these problems. In contrast, this
paper presents an expansive review, including a variety of weather-related challenges and
their effects on power systems. It not only discusses the broad range of weather conditions
and their consequent implications, but also proposes viable solutions for mitigating these
challenges. Hence, the main contributions of this paper can be summarized as follows:

• This review paper thoroughly examines the complexities of climate-related challenges,
offering a perspective compared to broader literature reviews. The consequences of
diverse weather scenarios were assessed carefully and emphasized tailored measures
for each context. By categorizing these measures into short-term and long-term plan-
nings, the crucial relationship between preparedness, timing, and disaster severity is
elucidated, thus enhancing understanding of weather management strategies. Distinct
from many review papers providing broad overviews, this survey offers insight into
the specific planning measures suited for different hazards and time frames.

• Furthermore, it delved deeply into machine learning (ML) frameworks relevant to vari-
ous weather scenarios, elucidating associated challenges and simulation tools/software.
These frameworks are meticulously examined to identify vulnerable regions, em-
phasizing specificity. Through a comprehensive review, researchers will discover
abundant opportunities for further development and gain insights into the challenges
of deploying algorithms under diverse weather conditions.

• Also, this paper underscores the fundamental role of MGs during major events, stress-
ing their integration with various technologies such as multi-MG formation, vehicle-
to-home (V2H), vehicle-to-grid (V2G), and mobile power resources, particularly note-
worthy being their role in black start (BS) restoration sequences.

The rest of this paper is organized as follows: Section 2 delves into a comprehensive
review of work regarding the influence of extreme weather conditions on power networks,
including transmission and distribution networks, as well as the power system infrastruc-
tures. Moving to Section 3, it focuses on resilience evaluation methods and tools utilized
for quantifying indices and assessing vulnerability stemming from these events within the
distribution network. Section 4 is dedicated to discussing approaches and techniques em-
ployed to fortify resilience, encompassing pre- and post-disaster scheduling methodologies.
Finally, this paper is concluded in Section 5.

2. Literature Survey

Acknowledging the substantial influence of unpredictable weather, recent occurrences
underscore the vulnerability of the power infrastructure when faced with natural dis-
asters. North American events alone, such as severe winter storms impacting the Gulf
states, Atlantic storms causing damage to power lines, and the combination of winter
disturbances and summer wildfires in the Northwest, have starkly revealed the fragility
of energy systems [19,20]. These challenges have spurred countries to focus on bolstering
the resilience of their power grids. In response, governments around the world, such as
the U.S. government, have invested USD 20 billion in federal support, which has increased
their investments and accelerated ongoing projects aimed at grid fortification [21]. This
section delves into the extensive current and recent research efforts undertaken to address
these concerns. Also, it sheds light on the frameworks crafted to improve the resilience of
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grid systems. Table 1 presents a summary of various frameworks that have been created for
scheduling pre- and post-disasters, tailored to different types of weather events. Disaster
planning is crucial in distribution systems, as effective preparedness post-disaster enables
faster and more efficient deployment of crews and equipment to affected areas [22–24].

Table 1. A literature review in distinct frameworks for each weather condition.

Ref. Application Framework Contributions Constraints/Challenges

Arif et al. [25] Pre-disaster Mixed-integer linear programming

Reduced expenses related to depots,
crews, equipment, and penalties

incurred due to delays in
equipment acquisition and

restoration.

Solving problems on a large scale
poses computational challenges.

Kotikot et al. [26] Hurricanes MCDA Identified viable locations for the
power storage devices.

A thorough assessment is required
to avoid conflicting objectives; all

places are not suitable for this
approach; energy supply and

demand analysis is not considered
in this framework.

Sun et al. [27] Typhoons Monte Carlo simulation

Modeled the fragility of
distribution lines and assessed the
resilience of distribution systems

during typhoon disasters.

Due to insufficient data, the fragility
modeling of distribution lines has

not been tackled.

Wang et al. [28] Typhoons

Probabilistic generation model,
spatio-temporal vulnerability

model, breadth-first search
algorithm

This research quantified the
uncertainty associated with
typhoons, determined the

likelihood of failure for each
distribution grid line, and

computed the ideal amount of load
reduction required for

each segment.

The impact arising from the
interactions between adjacent lines

remains a significant issue.

Arab et al. [29] Wildfires 3LD

A 3LD framework has been
established, wherein the primary

defense involves wildfire
prevention, the secondary defense
focuses on wildfire mitigation and
proactive response, and the tertiary

defense centers on wildfire
recovery preparedness.

Due to profound uncertainty, risk
modeling poses significant

challenges, and the physics of
wildfires were beyond the

paper’s scope.

Trakas et al. [30] Wildfires Monte Carlo simulation

A framework for emergency
situations has been developed,

taking into account the effects of
wildfires on the conductor’s

temperature and the functionality
of the line.

This model is limited to
constant loads.

Yao et al. [31] All weather conditions
A duality-based column and

constraint generation (D-CCG)
method is proposed.

Integrated planning is conducted
for the expansion of transmission

and the optimal allocation of BESS
resources for

sectionalized-based BS.

The techniques developed are
limited to the transmission level.

Luo et al. [14] Critical loads Monte Carlo method

The comparison and analysis
involved assessing the load loss rate
of the system, either before or after

the integration of distributed
generation, along with variations in

the resilience of the
distribution network.

This method will not work for
transmission and distribution

networks simultaneously.

Liu et al. [32] Renewable energy systems Stochastic optimization

Considered the uncertainty
associated with RESs, and loads
were also taken into account to

enhance the capacity of distributed
RESs in supporting critical load

restoration.

The challenge involves
implementing initial decisions for a

load-restoration process and
continuously adapting to

fluctuating RES outputs and load
forecast with a rolling
optimization method.

Kim et al. [33] Mobile energy storage Stochastic optimization with the
DSO-DERMS interaction frame

Developed an approach to enhance
the investment efficiency of the
distribution system operator in

mobile energy storage units.

The capacity of ES units is limited.
Accommodating more ES units for

full load shedding is not
economically viable.

Arif et al. have introduced a two-stage stochastic mixed-integer linear program. The
first stage of this program involves determining the optimal number of depots, crews, and
equipment for each site. In the subsequent stage, the assignment of crews for repair work is
made. This model aims to minimize the costs associated with depots, crews, and equipment
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while also reducing delays in restoration times. The effectiveness of this system has been
demonstrated using a 123-bus distribution system. General Algebraic Modeling System
(GAMS), Pyomo, and IBM CPLEX 12.6 are among the software tools mentioned by the
authors. Pyomo serves as a Python-based optimization modeling language and framework,
whereas IBM CPLEX 12.6 represents a particular version of the CPLEX optimization solver
developed by IBM. These tools are employed to formulate and solve optimization problems,
particularly those involving mixed-integer programming, leveraging a high-performance
computing system. However, this approach is limited in its ability to address widespread
issues due to computational challenges [25].

Recently, Kotikot et al. have devised a geo-spatial framework in response to the impact
of Hurricane Maria on the utility companies in Puerto Rico. This framework utilizes a
multi-criteria decision analysis (MCDA) approach to strategically place reserve generators,
employing 12 distinct criteria. This method can be extended to locate potential sites for
additional energy infrastructure (e.g., transformers, mobile stations, and MGs) essential
for powering a city during extreme events. However, aspects such as energy supply and
demand that are key factors in determining the necessary number of reserve generators,
their capacity, and their optimal placement in relation to population centers are out of
the scope of this paper [26]. Sun et al. introduced a methodology using Monte Carlo
simulation to evaluate the resilience of power distribution systems, specifically assessing
the random failure potential of distribution lines during typhoon events. Their framework
was crafted and validated using the IEEE 33-bus distribution system. While originally
designed for typhoons, the adaptability of this model to diverse extreme weather scenarios
remains plausible. Nonetheless, the ongoing discussion pertains to establishing fragility
models for distribution lines and other components within the power system, necessitating
continued research efforts [27]. For the same typhoon event, Wang et al. developed a
framework for distribution grids that is segmented into three parts. Initially, a probabilistic
generation model was used for assessing the distribution line vulnerability, followed by a
spatio-temporal vulnerability model to quantify typhoon impacts. This laid the foundation
for a subsequent phase involving the implementation of a breadth-first search algorithm
to isolate the distribution grid and calculate load shedding in the isolated MGs. While
the framework’s feasibility was demonstrated using the IEEE 33-bus test system, this
framework was executed using MATLAB. The optimization model for the distribution
grid considering energy storage during typhoon disasters is formulated as a linear model.
To address this problem, the software packages utilized in this study are the YALMIP
and CPLEX packages, which are employed to solve the optimization tasks. Regarding
challenges, this paper did not specifically investigate the effects of interactions between
adjacent lines in the distribution network [28]. Recently, the world was again shaken by
another extreme weather event (i.e., wildfires). In response to this, Arab et al. introduced
a three lines of defense (3LD) framework aimed at evaluating crucial aspects of defense,
including mitigation and preparedness for recovery from such events. However, the
considerable challenges of risk modeling arise from profound uncertainty, so it did not
encompass the physics of wildfires, as this was beyond its scope [29]. Similarly, Trakas et al.
used a stochastic programming approach to assess the dynamic line rating of overhead lines.
This method is designed to model the impact of wildfires on transmission line conductors.
The suitability of the proposed approach was demonstrated using a modified IEEE 33-bus
distribution system. The model was solved using GAMS IDE and the IBM CPLEX solver.
The computation time recorded was almost 973 s with a PC equipped with an Intel Core i7
CPU. Nevertheless, it is important to note that this model is limited to constant loads and
does not cover dynamic loads [30].

In tackling disaster events, a strategic plan is essential, either to mitigate their impact or
to counter them effectively. In this context, Yao et al. have proposed a two-stage planning
model, encompassing normal and resilient stages. During the normal stage, planning
decisions are made regarding transmission lines, the installation of battery energy storage
systems (BESSs), and BS facilities. Upon transitioning to the resilient stage, their focus
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shifts toward minimizing power generation and load-shedding costs within the power
system. This algorithm primarily addresses uncertainties in transmission and outage
statuses, utilizing a duality-based column and constraint-generation approach. It includes
the allocation of BESSs through sectionalization and determines the start-up sequences of
non-black-start (NBS) generators. The proposed model was solved using GUROBI/CPLEX,
with examples taken from the IEEE 30-bus and 39-bus systems. However, their model’s
scope was limited to the N − 1 and N − 2 security criteria due to computational constraints,
set at a maximum of one hour [31]. The techniques developed for BS operations are
currently limited to the transmission level. To broaden their application to the distribution
level, the implementation of a dynamic MG becomes essential. Du et al. have suggested a
framework aimed at augmenting an MG’s self-healing capability. Their approach involves
two stages: first, an automated sectionalization, followed by a flexible reconfiguration.
This entire framework underwent validation on a 34-bus system via real-time hardware-
in-the-loop (HIL) simulation. Furthermore, the paper has specifically tackled practical
operational hurdles, such as optimization problems, the absence of an advanced metering
infrastructure, and load modeling. However, it is important to note that fault assessment
falls outside the scope of this paper [34–36].

The primary objective of a resilient power system network is to ensure a continuous
power supply to essential loads, which presents challenges in system restoration. MGs
are observed as an effective solution for integrating and coordinating various types of dis-
tributed energy resources (DERs) to enhance resilience. In this context, MGs are expected
to emerge as the most promising solution due to their numerous benefits (e.g., self-healing,
self-protection, and self-control). Moreover, research suggests that these MGs can commu-
nicate and operate as networked entities, centrally optimized to improve resilience.

An integration of intelligent systems into these applications can lead to significant
advancements in distribution system protection. For instance, Qiu et al. [37] developed
a decentralized framework for coordinating networked MGs (NMGs) with a focus on
resilience. They proposed a novel multi-agent reinforcement learning (MARL) method
to address this challenge. The MARL method includes an efficient credit assignment
scheme using the Shapley Q-value technique to enhance resilience, effectively. A case
study conducted on modified IEEE 15- and 69-bus distribution networks validated the
effectiveness of the proposed MARL method in facilitating coordination among NMGs
and achieving a high level of resilience. However, the scalability of this approach presents
shortcomings. As the number of agents increases, so does the complexity of managing their
power exchanges, local observations, and actions. This leads to the issue of dimensionality,
making it impractical to train neural networks effectively. Additionally, the number of
interactions between agents grows quadratically in multi-agent systems with the agent
count, resulting in non-stationary issues and difficulties in stabilizing policies [37].

The resilience of a distribution network typically centers on restoring power specifi-
cally to critical loads rather than ensuring full load capabilities. Luo et al. have introduced
a framework aimed at assessing distribution network resilience, with a focus on the critical
load’s impact. Their approach involves utilizing the Monte Carlo method to simulate the
entire process, validated on the IEEE 33-bus system. The evaluation index for resilience
has been established based on the significance and loss of critical loads. Notably, the paper
does not delve into the effects of transmission networks during the same event [14].

The advent of MGs has led to increased integration of RESs, including energy storage
systems. Consequently, the development of a robust distribution energy resource manage-
ment system has become imperative. Liu et al. have put forward optimization methods
for critical load restoration, which have been validated using the IEEE 37 and 123 node
test feeders. However, the uncertainties introduced by RESs present significant challenges.
These include making optimal decisions for load restoration and dealing with issues such
as voltage and frequency fluctuations, which are major concerns in such applications [32].
As electrochemical energy storage systems evolve, they provide efficient backup sources.
However, these sources are typically installed in locations where they offer significant eco-
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nomic benefits. With the advent of mobile energy storage (ES) technologies, these systems
can now be relocated to areas requiring additional backup. Kim et al. have developed a
two-stage optimization model. In the first stage, the model addresses the initial placement
of mobile ES units, while in the second stage, it focuses on rerouting these installed units.
This approach facilitates the formation of dynamic MGs, aiming to prevent the anticipated
load shedding due to disasters. The simulations were conducted utilizing the Gurobi solver
version 7.5, implemented on Julia, running on an Intel Xeon processor clocked at 2.6 GHz.
They were performed on a 15-bus radial distribution test system. Nevertheless, the capacity
of ES units is restricted, and it is economically impractical to incorporate additional ES
units to complete load shedding [33].

3. Resilience Evaluation Methods

Many researchers have proposed various frameworks to conceptualize the resilience
of power systems. A general overview of the sample framework with different steps is
illustrated in Figure 1. As can be observed in Figure 1, the process initiates with the defini-
tion of resilience goals, which serve as benchmarks for desired outcomes. Subsequently,
metrics for both the system and resilience are articulated to provide measurable parameters
against which the smart grid’s robustness can be assessed. Then, potential threats to the
grid’s integrity are accurately characterized to comprehend the nature and severity of the
risks involved. This is followed by an assessment of the anticipated level of disruption each
identified threat could impose on the smart grid’s operations. To simulate and analyze the
effects of these disruptions, appropriate system models are defined and employed. These
models facilitate the calculation of the disruptions’ consequences, offering a quantitative
understanding of the impacts in terms of service continuity, financial implications, and
other critical factors. At a decisive connection, an evaluation is made to determine if the
resilience improvements are satisfactory. Should the improvements align with the prede-
fined resilience goals, the process concludes, affirming the smart grid’s enhanced resilience.
Conversely, should the improvements fall short, a recursive loop is initiated, prompting
a re-evaluation of the resilience goals and strategies, thereby developing a continuous
improvement cycle in the smart grid’s resiliency framework.

Figure 2 shows the key resilience features that a power system must have to effectively
respond to events (e.g., natural disasters) that affect the entire system [38].

Before an event occurs, the power system must have sufficient resilience (R0) to cope
with extreme situations. After an event occurs, the entire system naturally degrades and
becomes less resilient (RDE). Resourcefulness, redundancy, and adaptive self-organization
are the main resilience functions required at this stage. These minimize the impact of
disasters and the degradation of resilience (R0 − RDE) before restoration procedures begin
at TRS. Then, the system enters a restoration state and requires restoration capabilities
to recover as quickly as possible. When restoration is completed, the system will be
in a post-restoration state. The resilience RRE reached at this stage may be higher or
lower than the original resilience level R0, but is usually lower than R0. This is because,
although the system can be considered recovered from the operational state perspective,
RRE, from the perspective of the entire infrastructure, R0 has not yet achieved the pre-event
level of resilience. In other words, the time for the entire infrastructure to recover to R0
normally takes longer than the time to restore it to RRE in the worst resilience state (i.e.,
TRE − TRS < TIRE − TRE). However, this may vary depending on the severity of the event
and the resilience capabilities of the power system before, during, and after the event. To
recapitulate, to evaluate the system resilience, which is defined as a multi-dimensional
concept, the resilience level of the power system (R0, RRE, RDE) and the transition time
(TDE − TES, TRE − TRS, TIRE − TIRS) should be considered.
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Start

Define resilience goals

Define system and resilience metrics

Characterize threats

Determine level of disruption

Define and apply system models

Calculate consequence

Are re-
silience

improve-
ments

satisfac-
tory?

End

Yes

No

Figure 1. A flowchart of the stages of the resilience process.

In order to use appropriate resilience indicators, it is necessary to consider what
resilience indicators can be utilized. Many researchers have used a variety of different
metrics to provide these indicators of the resilience process. According to [39], the resilience
of a power system is defined as the ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruptions. This definition is based on Presidential
Policy Directive 21 (PPD21) and consists of four components, including withstanding
capability, recovery speed, preparation and planning capacity, and adaptation capability.
The authors explain the resilience formulation as follows:

RB =
∑N

t=1 TU,t

NT
=

∑N
t=1 TU,t

∑N
t=1(TU,t + TD,t)

, (1)
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where RB denotes power supply base resiliency for N loads, T is the period of time under
consideration, TU,t is a part of T when a load i is able to receive electric power, and TD,t is the
remaining portion of T when load i may not be able to receive electric power. Based on [40],
four indicators were used to measure grid resilience, including vulnerability, survivability,
and recovery: K, LOLP, EDNS, and G. In detail, the first index K measures the number
of lines that may experience an outage due to an event. The second index is the loss of
load probability (LOLP), which refers to the probability that the load is not fully supplied.
The third index, expected demand not served (EDNS), measures expected demand that
cannot be supplied. The last indicator, G, represents the grid recovery index. This index
is composed of five elements, including the severity of extreme events (η1), severity of
power infrastructure damage (η2), severity of transportation infrastructure damage (η3),
severity of cyber infrastructure damage (η4), and unavailability level of human and material
resources (η5).

Figure 2. Curve for operational and infrastructural resilience.

f = Pd(k | V) (2)

K =
∫ ∞

0
k f (k)dk (3)

LOLP = ∑
ei∈Se

Pei (4)

EDNS = ∑
ei∈Se

PeiCei (5)

G =
5

∑
t=1

ωiηi, (6)

where f means the fragility distribution, k is the number of lines with outage, V refers to
the severity level of extreme events, Pd is the probability of k line outages in V, ei denotes
the ith extreme event, Pei represents the probability of the power grid experiencing ei, Se
means the set of extreme events in which the system load exceeds the available generating
capacity, Cei is the load interruption in ei, and ωi and ηi are the weight and value of the ith
factor contributing to the recovery index.
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Mathaios et al. defined resilience by dividing it into three stages (i.e., disturbance
progress, post-disturbance degradation, and restoration) [41]. Based on these three steps,
the following five types of indicators are used:

Φ =
Rpdo − R0o

tee − toe
(7)

Λ = R0o − Rpdo (8)

E = tor − tee (9)

Π =
R0o − Rpdo

Tor − tor
(10)

Area =
∫ Tor

toe
Rop(t)dt, (11)

where Φ indicates how quickly the resilience decreases during the disturbance progress
stage and Λ indicates how slowly it decreases. E is an indicator of how extensively the
second stage, which is the post-disturbance, degraded. Π is how quickly the entire system
returns to resilience before the event occurs. Phase 1 (disturbance progress) is the stage
between time toe and tee. Phase 2 (post-disturbance degraded) represents tor from time tee,
and phase 3 (restorative) means the time period from tor to Tor. R0o is the pre-disturbance
resilience, and Rpdo means the post-disturbance operational resilience. Area is the integral
value of the resilience curve for phases 1, 2, and 3 used in this study. Also, Rop(t) represents
the resilience curve value.

Sayonsom et al. defined the resilience evaluation method using the code-based metric
and power system reliability as follows [42]:

m′ = c(α + e f )(1 + f ), (12)

where α is the duration of the event, m′ is the non-scaled value of the resilience, c is a
binary variable indicating whether the event occurred in the considered time frame, and
f represents the percentage of load that is not affected by the event. As mentioned in
the literature, resilience assessment methods vary from study to study. Therefore, it is
important to apply an appropriate model to each system.

4. Enhancing Resilience: Methods and Strategies

The global community is actively seeking better methods to improve the resilience
of power system infrastructures to disasters, acknowledging the major impact of extreme
events on lives, property, and the economy. Through a comprehensive analysis of resilience
and the quantification of relevant metrics, various strategies have been developed, taking
into account constraints such as budgets, resources, and time. This has resulted in the
classification of planning into long-term and short-term categories, further delineated
into hardening and operational approaches, contributing to the evolution of larger and
smarter power systems [38]. Enhancing resilience goes beyond achieving the fastest system
recovery; it involves fortifying the system in four distinct aspects, including robustness,
resourcefulness, rapid recovery, and adaptability [1,43,44]. The planning and preparedness
for a power system are devised with these considerations in mind. Each aspect plays a
specific role in operation, as follows:

• Robustness/resistance: involves sustaining operations, remaining standing during
disasters, or enduring low-probability, high-consequence events.

• Resourcefulness: encompasses effectively managing a disaster as it unfolds by identi-
fying options, prioritizing control measures, and mitigating damage.

• Rapid recovery: aims to restore normalcy quickly after a disaster through contingency
plans and emergency operations.
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• Adaptability: involves learning from catastrophes and introducing new tools and tech-
nologies to enhance robustness, resourcefulness, and recovery before the occurrence
of the next crisis.

The definitions of resilience emphasize its temporal aspect, distinguishing between
short-term and long-term resilience. In the context of power systems, the representation of
short- and long-term resilience is demonstrated in Figure 3 through the progression of a
blackout. In normal conditions, that is during the power system’s initial state, the system
exhibits high resilience due to the fulfillment of all pre-conditions and sufficient security
margins. This ensures it can tolerate sudden electrical outages effectively. However, as the
system transits to the next state, its robustness decreases and security margins may become
insufficient. In this phase, operators must quickly utilize available assets and resources to
implement preventive measures and restore the system to a normal state. If a disturbance
occurs before these actions are taken, the system may enter an emergency state, depending
on the severity of the disruption, known as high-speed cascade, often triggered by severe
weather events causing multiple component outages simultaneously. In such scenarios,
the system’s resilience reduces further, making it more susceptible to additional outages.
Resourcefulness and redundancy become crucial resilience factors during blackouts, facili-
tating effective response and recovery efforts. A post-disturbance evaluation of causes and
impacts is essential for incorporating lessons learned into contingency and risk studies,
thus enhancing the system’s short-term resilience against future natural disasters. This
forms the basis for long-term resilience planning.

Figure 3. Short-term vs. long-term resilience strategies.

4.1. Short-Term Resilience Planning

Short-term resilience pertains to the essential features required before (preconditions
such as load demand and weather conditions), during (cascade events), and after (restora-
tion) an event in an electrical network [45,46]. This includes robustness and resistance,
resourcefulness and redundancy, and recovery mechanisms as well. They have the capabil-
ity to reduce generation and power flows in the highly impacted regions, thereby mitigating
post-disturbance line overloading. Additionally, efficient dispatch and pre-positioning of
repair and recovery crews would facilitate the fast restoration of damaged components.
The presence of backup components and materials also allows for the prompt replacement
of power system components affected by weather conditions.

Some of the short-term planning activities before a disaster can include precisely
assessing the weather location and intensity; anticipating and positioning the number of
repair and recovery crews post-weather event; sustaining supplies of backup components
and materials, including transmission towers; collaboration with neighboring networks;
and conventional preventive measures (e.g., configuring the system in a resilient state,
planning for reserves, verification of BS capabilities, and implementing intelligent solutions
such as demand-side management).
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Similarly, some of the strategies implemented during the fault occurrence are the veri-
fication of communication functionality; collaboration with repair and recovery crews; and
conventional corrective measures, including generation re-dispatch, substation reconfigu-
ration, capacitor switching, automated protection and control actions, load and generation
rejection, and system separation. Subsequently, some of the measures post-disaster include
the evaluation of the disaster and prioritization, restoration of damaged components (e.g.,
poles and towers), and conventional restoration actions, such as re-energizing transmission
lines, restarting units, and restoring loads.

4.2. Long-Term Resilience Planning

Various environmental factors pose risks to overhead power lines, requiring careful
consideration and remedial measures. Take, for instance, the potential flashover faults
caused by trees growing untrimmed beneath overhead lines on hot days. To address this,
rigorous tree management near these lines becomes crucial, although utility companies face
limitations in tree-cutting rights. Notably, vegetation management constitutes a significant
portion of the maintenance budget for many U.S. utilities. Similarly, heavy snow and ice ac-
cumulation during freezing conditions pose a threat to overhead lines, towers, or poles. The
weight of ice and snow can lead to flashover faults, which can be mitigated by employing
suitably designed insulators. Considering lightning strikes, ionized gases produced during
strikes can cause flashover faults. Their protective measures involve adding an earth wire
above live conductors or enhancing earthing systems on towers or wooden poles. The
cost implications of such measures need to be factored in. In the case of very heavy rain,
occasional flashover faults across insulators may occur. Modifying insulator designs can
reduce this risk. However, during severe rain leading to flooding and landslides, strategic
installation placement becomes crucial to avoid vulnerable areas. Conversely, in drought
conditions, the drying of vegetation increases the risk of fires near overhead lines. Attention
to vegetation control is essential to mitigating fire-related damages. Summarizing these
impacts and remedial measures, Table 2 provides a concise overview.

Table 2. Proactive measures for weather events: strategies for long-term resilience and preparedness.

Weather Condition Consequence Remedial Measures (Hardening/Long-Term Measures)

Temperature effects [8,47] - Restrict or decrease the maximum power rating of equipment,
consequently leading to an increase in energy losses.

- Guarantee proper trimming of trees situated beneath
overhead lines.

High winds, storms, and
hurricanes [48–50]

- May result in faults and damage to overhead lines.
- Harm to the distribution networks.

- Diverts overhead lines to circumvent wooded areas.
- Substitute overhead lines with underground cables in

forested regions.
- Substitute conventional bare conductors in medium- and

low-voltage circuits with insulated or covered conduc-
tors to minimize faults.

- Incorporate “weak links” into overhead line conductors
to allow falling trees to break the conductors without
causing damage to poles or towers.

Ice and snow [51] - Conductor galloping, leading to failures in lines or supports.
- It results in flashover (short-circuit) faults. - Insulators designed appropriately.

Lightning [52]

- Flashover incidents (short-circuit faults).
- The voltage surge generated by a lightning strike can travel

through overhead lines, potentially causing harm to equip-
ment such as transformer windings.

- Install earth wires above the live conductors to lower the
possibility of direct lightning strikes on the live conduc-
tors.

- Implement spark gaps and surge arresters.
- Incorporate an earth wire above the live conductors on

distribution circuits, increasing the line’s cost by approx-
imately 10%.

- Enhance the grounding of towers.
- Attach an earthed bonding wire to wooden poles.
- Employ more advanced surge arresters.

Rains [8]

- Flashover faults (short-circuits) occur across insulators.
- Infiltration of water into high-voltage insulators and

switchgear, resulting in internal flashovers and catastrophic
failures.

- Utilize waterproof sealing and conduct regular main-
tenance on insulators and switchgear to prevent water
entry and internal flashovers, while concurrently keep-
ing away from situating the equipment in vulnerable
areas.
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Table 2. Cont.

Weather Condition Consequence Remedial Measures (Hardening/Long-Term Measures)

Floods [8]
- The primary risk is posed to equipment such as switchgear,

transformers, and control cubicles situated at the ground level
within substations.

- Regularly evaluate the risk for existing structures in
flood-prone regions to identify and implement neces-
sary flood defenses, while also refraining from locating
equipment in these vulnerable assessed areas.

Landslides [8] - Inflict harm on overhead lines or underground cables.
- Result in significant damage to a substation or control center.

- Avoid placing overhead and underground cables in vul-
nerable areas.

Droughts [53]

- Diminish the thermal conductivity of the soil, thereby lower-
ing the capacity of underground cables.

- Diminish its electrical conductivity.
- Heighten the risk of fires.
- Under dry conditions, overhead lines could trigger wildfires.
- The smoke resulting from fires could lead to recurrent arcing.
- Faults on an overhead line.
- Wooden poles have the potential to burn, causing damage to

conductors and insulators.

- The management of vegetation beneath and near over-
head lines.

- Employing covered or insulated conductors on overhead
lines can eliminate the risk of ignition.

4.3. Operational-Based vs. Planning-Based Restoration Strategies

The power system infrastructure is highly susceptible to extreme weather conditions.
The transmission and distribution networks, being the primary components of this infras-
tructure, are impacted in varying ways. Consequently, different measures need to be taken
into account. Figure 4 outlines the remedial actions implemented for segmented transmis-
sion and distribution networks, encompassing both hardening and operational measures.

Figure 4. A categorization of various enhancement strategies.

Strategies rooted in planning also contribute to long-term resilience planning. These
strategies encompass actions such as elevating substations, strategically placing energy
storage units and RESs, upgrading poles, and replacing overhead transmission lines with
underground cables. These activities should be undertaken with a comprehensive under-
standing of post-disaster events [54]. They are collectively referred to as long-term adapta-
tion planning, aimed at mitigating or preventing the impact of disasters in future events.

4.4. Microgrid-Based Restoration Strategies

Smart grid technologies rely significantly on MGs, serving as a fundamental element
expected to enhance energy resiliency and security. A crucial aspect for attaining optimal
performance involves a comprehensive understanding of uncertainties inherent in the
planning, design, and operation of MGs [35,55,56]. Additionally, it is imperative to recog-
nize factors in the impact of power electronic interfaces, which serve as vital components
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in the system. These circuits play a pivotal role in connecting distributed resources to
loads through the distribution network within MGs, thereby influencing metrics related
to resiliency.

Figure 5 depicts the functionality of an MG, where renewable energy systems seam-
lessly integrate with transmission and distribution networks. The switch signifies the
interconnection point. In the event of external forces or emergency outages, the re-closers in
the distribution networks operate to isolate loads from the main grid system. These loads
are then linked to nearby battery storage units or blackout units, facilitated by grid-forming
inverters [31,57]. This operating mode is known as islanding mode [58]. Subsequently,
when the main grid system is restored, the loads are reconnected to the grid with the
assistance of grid-following inverters [59,60].

Figure 5. An overview of MGs considering their interconnection mechanism to the main grid system.

Therefore, according to the U.S. Department of Energy (DOE), an MG consists of a
network of interconnected loads and DERs within clearly defined electrical boundaries.
It functions as a unified and controllable entity in relation to the main grid. An MG has
the capability to connect to or disconnect from the main grid, allowing it to operate in
either grid-connected mode or islanded mode [61]. During periods of high-intensity and
low-frequency events, the foremost challenge in any distribution system is the loss of power,
often resulting in extensive blackouts. Such occurrences can lead to significant economic
losses for a country, necessitating preventive measures. Integrating DERs has profoundly
transformed the dynamics of modern electric systems, enhancing their resilience. Under-
standing the restoration process during a blackout, known as BS restoration, is crucial and
outlined in Figure 6.

When a blackout event occurs, backup supply (activated backup unit in Figure 6)
automatically engages to ensure the continuous operation of critical infrastructures. A
real-time coordination of inputs from various tools—such as the customer information
system (CIS), interactive voice response (IVR), advanced metering infrastructure (AMI),
and supervisory control and data acquisition (SCADA)—is facilitated at the control center
by the outage management system (OMS) and distributed management system (DMS).
Feedback from the OMS and DMS is fed into the advanced distribution management system
(ADMS), serving as the decision-coordination center, often referred to as the brain box of
the entire system. The ADMS synchronizes and enhances the performance of all other
systems, simplifying the decision-making process and improving emergency response
execution. Leveraging the geographic information system (GIS) network model, the ADMS,
along with other tools, creates a real-time network model, providing a unified platform
to control and dispatch with a comprehensive view of the distribution system during an
outage. Utilizing the available information, the ADMS conducts damage impact analysis
and communicates findings to all relevant parties. Once a satisfactory response is achieved
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in this control loop, faulty systems and locations are communicated to the deployment
loop. Throughout the maintenance process, regular updates are provided to the ADMS,
maintaining continuous communication until repairs are complete. The entire restoration
sequence follows a series of if–else conditions. If all conditions are met, the BS procedure is
activated, and systematic load restoration, with attention to cold load pick-up (CLPU), is
conducted. The process continues until all conditions are successfully met; otherwise, the
loop persists until the conditions are satisfied [62–64]. The mathematical representation of
BS restoration can be framed as a dynamic optimization problem. This approach allows
for decision making across multiple time steps. The discrete-time dynamic optimization
problem is outlined in Equation (13):

max/min =
Zn=

T
∆t

∑
Zo

F[Zt, x(Zt), u(Zt)∆t], (13)

where Zo and Zn can be represented discretely, with N denoting the total number of time
steps, indicating ∆t as the duration of each step. The function F[Zt, x(Zt), u(Zt)] is defined
as the objective function. The entire goal is to maximize the restored energy within the
estimated time frame, which is expressed as Equation (14):

max ∑
i∈VLK

WixiPi. (14)

Equations (15) and (20)–(22) are the constraints for injected active power, injected
reactive power, and the maximum and minimum value of the voltages, whereas
Equations (16)–(19) are the formulations for power injections, power consumption, and
power flow for the kth MG, while xi is the binary variable, 0 represents the load is not
picked up, and 1 represents the load is picked up.

∑
i∈VLK

Pi <= ∑
i∈VIK

Pj (15)

Pi = Vi. ∑
i,j∈Ek

Yij.Vj.cos(δi − δj − θij)i ∈ VIk (16)

Qi = Vi. ∑
i,j∈Ek

Yij.Vj.sin(δi − δj − θij)i ∈ VIk (17)

xiPi = Vi. ∑
i,j∈Ek

Yij.Vj.cos(δi − δj − θij)i ∈ VLk (18)

xiQi = Vi. ∑
i,j∈Ek

Yij.Vj.sin(δi − δj − θij)i ∈ VLk (19)

0 <= Pi <= Pmax
i i ∈ VIk (20)

0 <= Qi <= Qmax
i i ∈ VIk (21)

Vmin
i <= Vi <= Vmax

i i ∈ Vk. (22)

Also, VIK and VLK are defined as the voltages of all inverters and the loads at the kth
MG [64].

Completing the MG modeling merely is not sufficient to fully address the resilience
challenges. It is essential to enhance technologies and integrate additional features that
can elevate MG applications to the next level. Therefore, viewing MGs from a resilience
management perspective is crucial. To figure out this concept, it is necessary to understand
what resilience management entails in MGs. It involves a minimization in outage duration
and maintaining supply to as many customers as possible by employing the methods as
follows [65]:

1. Strategies for forming multiple MGs.
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2. Dynamic MG formation.
3. Utilization of mobile energy resources.
4. Establishment of networked MGs.

All these methods focus on re-configuring MGs and switches to minimize outage
duration and the number of customers affected by outages [66].

Figure 6. A step-by-step procedure for BS restoration.
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A potential strategy to achieve the goal of efficiently harnessing DERs and switches
involves intentionally partitioning the distribution system into multiple self-sufficient MGs,
known as multi-MG formation. According to the IEEE 1547.4, segmenting the distribution
system can improve the system’s performance and reliability [67]. The concept and signif-
icance of an MMGF come to the forefront as a promising solution to enhance the power
system resilience during catastrophic events. With the integration of deep reinforcement
learning, this static technique has evolved into the dynamic MMGF formulation. Zhao et al.
introduced a dynamic MMGF approach utilizing deep reinforcement learning coupled with
convolutional neural networks (CNNs). This scheme was validated on a 7-bus system and
an IEEE 123-bus system [68]. The MMGF represents just one aspect of MG technologies.
Another remarkable innovation is the integration of electric vehicles (EVs), which has given
rise to concepts such as vehicle-to-grid (V2G) and V2H. These advancements leverage
distributed EVs and photovoltaic (PV) systems to enhance the resilience of networked MGs
against extreme events. Additionally, rooftop solar photovoltaic systems contribute signifi-
cantly to the ongoing improvements in MG technologies. To gain a system and technical
understanding, Simental et al. conducted an analysis focusing on the effective utilization
and management of distributed EVs and PV systems within residential networked MGs.
This comprehensive analysis was demonstrated using the IEEE 33-bus system, where EVs
provided power support for 6 hrs through V2G and V2H technologies. The results showed
a 41% reduction in buses experiencing outages when EVs were involved, compared to an
83% outage rate without DERs. This highlights the significant advantage of integrating
EVs and DERs into distribution systems [69].

A recent advancement in MG integration involves the utilization of EVs as mobile
power sources and for deploying repair crews (RCs). This represents another widely
adopted innovation in MG technology. These mobile services have emerged as critical
resources in MGs, facilitating coordination with RCs to enhance resilience. Their flexibility
and mobility make them particularly effective in managing the complex interaction be-
tween power and transport systems. To assess their efficacy, Wang et al. have proposed a
hierarchical multi-agent reinforcement learning method. This approach features a two-level
framework where high-level actions control decision making between power and transport
networks, while low-level actions, constructed via a hybrid policy, address continuous
scheduling and discrete routing decisions in the respective networks [70]. These emerg-
ing technologies represent significant advancements in the area of MGs, revolutionizing
existing systems and enhancing distribution system resilience to a greater extent.

Understanding how cost estimation is conducted for MGs to enhance reliability is
crucial, especially considering the different range of available technologies. The cost-based
approach proves most efficient for MGs and distribution networks integrating distributed
generation and energy-storage systems. The cost function of an MG system changes
depending on its operational mode, whether it purchases electricity from the main grid or
sells surplus energy for revenue. Energy storage offers two significant advantages, which
separate electricity generation from consumption, thereby facilitating better supply and
demand management. Also, it enables decentralized storage options for local grids or MGs,
significantly improving grid security [71]. The cost structure of an MG system is contingent
upon its operational mode, whether it operates independently (islanded) or is connected
to the main grid. When linked to the network, the MG dynamically balances the variance
between load consumption and the output power of micro-generators. This necessitates
the MG purchasing electricity from the main grid when needed or selling surplus energy
to generate revenue. The objective function for determining the operational costs of an MG
with distributed generations is established in Equations (23) and (24):

min( f1), f1 = CoOMG (23)

CoOMG =
T

∑
k=1

∆t[
N

∑
i=1

(CFi + COMi) + CBi,k − CSi,k]. (24)
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Also, Equation (25) represents the levelized cost of energy (LCOEMG) for the MG while
supplying energy to distribution grids during outage periods.

LCOEMG =

∑n
t=1 It+O&Mt+Ft+Tt+Extt+Lt

(1+r)t

∑n
t=1 Et

(1+r)t

, (25)

where LCOE represents the average cost of electricity over the period n; It denotes the
annual investment costs; O&Mt stands for the annual operating and maintenance costs;
Ft represents the annual fuel component costs; Tt signifies the annual tax payments; Et
indicates the annual volume of electricity production in kWh; r represents the discount
rate; t signifies the year of the project; Extt represents the annual external costs; and Lt
represents the annual clearing costs.

The estimations for various DERs concerning power capacity are considered. A small
wind turbine, ranging from 10 kW to 1 MW, is expected to cause O&M costs of up to USD
5.7 per kW per year. Conversely, a large PV generator, with a power capacity of 50 kW
to 500 kW, is estimated to have O&M costs of USD 3.93 per kW per year. Meanwhile, a
small PV generator is projected to have O&M costs of approximately USD 14.3 per kW
per year. These figures illustrate the advantage of incorporating solar PV over diesel
generators, which typically have O&M costs ranging from USD 26.5 per kW per year with
a lifespan of 12.5 years, compared to renewable energy sources (RESs) with lifespans of at
least 20 years [72]. The market prices for system components including PV costs and BESS
costs for residential purposes are USD 2950 per kWdc and USD 1503 per kWh, respectively.
For commercial applications, PV costs approximately USD 1840 per kWdc, while the BESS
costs around USD 610 per kWh. Also, PV costs USD 990 per kWdc, with the BESS priced
at USD 446 per kWh for utility-scale applications [73]. Energy storage units (ESUs) serve
as the foundation of MGs, crucial for balancing power supply and demand. They ensure
system stability, reliability, and power quality. Regarding the cost analysis of batteries, a
standard battery with a power density ranging from 0.1 to 10 kW/m3 and energy capacity
of 20 to 200 Wh/kg is estimated to cost between USD 150 and USD 1300 per kWh.

In common situations, a flexible energy storage system (FESS) is effective for manag-
ing peak loads and integrating renewable energy, yet it is limited to local power supply
without any mobility. Conversely, a mobile energy storage system (MESS) offers greater
flexibility and reliability, making it suitable for various applications and wider coverage
areas. However, its capacity is restricted, and the costs are high. Thus, there is a necessity
to synergize the strengths of FESSs and MESSs and strategically allocate them to enhance
the economic viability and resilience of planning outcomes [33,74].

The Nash bargaining model is utilized to address the trade-off between resilience and
economics. In this model, resilience and economics act as negotiating entities engaged in a
strategic game. By solving this model, the Nash equilibrium point is determined, achiev-
ing a balance between various sub-objectives characterized by differences in probability,
magnitude, trend, and impact [75]. In [76], a joint data-driven mechanism is employed to
model the failure probability, creating a set of typhoon disaster scenarios for the planning
period. The resilience index is established based on the cost of power outages resulting
from all typhoons during this period. This outage cost is contingent upon the failure rate of
distribution networks and the extent of load recovery after a failure. The failure probability
model is constructed using a combination of research concepts and historical data sources.
The allocation of FESSs and MESSs is optimized to mitigate typhoon-induced power outage
costs and enhance resilience. Furthermore, FESSs and MESSs can contribute to peak load
management and planned outages under normal conditions, thus enhancing economic
efficiency. Furthermore, the economic index is determined by the difference between the
investment and O&M costs of the equipment and the benefits observed in normal scenarios.
In normal circumstances, the benefits of ESSs primarily stem from peak shaving with FESSs
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and the involvement of MESSs in planned outages. The objective of optimization is to
minimize this economic index, which is given by Equations (26)–(31):

minFc = n f Ff − Ff 1 − Ff 2 + nmFm − Fm1 − Fm2 (26)

Ff = CE f E f + Cp f Pf + Com f Pf T1Ff 1 =
T1

∑
q=1

Kqk f q∆Q f q(p f q − pgq) (27)

Ff 2 = K f 2(CE f E f + Cp f Pf ) (28)

Fm = CEmEm + CPmPm + CommPmT1 (29)

Fm1 = ∑
Tm,i∈Tm

pm(t)
∫ Tm ,i

0
Pm(t)dt − nm pMess(Tm + TR) (30)

Fm2 = Km2(CEmEm + CpmPm), (31)

where FC represents the economic indicator; n f and nm denote the deployment quantities
of FESSs and MESSs, respectively; and Ff and Fm represent the investment costs for a single
FESS and MESS, respectively. Additionally, Ff 1 denotes the compensation gained from
peak shaving with the FESS, while Fm1 represents the benefits accrued from the MESS’s
participation in planned outages, including transportation costs. Ff 2 and Fm2 indicate the
asset recovery gains of the FESS and MESS, respectively, at the end of the planning period.
CE f , CP f , Com f , CEm, CPm, and Comm represent the costs and the O&M costs of the FESS
and MESS, respectively. The purchase cost of the MESS incorporates equipment expenses
(e.g., trucks and inverters). K f 2 and Km2 denote the asset recovery coefficients of the FESS
and MESS, respectively. Furthermore, E f , Pf , Em, and Pm define the maximum rated power
and capacity of the FESS and MESS, respectively. T1 represents the planning period, while
Kq = 1/(1 + r)q denotes the limited value coefficient in the year q, with r representing
the annual rate. k f q represents the line loss coefficient, and ∆Q f q denotes the electricity
consumption of the FESS involved in peak shaving compensation in year q. The peak
load price and the load price in low-demand periods in the year q are given by p f q and
pgq, respectively. Tm and TR represent the average number of planned outages involved
in the planning period and the predefined number of extreme events, respectively. Tm,i,
pm(t), and Pm(t) are variables representing the planned outage index, the electrical capacity
during a planned outage, and the electric power supplied by the MESS during a planned
outage, correspondingly. However, the analysis was restricted merely to the evaluation of
typhoon disasters. It is imperative to extend this consideration to include other types of
disaster events for future direction and comprehensive assessment [76].

5. Conclusions

This review paper provides an in-depth examination of climate-related issues, pre-
senting an analysis that enriches the general discourse found in wider literature surveys.
It conducts a detailed investigation into the effects of diverse weather conditions, high-
lighting the imperative for customized interventions that are delineated into strategies for
immediate and future planning. Moreover, it investigates various ML models for deter-
mining regions at risk, underlining the critical need for accuracy in confronting the related
challenges and employing simulation technologies. This review furnishes researchers with
significant knowledge for the advancement and challenges in applying algorithms across
a range of climatic scenarios. Also, the critical role of MGs during significant events was
emphasized, highlighting their integration with technologies such as the MMGF, V2H, V2G,
and mobile power resources. Specifically, their importance in BS restoration sequences was
underscored, anticipating their role in mitigating extreme hazards in the future. Moreover,
a detailed cost analysis of MGs and ESSs is presented, including quantified figures for
residential, commercial, and utility purposes, providing clarity for planning MG operations.

As future work, further explorations into optimizing ML frameworks for identifying
vulnerable regions and developing advanced simulation tools can enhance risk-assessment
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models. Integrating MGs with RESs and smart grid technologies offers opportunities to im-
prove resilience during extreme events. Investigating the role of MGs in supporting commu-
nity resilience and emergency response efforts is vital for effective disaster preparedness.
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