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Abstract: With the development of the healthcare industry, the demand for medical services and
protective equipment is boosted, causing the generation rate of infectious medical waste to increase
rapidly. Therefore, it is of utmost importance for decision makers to effectively predict the potential
risks and propose corresponding solutions. This paper investigates the reverse logistics network
optimization for medical waste under the conditions of an uncertain proposal demand. Firstly, a
prediction model of medical waste based on the SEIR epidemiological dynamics is constructed, in
which both routine and public health emergency scenarios are simultaneously considered. Secondly,
a bi-objective location-routing optimization model for a medical waste reverse logistics network
is proposed, by simultaneously optimizing the total economic cost and potential risk throughout
the entire logistics process. Subsequently, an NSGA-II algorithm is designed for a model solution
in response to the model’s characteristics. The epidemiological dynamics-based prediction model
is validated by the real case to be scientifically effective in predicting the amount of generated
medical waste with a mean absolute percentage error (MAPE) of 18.08%. The constructed reverse
logistics network model and the NSGA II algorithm provide a medical waste process center location,
transportation routing, and vehicle selection solutions for both routine and emergency public health
cases of Xi’an city with large, medium, and small scales. The above results indicate that the research
scheme proposed in this paper could significantly reduce the medical waste logistics-related risks
and costs and provide decision makers with more safe and reliable logistical solutions.

Keywords: medical waste; reverse logistics network; SEIR model; location-routing problem; NSGA-II

1. Introduction

In recent years, with the acceleration of urbanization and the frequent outbreaks
of new infectious diseases, people’s attention to the issue of medical waste disposal has
gradually risen, and the standardized disposal of medical waste has become an important
issue of social concern. Medical waste refers to waste generated by healthcare institutions
in medical, preventive, healthcare, and other related activities, possessing direct or indirect
infectious, toxic, and other hazardous characteristics. As a specialized type of industrial
waste, it carries high spatial pollution and potential transmission risks [1]. Due to these
reasons, neglecting risk control in logistics processes such as the recovery, treatment, and
transportation of medical waste will result in serious harm to nearby residents and the
surrounding environment [2]. Particularly, in the event of a public health emergency, the
untimely transport or disposal of medical waste carrying pathogens can pose a significant
threat to epidemic prevention and control. Therefore, the construction of a well-functioning
and flexible reverse logistics network for medical waste is an urgent and practical problem
that needs to be addressed.

Current research on reverse logistics networks [3] optimization for medical waste
typically encompasses decision problems such as facility location and vehicle routing.
From a strategic perspective, the selection of key nodes, such as temporary storage points

Sustainability 2024, 16, 2996. https://doi.org/10.3390/su16072996 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16072996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0628-0632
https://doi.org/10.3390/su16072996
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16072996?type=check_update&version=1


Sustainability 2024, 16, 2996 2 of 14

and processing centers, directly influences the layout of the logistics network, thereby
impacting disposal efficiency and risk control. From an operational perspective, the choice
of routes for transportation vehicles significantly determines transportation efficiency and
is crucial for the safety of residents and the environment along the way. In previous studies,
these two decision problems related to location and routing are often considered separately,
with the locations of critical facilities being determined first, followed by the planning
of transportation routes [4]. However, considering that the selection of such avoidance
facilities and the transportation routes for their specific waste is relatively fixed, integrated
decision-making can lead to a globally optimal planning result for the system [5]. Many ex-
perts study the integrated location-routing problem in medical waste logistics from various
perspectives such as economic, environmental, and multiple time periods. These include
location-routing models for medical waste [6], dual-level equilibrium location-allocation
optimization models [4], and multi-objective programming models [7] to comprehensively
address decisions related to the location selection and transportation of medical waste
disposal facilities. However, since medical waste contains tissues containing pathogenic
microorganisms such as a patient’s vomit and body fluids, as well as disposable instru-
ments, needles, syringes, surgical blades, syringes, and other wastes used in operating
theatres, emergency rooms, and injection rooms, etc., which have a certain degree of viral
transmissibility, and these wastes are prone to cause environmental contamination and the
spread of pathogens in the reverse logistic activities, the traditional optimization methods
are only concerned with the minimization of the costs, which are not able to satisfy the
current demand for the disposal of medical wastes.

In view of this, many experts have approached the optimization of reverse logistics
networks for medical waste from the perspective of risk control, aiming to minimize the
probability or severity of accidents involving leakage during transportation or on-site
incidents that could cause harm to the surrounding population, property, and the environ-
ment [8]. For instance, some experts considered the impact of transportation time on risk [9],
and constructed a medical waste transportation risk measurement model, in which the
risk-bearing capacity of the network nodes is expressed as the product of the transportation
volume and corresponding transportation time. Other experts considered the infectivity of
viruses carried by medical waste on the transportation risk and expressed the risk as the
product of the infection probability of medical waste, the quantity of transported medical
waste, and the transportation distance [10]. They conducted a sensitivity analysis on the
infection probability to observe its impact on the results. However, the aforementioned
studies only subjectively defined the probability of risk, without considering the influence
of the quantity of medical waste on the risk probability. Therefore, in this paper, we start
from the probability of risk occurrence and construct a risk probability calculation function
influenced by the quantity of medical waste generated to quantify the impact of different
amounts of medical waste in the environment on the risk probability.

Furthermore, the accurate prediction of medical waste disposal demand is a crucial
prerequisite for the layout of reverse logistics facilities and the allocation of the disposal
capacity. Currently, the most common approach to predicting medical waste generation is to
analyze influencing factors during its development process, and extrapolating future states
based on historical data. For example, the trend extrapolation method [11] uses the volume
of medical waste generated over a certain period as a basis and analyzes its changing
patterns to predict future generation. Though this method is simple and practical, it ignores
the relationship between past and future medical waste generation. Regression analysis [12],
on the other hand, focuses on the factors related to medical waste generation and analyzes
the correlation of each factor with the least squares method. Some experts treat the volume
of medical waste generation as an uncertain parameter in optimization models, dealing
with the uncertainty of waste generation through methods like fuzzy chance-constrained
programming [13] and grey prediction models [14]. These approaches construct equivalent
deterministic expressions for uncertain waste generation and calculate the volume of
medical waste. Additionally, considering the volatility of medical waste generation during
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a public health emergency, some experts also use the number of cases to characterize the
amount of medical waste generated [15]. There are also studies suggesting an approach that
simulates the trend of epidemic development, utilizing simulation methods to elucidate
the relationship between medical waste generation and the scale of the outbreak, such as
infectious disease dynamics and artificial neural networks [16].

Based on the above analysis, this paper comprehensively investigates the optimization
problem of reverse logistics networks for medical waste. The main research contents are
as follows. Firstly, the integrated optimization problem of site selection for medical waste
processing and transportation route decisions considering risk factors is studied. A multi-
objective location routing problem (MO-LRP) model that simultaneously considers risk
and cost factors is constructed, and an improved NSGA-II algorithm is designed to solve
the model. Secondly, the prediction of medical waste generation under both routine and
public health emergency scenarios is conducted. Two distinct medical waste generation
prediction models are designed based on the SEIR system dynamics method and the linear
method, respectively. Finally, the effectiveness of the proposed model and algorithm is
validated through examples from Xi’an, China, and various test cases of different scales.

2. Materials and Methods
2.1. Problem Description

The reverse logistics network for medical waste constructed in this paper is a two-tier
network that consists of processing centers and collection points, as illustrated in Figure 1.
Under routine circumstances, collection points typically include hospitals. In the event of a
public health emergency, collection points should also encompass isolation locations for
patients. Transportation vehicles depart from the processing center, and sequentially collect
medical waste from each collection point and transport it back to the processing center
for designated processing procedures. The main objectives of this study are to meet all
proposal demands under both routine and public health emergency scenarios by making
rational processing centers’ location decisions and transportation routing decisions and to
minimize the total logistics cost and risks at the same time.

Figure 1. Schematic diagram of the reverse logistics network for medical waste.

In the modeling process, the following assumptions are considered. (1) The specific
processing procedures for medical waste at the processing centers are not taken into account.
(2) The fixed cost of transportation vehicles is independent of the transported volume, and
vehicles must adhere to weight restrictions. (3) The transportation cost of transportation
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vehicles is directly proportional to the distance traveled by the vehicles. (4) The time
required for transportation vehicles to handle waste at collection points is not considered.

2.2. The Medical Waste Prediction Model Based on the SEIR Epidemiological Dynamics Method

Given that the generation of medical waste during public health emergencies is related
to the development of the epidemic, this paper will, based on the epidemiological modeling
and simulation methods, construct an improved SEIR dynamic prediction model. This
model aims to accurately predict the uncertain generation of medical waste and specify the
disposal requirements of the reverse logistics system.

In this study, it is assumed that the daily amount of medical waste generated by the
hospital consists of two parts: the daily waste generation Wrc and the waste generation Wyq
related to the occurrence of a public health emergency. In the absence of a public health
emergency, only the daily waste generation is considered. The expression for the total
amount of medical waste generated in the t-th day, W(t), is shown in Equation (1).

W(t) = Wyq + Wrc (1)

The daily generation of medical waste, Wrc, is determined by the product of the number
of hospital beds (PYi) and the amount of medical waste produced per bed (ψ = 0.4) [17], as
represented in Equation (2).

Wrc = ∑
i∈PY

PYi·ψ (2)

Furthermore, this paper characterizes the amount of generated medical waste by the
number of different populations related to the development of the epidemic process. The
population is classified into four categories [18], which are the susceptible population (S),
exposed population (E), infected population (I), and the removed population (R). Then, a
prediction model for medical waste generation (Wyq) related to a public health emergency
is constructed, as depicted in Figure 2. Here, β and δ represent the probabilities of contact
between the E and I population with the S population, respectively. α represents the
reciprocal of the incubation period for the virus, while µ and γ represent the recovery and
mortality rates of the I population, respectively.

Figure 2. Illustration of the medical waste prediction model based on the SEIR epidemiologi-
cal dynamics.

Therefore, this paper assumes that with the changing dynamics of a public health
emergency, the population of the I population is randomly assigned to hospitals within
its jurisdiction, while the E population is randomly assigned to isolation points within its
jurisdiction, as shown in Figure 2. Solid arrows indicate the flow of the population with
infectious viruses among different population groups, while dashed arrows represent the
disposal destinations of medical waste generated by different population groups.

Equation (3) illustrates the state transition relationships among different population
groups. Considering that during the sudden occurrence of a public health emergency, the
E population, when in contact with the S population, can also cause the S population to
become the E population. Moreover, this paper introduces an impact parameter β of the E
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population on the S population based on the traditional SEIR model to depict transition
relationships more accurately.

S(t) = −βE(t)S − δI(t)S
E(t) = βE(t)S + δI(t)S − αE(t)

I(t) = αE(t) − (µ + γ)I(t)
R(t) = (µ + γ)I(t)

(3)

When the public health emergency occurs, the predicted medical waste generation is
mainly determined by the E population and the I population. Here, ξ = 13 and ι = 1.4 [19]
represent the output coefficients for the I and E population respectively, as shown in
Equation (4).

Wyq = ξ·I(t) + ι·E(t) (4)

Therefore, the predicted equation for medical waste generation on the t-th day can be
obtained as shown in Equation (5).

W(t) = ∑
i∈PY

PYi·a + ξ·I(t) + ι·E(t) (5)

2.3. Measurement of Decision Risk in the Medical Waste Logistics Network

In this paper, the risk caused by the reverse logistics of medical waste is defined as the
product of the population directly affected by leakage accidents and the associated risk.
This is related to both facility location decisions and routing decisions. The risk expression
for the processing center (RCi) in the reverse logistics network of medical waste is given by
Equation (6), and the risk associated with the transportation path (VCij) is represented by
Equation (7).

RCi = sdi·ρdi·Pdi·adi (6)

VCij = 2r·lij·ρkij·Pkij·ak (7)

where Pdj is the probability (percentage) of the leakage risk for establishing a center at
location j. Sdj is the area (square kilometers) affected by the processing center j in the event
of leakage. ρdj is the population density (people/square kilometer) affected by processing
center j in the event of leakage. αdj is the average per capita loss (currency/person)
caused by processing center j in the event of leakage. Pkij is the probability (percentage)
of leakage risk of transfer vehicles from collection point i to collection point j. r is the
radius (kilometers) within which the collection point i can cause an impact. ρkij is the
population density (thousand people/square kilometer) affected by the transfer vehicle
from collection point i to collection point j when leakage happens. αk is the average per
capita loss (currency/person) caused by the transfer vehicle in the event of leakage from
collection point i to collection point j.

The diagram in Figure 3 illustrates the risk impact zones for the processing centers
and transportation paths.

Figure 3. Scope of influence of processing center and transportation path.
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This paper introduces the logistic growth curve model [20] to depict the variation in
risk probability with the amount of medical waste generation. Before medical waste is
properly treated, the growth trend of infectious pathogens it carries follows the logistic
growth model as the amount of medical waste generation increases. The expression for the
logistic function is shown in Equation (8).

P(t) =
KP0ert

K + P0(ert − 1)
− 1 (8)

P(t) represents the probability of risk impact when the quantity of medical waste reaches a
certain amount. P0 is the initial amount of medical waste, K is the conversion factor, and r
is a parameter measuring the speed of curve changes.

2.4. Description of the Time Window Penalty Cost

To meet the requirement of the national regulation that the medical waste must be
treated on a daily basis, this paper adopts a hard time window function to restrict the
travel time of vehicles on the route. Once the travel time of a vehicle exceeds the duration
specified by the time window constraint, it will face substantial fines. The penalty cost
function SPij is defined as Equation (9).

SPij = M ∑
i,j∈C

max
{

TKij − Tconst, 0
}

(9)

2.5. Multi-Objective Optimization Model

The multi-objective location-routing model constructed in this paper is described by
the following symbols.

Sets: C = {1, 2, · · · , c} is the set of collection points; D = {1, 2, · · · , d} is the set of
processing centers; N = C ∪ D is the set of all nodes in the network.

Parameters: qi represents the quantity (tons) of medical waste generated at collection
point i. lij represents the distance (kilometers) from collection point i to collection point
j. Odj represents the fixed cost (CNY) of constructing processing center j. Bdj represents
the cost (CNY/ton) of processing unit medical waste at alternative processing center j; Hdj
represents the maximum processing capacity (tons) of processing center j; Ok represents the
fixed cost (CNY) of transfer vehicles; Bk represents the transportation cost (CNY/kilometer)
per unit distance traveled by transfer vehicles; Hk represents the maximum payload (tons)
of transfer vehicles; V represents the speed (km/h) of transfer vehicles; M is a positive
infinity; Tconst represents the maximum allowable duration for vehicles to travel in the path;
TKij represents the time required for vehicles to travel in path (i, j).

Decision variables: Xj represents whether to construct a processing center at j; if
a processing center is constructed, Xj = 1, otherwise 0; Yij represents whether transfer
vehicles travel from point i to point j; if transfer vehicles travel from point i to point j then
Yij = 1, otherwise 0; Zj

i represents whether collection point i is serviced by processing

center j; if collection point i is serviced by processing center j, then Zj
i = 1, otherwise 0.

Using economic cost and risk as objective functions, a medical waste reverse logistics
network model is constructed as follows.

minF1 = ∑
j∈D

OdjXj + ∑
j∈D

Bdj ∑
i∈C

Zj
i qi + ∑

i,j∈C
yij·Ok + ∑

i,j∈C
yij·lij·Bk + ∑

i,j∈C
SPij (10)

minF2 = ∑
j∈D

Xj·RCi + ∑
i,j∈C

Yij·VCij (11)

S.T.
∑
i∈C

Zj
i qi ≤ HdjXj, ∀j ∈ D (12)
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∑
i,j∈N

Yijqi ≤ Hk (13)

∑
i,j∈C

Yij = 1 (14)

∑
i∈C

Zj
i = 1, ∀j ∈ D (15)

Yij = 0, ∀i ∈ D, ∀j ∈ D (16)

Zj
i ≤ Xj, ∀i ∈ C, ∀j ∈ D (17)

Xj ∈ {0, 1} (18)

Yij ∈ {0, 1} (19)

Zj
i ∈ {0, 1} (20)

Objective function (10) aims to minimize the total cost, which includes the investment
cost processing cost of processing centers and the fixed cost and transportation cost of
the vehicles. Objective function (11) aims to minimize the logistics risk associated with
establishing processing center and transportation.

Constraint (12) represents the capacity constraint for processing center points. Con-
straint (13) indicates that the maximum load capacity of each vehicle should not exceed its
load constraint. Constraint (14) states that each collection point should be serviced by only
one vehicle. Constraint (15) specifies that each collection point should be serviced by only
one processing center. Constraint (16) restricts that there are no routes between any two
processing centers. Constraint (17) states that a collection point will only be serviced by a
processing center if that processing center is open. Constraints (18) to (19) indicate that the
decision variables are binary.

2.6. Algorithm Design

The medical waste reverse logistics network model designed in this paper belongs to a
multi-objective combinatorial optimization model, which poses a high level of complexity.
Therefore, this paper designed a fast Non-dominated Sorting Genetic Algorithm (NSGA-II)
to solve the model. NSGA-II is one of the currently efficient multi-objective evolutionary
algorithms, and its advantages lie in the following. Firstly, computational complexity
through fast non-dominated sorting; secondly, it employs an elitist strategy to merge the
parent and offspring population, enabling the next generation’s population to be selected
from double the space, thereby preserving excellent individuals; finally, it introduces a
crowding distance comparison mechanism to ensure an even distribution of individuals
across the entire Pareto domain.

The main process of the proposed NSGA-II algorithm is as follows.
Step 1: Randomly generate an initial population Pt with a size of N, where t = 0;
Step 2: Apply selection, crossover, and mutation operations to the population Pt

to generate an offspring population Qt with a size of N. Merge Pt and Qt into a mixed
population Rt.

Step 3: Conduct a fast non-dominated sorting on the population Rt to obtain a non-
dominated solution set {F1, F2, . . ., Fi}, set Pt+1 = ∅, i = 0. When Pt+1|+|Fi| ≤ N, and
update Pt+1 = Pt+1 ∪ Fi, i = i + 1; otherwise, calculate the crowding distance for individuals
in Fi, sort individuals in Fi in descending order based on dominance relation < n, and
update Pt+1 = Pt+1 ∪ Fi [1: (N − |Pt+1|)].

Step 4: t = t + 1, if t > T (where T is the maximum number of evolution generations),
terminate the algorithm; otherwise, go back to Step 2.

For the encoding of the multi-objective facility location and routing problem studied
in this paper, natural number encoding is adopted. Assuming the numbers assigned to
m processing centers are 1, 2,..., m, and the numbers assigned to n collection points are
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m + 1, m + 2, . . ., m + n, a solution is represented by a sequence of numbers comprising
the permutation of m processing centers {1, 2, . . ., m} and n collection points {m + 1,
m + 2, . . ., m + n}. If a processing center is followed by no collection point, it signifies
that the processing center is not operational. On the other hand, if a processing center is
followed by a collection point, it indicates that the processing center is operational, and the
frequency of occurrence of the collection point represents the number of waste recovery
routes originating from that processing center.

Using the example of 3 treatment centers and 9 collection points, where 1–3 represent
treatment centers and 4–12 represent collection points; processing centers that are not
selected in the coding of the feasible scenarios will not be shown in the coding diagram as
shown in Figure 4. Processing center 3 is operational; since processing centers 1 and 2 are not
selected, they will not be shown in the coding diagram and will not be operational. There
are two waste transportation routes from processing center 3: 3→6→5→11→4→7→6→3
and 3→8→12→10→9→3.

Figure 4. The problem encoding diagram.

3. Results
3.1. Validation of the Medical Waste Generation Forecasting Model

To validate the accuracy of the SEIR model, this paper uses the mean absolute percent-
age error (MAPE) between the model-calculated results, as shown in Equation (21). Here,
R(t) represents the number of cases, I(t) represents the number of the I population fitted by
the model. A smaller MAPE value indicates a closer fit between the model results and the
actual data, indicating a higher prediction accuracy of the model.

MAPE =
100%

t

t

∑
i=1

∣∣∣∣∣R(t) − I(t)
R(t)

∣∣∣∣∣ (21)

Actual data from Wuhan city when COVID-19 occurred are used for the model verifi-
cation. According to the data from the Wuhan Municipal Health Commission, this paper
takes the initial values of the SEIR model as shown in Table 1 to simulate Formula (3) in
MATLAB software (R2021b). The simulated number of the I population is then fitted with
the actual infection data from Wuhan for 35 days, from 23 January 2020 to 26 February
2020. At this point, the MAPE is 18.08%. The fitting curve is shown in Figure 5. This
demonstrates that the SEIR epidemiological prediction model proposed in this paper can
accurately predict the generation of medical waste.

Table 1. Initial values for the epidemiological dynamics model.

Parameters Parameter Description Parameter Values

S(0) Initial value of susceptible population 110,810.00
E(0) Initial value of exposed population 105.00
I(0) Initial value of infected population 0.00
R(0) Initial value of removed population 0.00
N Total population potentially affected 110,915.00
β Infection rate from exposed to susceptible 1987.59 × 10−4

δ Infection rate from infected to susceptible 4802.70 × 10−4

µ Recovery rate 585.11 × 10−4

γ Death rate 12.70 × 10−4

α Conversion rate from exposed to infected 1228.57 × 10−4
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Figure 5. Comparison between predicted values and actual confirmed patient numbers.

3.2. Case Setup and Solution Results

The relevant data used in the case analysis are sourced from the Xi’an Statistical Year-
book and the Xi’an Health Information website, with parameters for processing centers
referenced from the literature [21]. In this case, 79 designated hospitals and 11 isolation
points, as government-designated collection points, are considered. Additionally, 5 exist-
ing waste processing centers—Senxin Processing Center (j = 1), Taida Processing Center
(j = 2), Jiangcungou Processing Center (j = 3), Lantian Processing Center (j = 4), and Weida
Processing Center (j = 5)—are selected as candidate points for waste treatment during the
epidemic, with specific locations shown in Figure 6. Formula (22) is used to convert the
latitude and longitude distances between nodes into actual distances lij between node i and
node j. Here, the Earth’s radius R is 6371 km, and (x1, y1) and (x2, y2) are the latitude and
longitude coordinates of the nodes in question. In addition, the per capita economic loss
caused by the leakage of medical waste is 34275 CNY [4]. The values of other parameters
can be found in Tables 2 and 3.

lij = Rarccos(sin y1 sin y2 + cos y1 cos y2 cos(x1 − x2)) (22)

Table 2. Parameters setting for processing centers.

Parameters j = 1 j = 2 j = 3 j = 4 j = 5

Hdj 45.00 45.00 45.00 45.00 45.00
Odj 5.52 5.83 5.27 5.65 5.43
Sdj 1061.85 889.76 904.77 1029.43 935.19
ρdj 12.74 10.67 10.85 12.35 11.22
Bdj 2175.00 2062.50 2250 2100 2212.5

Table 3. Relevant parameters for transfer vehicles.

Ok V Hk r Bk

400.00 60.00 15.00 0.50 2.50
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Figure 6. Distribution map of candidate points for processing centers and collection points.

The numerical experiments in this paper are conducted on a system with an Intel
Core i7-9750H CPU @2.60 GHz, 8 GB of memory, and Windows 10 operating system using
MATLAB R2021b. The parameters for the NSGA-II algorithm are set as follows: local search
iteration is 800, NP (population size) is 100, crossover probability (Pc) is 0.9, and mutation
probability (Pm) is to 0.1. The optimal results are selected through 30 random tests.

The solutions obtained by the NSGA-II algorithm are shown in Table 4. Here, opt 1
and opt 2 represent the solutions obtained under the optimal conditions for economic cost
(F1) and risk (F2) individually. In addition, opt 3 is the optimal non-dominated solution
with maximum crowding distance. The diagrams of the solutions are shown in Figure 7.

Table 4. Solution set of optimal values for each objective.

Solution Processing Centers Objective Functions
F1 (CNY) F2 (CNY × ton)

opt 1 j = 1, 2 250,916.13 85,396.41
opt 2 j = 2, 3 264,211.54 74,749.43
opt 3 j = 2, 3 263,314.26 76,981.22

Analyzing the obtained Pareto solution from different perspectives of decision makers,
the results reveal the following.

(1) From the government’s perspective, opt 3 shown in Figure 7c is more balanced
in terms of economic cost and risk. In terms of risk, it is 11.1% less than opt 1, while only
2.91% more than opt 2. In terms of economic cost, it is 0.34% less than opt 2, while only
4.71% more than opt 1.

(2) From the perspective of the processing centers, opt 1 has the lowest economic cost,
5.30% less than opt 2, and 4.70% less than opt 3, making it the optimal choice.

(3) Considering public risk, opt 2 is the best choice, as shown in Figure 7b. The
corresponding risk is 14.24% less than opt 1 and 2.99% less than opt 3.
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Figure 7. Schematic diagram of location-routing option for each objective.

3.3. Analysis of Disposal Demand in Different Scenarios

In order to study the variation in costs and risks of the reverse logistics network for
medical waste in two scenarios of a routine and public health emergency, a comparison is
now being made between the solutions for both scenarios, as shown in Table 5.

Table 5. Comparison of decision solutions in different scenarios.

Different Scenarios W(t) (ton) P(t)
Processing

Centers
Number of

Transfer Vehicles F1 (CNY) F2 (CNY × ton)

Routine Scenario 20.25 0.21 j = 3 2 99,894.11 11,274.97
Public Health Emergency Scenario 65.61 0.86 j = 1, 2 5 250,929.17 85,679.76

By analyzing the above results, it can be observed that compared to routine scenarios,
when a public health emergency occurs, the objective functions significantly increase.
Specifically, the economic cost rises by 151.19%, and risk increases by 659.91%. Meanwhile,
the required number of processing centers increases by 100%, and the number of transfer
vehicles increases by 150%. This indicates that the existing infrastructure is far from
sufficient to meet the processing capacity needed during a public health emergency.

3.4. Analysis of Different Risk Magnitudes

To adjust the decisions as the magnitude of a public health emergency changes, this
paper designs cases for large-, medium-, and small-scale public health emergencies follow-
ing the classification rules for emergency in the “Emergency Response Law of the People’s
Republic of China”. The results are shown in Table 6.
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Table 6. Results of solutions under different public health emergency scales.

Different Scales I(t) W(t) (ton) P(t)
Processing

Centers
Number of

Transfer Vehicles F1 (CNY) F2 (CNY × ton)

Small Scale 596 25.99 0.29 j = 3 2 112,841.93 16,220.09
Medium Scale 1514 34.53 0.39 j = 2 3 131,549.33 21,146.57

Large Scale 4569 65.61 0.86 j = 1, 2 5 250,929.17 85,679.76

From Table 6, it is evident that with the change in the scale of a public health emergency,
the number of people affected increases significantly. Correspondingly, the generation
of medical waste also increases. Without timely adjustments to the treatment plans, the
existing plans cannot meet the sudden surge in processing requirements. Decision makers
may need to increase the construction of appropriate processing centers and dispatch more
transfer vehicles to meet the disposal demand. Therefore, the model proposed in this paper
can provide decision makers with reasonable facility location and transportation path
solutions based on the different stages of the development of public health emergencies.

3.5. Analysis of Transfer Vehicle Selection

Considering that the capacity of transfer vehicles directly affects the transportation
efficiency, this paper conducts a sensitivity analysis of vehicle capacity to study the impact
of vehicle selection on the objective functions under different scenarios. The decision results
for vehicle capacities of 5, 10, 15, and 20 tons are shown in Table 7.

Table 7. Impact of different vehicle capacities on objective functions under different scenarios.

Vehicle
Capacity

Routine Scenario Public Health Emergency
Number of

Vehicles F1 (CNY) F2 (CNY × ton) Number of
Vehicles F1 (CNY) F2 (CNY × ton)

5 5 99,451.09 12,909.09 14 25,0745.40 97,779.90
10 3 99,641.70 12,012.22 7 25,0861.50 93,482.94
15 2 99,973.10 12,586.80 5 25,1419.70 87,475.72
20 2 102,659.80 12,734.68 4 25,2242.00 88,765.20

From Table 7, it can be observed that under routine scenarios, as the vehicle capacity
increases from 5 to 20 tons, the risk initially decreases and then increases. When the vehicle
capacity is 10 tons, the risk is minimized. In the case of a public health emergency, the risk
shows a similar trend of initially decreasing and then increasing, with the minimum risk
occurring when the vehicle capacity is 15 tons. Therefore, it can be concluded that under
routine scenarios, choosing transfer vehicles with a capacity of 10 tons can gain better bene-
fits. In a public health emergency, transfer vehicles with a larger capacity, such as 15 tons,
should be chosen to enhance transportation efficiency and reduce transportation risks.

4. Conclusions

This paper explores the optimization of a reverse logistics network for medical waste
under an uncertain proposal demand. To address the issue of unstable demand for medical
waste disposal, this study has developed a prediction model based on the SEIR epidemi-
ological dynamics method. The model forecasts the disposal needs for medical waste in
both routine and public health emergency scenarios. Additionally, a medical waste reverse
logistics network model has been established, taking into account both cost and risk factors.
The NSGA-II algorithm is designed to solve this model. Finally, the effectiveness of the
model and algorithm has been validated through real cases in Xi’an city and multiple
test cases.

The research results can provide decision support for relevant stakeholders in deter-
mining the optimal facility location and transportation routes under different scenarios.
Based on the computational results, the main conclusions of this study are as follows.
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(1) The medical waste prediction model designed in this study can reasonably and
effectively predict the amount of medical waste generated by fitting the number of
infections in Wuhan from 23 January 2020 to 26 February 2020, with a mean relative
error (MAPE) of 18.08%.

(2) The medical waste reverse logistics network model proposed in this paper can provide
corresponding location and transportation route solutions from the perspectives of
different stakeholders such as the government, processing centers, and the public.
In a public health emergency, decision makers can formulate reasonable plans to
increase processing facilities’ transportation plans based on the scale of the public
health emergency.

(3) A sensitivity analysis of vehicle capacity indicates that, under routine scenarios, a
10-ton capacity transfer vehicle is preferable. For public health emergencies, on the
other hand, a transfer vehicle with a capacity of 15 tons should be selected. This
approach helps reduce transportation risks and economic costs.

5. Future and Prospects

(1) With the increasing maturity of AI technology, we believe that AI technology can
be used to predict the amount and type of medical waste generated using data
analysis and machine learning algorithms; it can also be used in combination with
GIS technology to provide decision-making support for the siting of medical waste
treatment centers; and the use of real-time traffic data for real-time optimization of
the transfer paths of medical waste, among other applications to solve the problem of
medical waste treatment.

(2) Due to the limitation of this paper, only data from China were collected for the study,
and in the future, data from other countries will need to be considered to validate the
model mentioned in this paper.

(3) With the increasing burden of road safety, aspects such as noise and exhaust pollutants
should also be considered in future studies to minimize pollution.

(4) Since the siting of temporary hospitals has an important impact on the design of
medical waste reverse logistics networks, the location of waste treatment centers,
reverse logistics path planning, and emergency response capabilities need to be fully
considered in the siting process to ensure that waste can be handled and transferred
in a safe and timely manner. Therefore, the location of temporary hospitals should
also be considered in future studies.
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