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Abstract: Date palm leaves have been diachronically applied in building materials in the Middle
East and North Africa (MENA) region, so as to enhance specific properties, such as volume stability
and strength. This research work concerns an experimental study on the impact of date palm leaflet
powder (DPLP) on the thermal and physico-mechanical properties of gypsum mortars. A series
of mortar compositions were prepared with different proportions of DPLP (0, 1, 3, and 5% w/w of
binder) and variant particle size (0.5, 1, and 1.5 mm). The results showed that the mortars containing
DPLP exhibited significant changes in their properties due to variations in DPLP concentration and
particle size. Increased DPLP led to lower density, higher porosity, and water absorption rate, whereas
mechanical strength and thermal conductivity were decreased according to the DPLP proportion and
size. This research provides valuable insights into the use of sustainable and renewable building
materials, highlighting the benefits of exploiting agricultural waste in the constructional sector.
The findings lay the groundwork for future research and innovation in environmentally friendly
construction technologies.
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1. Introduction

Gypsum is a raw material that has been utilized for millennia in construction dating
back to the ancient Egyptian civilization [1] and continues to be applied in the MENA
(middle East and North Africa) region [2]. It has been utilized in a variety of applications,
including plastering, rendering, bedding mortars, stuccowork, and various exceptional
decorative techniques for artworks. Gypsum plaster boards are widely used for interior
walls and ceilings due to their straightforward manufacturing process, environmental
benefits, esthetic appeal, affordability, and excellent properties [3,4].

On the other hand, the reinforcement of building materials with natural fibers dates
to prehistoric times, with mud bricks being reinforced with straw or horsehair [5]. To
date, numerous studies have aimed to advance composite materials with natural fibers,
while research on sustainable building materials have been pursued [6]. The combination
of gypsum and date palm leaves represents a promising material due to the leaves’ high
availability in the MENA region and low environmental impact, making them an appealing
choice for ecofriendly building materials [1,3–12].

Recent research has revealed that the number of date palms has exceeded 120 million
in the MENA region, with each tree living for more than a century and producing fruits
and waste during annual harvests [13,14]. The Phoenix dactylifera L. family is home to the
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date palm, which is a significant fruit tree in Algeria with over 20 million palms [15,16].
Algeria has the most substantial number of trees in North Africa. Research has shown that
the palm waste production exceeds 800,000 tons per year in Algeria alone [17].

Several works have studied the thermophysical, chemical, and dielectric properties of
date palm waste and have shown the potential for various applications [12,18] such as its
use as a fertilizer in agriculture [12], and also in the automotive [19,20] and construction
sectors [5,6,9,21,22]. Awad et al. [13] discussed the potential of date palm fibers to be
used as bio-composites for reinforcement in construction materials based on cement, clay,
asphalt, and gypsum.

Many researchers have shown that the use of date palm leaves in building materials
can have both positive and negative effects on their properties. Boumhaout et al. [22]
studied the thermomechanical properties of lime-based mortars reinforced with a date
palm fiber mesh. Chennouf et al. [23] evaluated the ability of date palm concrete to dampen
the indoor relative humidity while considering the influence of temperature. Feng et al. [24]
proposed the material-dependent critical agent concentration (the lowest concentration that
ensures hydrophobic effectiveness on a given material), showing that date palm leaves can
affect or improve the durability of building materials. Kareche et al. [25] found that natural
palm fibers improve the porosity of mortars, increasing the moisture vapor permeability
and breathing ability of structures. Bamaga et al. [26] concluded that date palm fibers
can be used to improve the physical, mechanical, and thermal properties of concrete and
mortar. Finally, Darwish et al. [27] developed low-cost date palm midrib components
for lightweight and sustainable long-span multipurpose structures for rural communities,
demonstrating the potential of date palm leaves for use in modern construction.

Asim et al. [28] found that the addition of 50% date palm fibers to phenolic composites
improved their tensile modulus and impact strength but reduced their tensile and flexural
strength. Bamaga et al. [29] found that mortars containing 10 mm and 20 mm date palm
fibers had lower water absorption than control mortars, but also lower workability, density,
and compressive strength. Chikhi et al. [30] show that DPF loading may have a greater
effect on the mechanical and thermal properties of the composites than fiber size. Ali
et al. [31] found that date palm leaves and wheat straw fibers can be used to produce
thermal insulation materials with a thermal conductivity of 0.045–0.065 W/m. Khoudja
et al. [32] found that the admixture of date palm waste to raw clay bricks improved their
thermal insulation, with thermal conductivity decreasing from 0.677 W/m K to 0.342 W/m
K when 10% DPW was added. Rachedi et al. [5] found that the addition of date palm
fibers to gypsum reduced thermal conductivity, thermal diffusivity, and efficiency while
increasing the specific heat. Alothman et al. [33] found that composites reinforced with date
palm fibers from the trunk and stem of the date palm had better thermal resistance. Finally,
Benaniba et al. [9] found that adding date palm fibers to a bio-composite material improved
its thermal insulation properties and reduced its thermal conductivity. Gounni et al. [34]
developed insulation materials from date palm fibers and cardboard waste and found
that they were competitive with conventional insulation materials in terms of thermal
properties and economic feasibility. The effects of the size and concentration of date palm
leaflet powder on the thermomechanical and hygienic characteristics of a building material
such as gypsum have been studied in some studies.

In this work, an experimental study was carried out to assess the impact of the addition
of date palm leaflet powder (DPLP) on the thermal and physico-mechanical properties
of gypsum mortars for plastering. A series of mortar compositions was prepared with
different proportions of DPLP (0, 1, 3, and 5% w/w of binder) and variant particle size
(0.5, 1, and 1.5 mm). The aim of this study was to exploit and valorize date palm waste
as a renewable, biodegradable material available in the MENA region. Furthermore, it
highlights an innovative approach on the application of additives derived from recycled
plant waste for the production of lightweight composite materials. By developing lighter
construction materials with improved properties, the environmental burden of organic
waste will be reduced, as well as the demand of raw materials for construction purposes.



Sustainability 2024, 16, 3015 3 of 15

2. Materials and Methods
2.1. Raw Materials
2.1.1. Gypsum

The gypsum used in this study was obtained from the GCI company in Biskra city in
Algeria. According to the company’s recommendations, this type of gypsum is preferably
used with a water/gypsum ratio (w/g) which can vary from 0.6 to 0.8. The chemical
composition of this gypsum is summarized in Table 1.

Table 1. Chemical composition of gypsum.

Constituents SO2 CaO SiO2 MgO AL2O3 Na2O Fe2O3

Percentage % 45.63 32.12 0.58 0.41 0.12 0.09 0.08

2.1.2. Date Palm Leaflet Powder (DPLP)

The date palm component investigated in this study was obtained from leaves, par-
ticularly leaflets (Figure 1b), harvested in the geographic regions of Tolga and Biskra in
Algeria. To utilize date palm waste, research focused on the Deglat Noor variety, which has
the greatest diversity in this area. The main chemical constituents in date palm leaf powder
are cellulose, hemicellulose, and lignin. The powder has low thermal conductivity, as
mentioned in references [18,35], which allows it to have the potential to be a reinforcement
for composite materials [36]. Sampling was conducted in three distinct phases.
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Figure 1. (a) Date palm tree; (b) date palm leaves.

The raw material used in this study was processed according to the procedure used
by Kethiri et al. [36]. Date palm leaflets were firstly immersed in a tank of water in order to
be cleaned and were afterwards subjected to drying at a temperature of 40 ◦C 24 h. Then,
the dried leaflets were ground using a mechanical grinder up to the selected granulometry.

Granulometry

A series of tests were conducted to determine the particle size distribution of the
leaflets, while the results were an average of fourth measurements. The particle size
distribution was determined by the sieving method according to the French standard
18-560 [37], as shown in Figure 2. The particle size distribution ranged from 0.125 mm and
1.5 mm, whereas the proportion of DPLP particles between 0.125 and 0.25 mm was less
than 40%. On the other hand, the proportion of particles between 0.5 and 1.5 mm was more
than 85%. The diameters of 0.5, 1, and 1.5 mm represented the dominant part of the date
palm powder.
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2.2. Experimental Methodology
2.2.1. Preparation of Specimens

The dimensions of the powder diameters and the mass fraction of the powder in
the mortar varied [38,39]. Dimensions of 0.5, 1, and 1.5 mm were chosen based on the
Granulometry test shown in Figure 2, as this interval represented the 90% of the crushed
DPLP. The DPLP proportion was 0, 1, 3, and 5 (wt.% of gypsum) for each particle size
fraction. Table 2 summarizes the designation used for each composition. During the
mortar preparation, several parameters that could influence the results were taken into
consideration. The water/gypsum ratio was set at 0.6, according to literature [3–5,30,40].

Table 2. Mortar compositions.

Concentration (wt. %) Y Dimension (mm) X Names

0 / Reference

1
0.5 G-DPLP-0.5–1
1 G-DPLP-1–1

1.5 G-DPLP-1.5–1

3
0.5 G-DPLP-0.5–3
1 G-DPLP-1–3

1.5 G-DPLP-1.5–3

5
0.5 G-DPLP-0.5–5
1 G-DPLP-1–5

1.5 G-DPLP-1.5–5

G-DPLP-X–Y, G: gypsum; X: dimension (0.5, 1, 1.5 mm); Y: concentration (0, 1, 3, 5 wt%).

The preparation of the mortars followed ASTM C1396/C1396M-17 [41]. The mixer
used was a TC-MX 1400-2 E (Einhell Company, Nürtingen, Germany) electric mortar mixer.
Firstly, the gypsum and DPLP were mixed manually in a container and then the water was
added for a total mixing period of 5 min (mixing of 3 min, allowed to rest for 30 s, and then
mixed again for 1–2 min). Afterwards it was poured into the molds (4 × 4 × 16 cm) and
compaction was made by using a vibrating table for 20 to 30 s. Specimens were stored, as
shown in Figure 3, under normal climatic conditions: T = 20 ± 2 ◦C, and RH = 65 ± 5% for
7, 14 and 28 days.
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2.2.2. Testing procedure
Bulk Density, Porosity, and Water Absorption

The density test was carried out on all the specimens, with each one being tested three
times. The average was then taken in each case during the calculation.

The apparent density can be determined by using the following relation, according to
ASTM C29/C29M [42]:

ρapp = m/V (1)

The absolute density: ρabs is the density without taking into account the voids that
may exist in or between the grains and was measured according to ASTM C127/88 [43].
The absolute density was given by Equation (2):

ρabs =
m

V2 − V1
(2)

Porosity was calculated by using Equations (1) and (2), as follows:

∅ = 1 −
ρapp

ρabs
(3)

Water absorption was carried out on three specimens from each composition (the
average was then taken), according to ASTM C642-13 [44], at the age of 7, 14, and 28 days.

Mechanical Characterization

Mechanical strength was tested following ASTM standards. For flexural strength test-
ing (three-point) D790 [45] was applied and for compression C109/C109M-20 [46]. To this
direction, an INSTRON 5969 traction machine (Instron Company, Norwood, Massachusetts,
United States.) with a capacity of 50 KN and a speed charge of 1 mm/min was employed.
Three specimens of each composition were tested at the age of 7, 14, and 28 days.

Thermal Conductivity

Thermal conductivity tests play a crucial role in assessing the heat transfer properties
of composite materials, which are used in various applications. For the gypsum/DPLP
compositions, ASTM C518-21 [47] was applied. This test method employs a transient
heat source and temperature measurement system to determine the thermal conductivity
of materials.

3. Results and Discussion
3.1. Bulk Density and Porosity

In the constructional sector, the utilization of lightweight materials is highly embraced
due to their economic advantages [48], due their potential to uphold stability, stiffness,
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and durability [7,49]. The density of the examined G-DPLP composites was determined
utilizing the five-weighing method. The margin of error in the calculations was below
2%. Figure 4 depicts the variations in absolute and apparent densities, as well as the total
porosity of the G-DPLP material about different sizes and mass fractions.
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Table 3 provides a summary of the densities and total porosity found in both the
current study and literature. It was evident that the inclusion of DPLP lightens mortars
and leads to a reduction in density up to 13%.

Table 3. Density and porosity of samples.

Present Work Literature

Abs (kg/m3) App (kg/m3) P (%) Bulk Density (kg/m3) References

G-Pure (0%) 1279.04 1275.83 0.25 1240 [5]

G-DPLP-0.5–1 1244.79 1240 0.38
1180

[4]

G-DPLP-1–1 1243.90 1232,14 0.94
G-DPLP-1.5–1 1224.71 1210 1.21

G-DPLP-0.5–3 1207.93 1190.35 1.45
1100G-DPLP-1–3 1184.89 1162.64 1.87

G-DPLP-1.5–3 1182.29 1149.5 2.77

G-DPLP-0.5–5 1184.87 1150.83 2.87
1000G-DPLP-1–5 1161.45 1121.59 3.43

G-DPLP-1.5–5 1160.15 1110.83 4.25

The lightness of the tested compositions can be ascribed to the alveolar arrangement
of DPLP and its porous nature. The inclusion of DPLP, whether in terms of weight or size,
results in a rise in the porosity of the mixtures. Gypsum mortars that contains DPLP at
various fiber sizes demonstrates higher porosity in comparison to pure gypsum [40,50].
This could be attributed to the formation of voids at the interfacial areas between the
DPLP and the gypsum matrix. The obtained outcome concurs with relevant studies in the
literature [51,52], according to which the introduction of DPLP into the matrix amplifies
the degree of air entrapment. The variability in porosity values can be attributed to the
proportion and dimensions of DPLP, as highlighted by [53,54]. Furthermore, the porosity
was influenced by the proportion and particle size of DPLP, as well as its distribution within
the gypsum matrix. Chikhi [3] elaborated upon a similar trend.

3.2. Water Absorption

The water resistance of composites plays a crucial role, particularly when natural fibers
are utilized. Various factors influence how composite materials absorb water, including
temperature, additives volume fraction and type, area of exposed surfaces, interfacial
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bonding, diffusivity, reaction between water and matrix, surface protection, voids, and
hydrophobic chains of the matrix [55,56]. Based on Figure 5, it was evident that water
absorption increased over time, and all the curves exhibited a similar pattern. Additionally,
the reference mortar (with no DPLP addition) had a lower adsorption rate compared to all
other compositions.
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A noteworthy observation was that water absorption primarily occurs during the
initial stages of immersion, with a substantial quantity being absorbed within the first
twenty seconds [57]. The absorption process was largely influenced by the open porosity
of the material. The introduction of DPLP led to the formation of numerous pores [58,59].
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It was widely acknowledged that lingo-cellulosic materials have a hydrophilic nature due
to the presence of cellulose, hemicellulose, lignin, and other factors that contribute to
their moisture absorption from the surrounding atmosphere [60–62]. Furthermore, the
utilization of DPLP results in higher water absorption. Notably, the concentration of DPLP
has a greater impact on water absorption compared to variations in diameter.

Figure 6 shows the evolution of the water content of gypsum-based composites filled
with three different mass fractions and three sizes of DPLP on days 7, 14, and 28. It appears
that the addition of DPLP with these different sizes in gypsum induces an increase in water
content (7.51 to 8.94%). For the same composition, there was a slight increase in water
content between day 7 and day 14, and between day 14 and day 28, with an increase of
between 0.19 and 2.5 and between 0.06 and 0.5, respectively. This increase was greater
when DPLP was added. These results indicate that the absorption rate decreases with time,
confirming the previous results showing that absorption takes place in the early stages.
These results indicate that incorporating a small amount of DPF into gypsum enhances
water absorption [63].
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Figure 7 represents the water absorption of G-DPLP composites after 28 days. From
the results, it was observed that the porosity of the mortar led to a significant increase in
the values. This was due to the addition of DPLP and its hygroscopic physiognomy [30].
Chikhi et al. [30] stated that the water content of composites depends strongly on the DPLP
water absorption capacity. According to numerous authors, the absorption depends on the
size, content, and chemical composition (cellulose) of the natural fiber [9,64,65].

3.3. Mechanical Proprieties

The addition of DPLP into the compositions significantly impacts its mechanical
behavior, particularly in terms of flexural and compressive.

3.3.1. Flexural Strength

Figure 8 depicts the flexural strength for all specimens at the age of 7, 14, and 28 days.
The obtained outcomes reveal that flexural strength diminishes as the dimensions and
concentration of DPLP increase [9,66]. A reduction of 25% in flexural strength was ob-
served upon the inclusion of 1% DPLP, followed by a declining fraction of decrease as the
concentration or dimensions increase, within the range of 5.3–1.7%. Furthermore, a rise
in flexural strength can be observed over time, specifically from 7 to 14 to 28 days. The
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reference composition showed a strength increase of 13% from 7 to 28 d, which represents
the most substantial elevation compared to the other compositions (5–8%).
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Figure 8. Flexural strength results of tested composites after (7, 14, and 28 days).

3.3.2. Compressive Strength

Figure 9 shows the compressive strength for all compositions at the age of 7, 14,
and 28 days, which was decreased, while the dimension and concentration of DPLP
increased [67,68]. A drop of 37% was shown when adding 3% of DPLP and was further
decreased (up to 50%) in a concentration of 5% of DPLP. Over time, within a period of
7–14 to 28 days, an increase in compressive strength can also be observed, with an increase
of 16% in the case of the reference mortar and an increase of 3–12% in the modified mortars.
The latter variation depends on the proportion and particle size of DPLP (decreases with
the increase in concentration or dimension).
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3.4. Thermal Conductivity

Thermal conductivity represents a crucial characteristic within the domain of thermal
insulation materials. This particular property is predicated upon a multitude of factors,
including the morphology, density, and homogeneity of materials [61]. The thermal con-
ductivity’s variation, correlated with the porosity of the compositions, is illustrated in
Figures 10 and 11. This variation was examined for three different DPLP sizes and con-
centration. The utilization of gypsum either in isolation or in conjunction with other
materials enhances insulation due to its notably low thermal conductivity, which amounts
to 0.8 W/m·K in the context of our study [69].
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Figure 10. Evolution of the thermal conductivity of tested composites.
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Over 28 days, the thermal conductivity diminishes as the dosage of DPLP increases.
Moreover, it decreases in tandem with the rise in porosity rate and was inversely propor-
tional to the voids that generated by DPLP presence [70]. The relationship between thermal
conductivity and DPLP was closely intertwined. Consequently, as the quantity of DPLP
increases, thermal conductivity experiences a decline [62,71,72].

In the present study, when adding 1% of DPLP, thermal conductivity decreased around
22%, compared to the reference mortar, representing the most significant change. With
each increase in DPLP concentration or size, leading to a respective porosity rise, thermal
conductivity was decreased. The recorded decrease ranges from 2 to 14%. Experimental
results demonstrate that the thermal insulation effectiveness of the material was inversely
related to its density [50]. These findings highlight the potential for producing insulation
materials modified with DPLP.

4. Conclusions

This study focused on assessing the effect of DPLP particle size and concentration on
the thermal and physico-mechanical properties of gypsum mortars. The addition of DPLP
modifies the gypsum matrix, creating voids and increasing porosity. The main conclusions
deriving from this study are as follows:

1. An analysis of the size of the granules of DPLP shows that the proportion of particles
between 0.5, 1, and 1.5 mm was greater than 85%.

2. As the concentration and size of DPLP increases, the absolute and apparent densities
proportionally decrease. The decrease in density was directly related to an increase in
porosity. These observations reveal a complex relationship between the amount and
size of DPLP, providing important insights into the material’s structural characteristics.

3. Water absorption notably increases when DPLP is added, primarily occurring at the
beginning of testing. This highlights the significant impact of DPLP on the material’s
ability to absorb water quickly.

4. The mechanical properties of the modified mortars decreased significantly with in-
creasing DPLP concentration and size. This was due to the voids created by the
addition of DPLP, making the material more brittle and porous. Thus, the concen-
tration of DPLP and the level of porosity are crucial factors affecting the structural
integrity of the material.

5. The thermal conductivity was decreased by the increase in the DPLP concentration
and size. This suggests that thermal conductivity was inversely proportional to the
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voids created by the addition of DPLP; indeed, the voids created represent additional
thermal resistance, which explains the reduction in thermal conductivity.

According to the experimental results, porosity was the parameter that mostly in-
fluenced the physical, mechanical, and thermal properties of the tested mortars. DPLP
addition may modify the porosity of the gypsum mortars, according to its proportion and
particle size. An increase in porosity imparts a degree of lightness to the material, favorable
for specific applications (i.e., renders and plasters). To this extend, DPLP can be used
for producing sustainable mortars with elaborated properties, following the diachronic
constructional principles of the MENA region.
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