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Abstract: This study addresses the critical challenge of accurately forecasting electricity consump-
tion by utilizing Exponential Smoothing and Seasonal Autoregressive Integrated Moving Average
(SARIMA) models. The research aims to enhance the precision of forecasting in the dynamic energy
landscape and reveals promising outcomes by employing a robust methodology involving model
application to a large amount of consumption data. Exponential Smoothing demonstrates accu-
rate predictions, as evidenced by a low Sum of Squared Errors (SSE) of 0.469. SARIMA, with its
seasonal ARIMA structure, outperforms Exponential Smoothing, achieving lower Mean Absolute
Percentage Error (MAPE) values on both training (2.21%) and test (2.44%) datasets. This study
recommends the adoption of SARIMA models, supported by lower MAPE values, to influence
technology adoption and future-proof decision-making. This study highlights the societal implica-
tions of informed energy planning, including enhanced sustainability, cost savings, and improved
resource allocation for communities and industries. The synthesis of model analysis, technologi-
cal integration, and consumer-centric approaches marks a significant stride toward a resilient and
efficient energy ecosystem. Decision-makers, stakeholders, and researchers may leverage findings
for sustainable, adaptive, and consumer-centric energy planning, positioning the sector to address
evolving challenges effectively and empowering consumers while maintaining energy efficiency.

Keywords: consumer-centric energy forecasting; exponential smoothing; SARIMA model; energy
sector resource planning; consumer engagement; strategic investment; consumption patterns

1. Introduction
1.1. Background

Sustainable energy management holds absolute importance in the contemporary
global view, addressing multifaceted environmental, economic, and social challenges. At
its core, sustainable energy management entails the judicious utilization of resources to
meet current energy demands without compromising the ability of future generations to
meet their own needs. One of its essential aspects lies in mitigating the adverse effects
of traditional energy sources, primarily fossil fuels, which have long been fundamental
to global energy production but pose significant environmental hazards, including air
and water pollution, greenhouse gas emissions, and climate change. By transitioning
towards renewable energy sources such as solar, wind, hydroelectric, and geothermal
power, sustainable energy management endeavors to curtail these deleterious impacts,
building a cleaner, healthier environment for the present and future inhabitants of our
planet [1–3].

Sustainable energy management offers a pathway towards energy security and
resilience, reducing reliance on finite and geopolitically unstable fossil fuel reserves.
Diversification of energy sources through the integration of renewables enhances energy
independence, mitigating vulnerabilities associated with supply disruptions and price
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fluctuations in the global energy market. This bolsters national security and builds eco-
nomic stability by insulating economies from the volatility inherent in fossil fuel markets.
The decentralized nature of renewable energy systems empowers local communities and
regions to harness their natural resources, building economic development and job creation
in rural and marginalized areas [4–7].

Sustainable energy management plays a vital role in advancing social equity and
inclusivity. Access to affordable, reliable, and clean energy is indispensable for human
development, underpinning essential services such as healthcare, education, and communi-
cation. By extending energy access to underserved populations, particularly in developing
countries, sustainable energy initiatives contribute to poverty alleviation, improve liv-
ing standards, and enhance socio-economic opportunities. Furthermore, by prioritizing
community engagement and participatory decision-making processes, sustainable energy
projects promote social cohesion and empower marginalized groups, ensuring that the
benefits of the energy transition are equitably distributed across society [8–10]. It catalyzes
innovation and technological advancement, driving the transition towards a knowledge-
based, low-carbon economy. Investments in renewable energy research, development,
and deployment stimulate technological innovation, driving down costs and improving
efficiency, thereby enhancing the competitiveness of clean energy technologies compared
to their conventional counterparts. This builds a virtuous cycle of innovation, job creation,
and economic growth, positioning countries at the forefront of the burgeoning green econ-
omy. Furthermore, by embracing energy efficiency measures and adopting innovative grid
technologies, sustainable energy management optimizes energy usage, reducing waste and
increasing productivity across sectors [11–13].

The importance of sustainable energy management cannot be overstated in addressing
the complex challenges of the 21st century. Sustainable energy initiatives offer a pathway
toward a more prosperous, resilient, and inclusive future for humanity by mitigating
environmental degradation, enhancing energy security, building social equity, and driving
technological innovation. Embracing sustainability principles in energy management is not
merely a choice but a moral imperative, essential for safeguarding the well-being of current
and future generations and ensuring the long-term viability of our planet.

Energy forecast analysis is integral to sustainability efforts, supporting informed
decision-making and long-term planning in the energy sector [14,15]. It enables stake-
holders to anticipate future energy demand, identify trends, and develop strategies for
resource allocation and investment decisions [16,17]. Energy forecasting is particularly
crucial in integrating renewable energy sources into the grid, addressing challenges related
to intermittency, and contributing to the transition towards a low-carbon energy future.
Collectively, these measures build a more sustainable and resilient energy system that
addresses critical challenges related to resource conservation, environmental protection,
and climate change mitigation [18].

ARIMA, SARIMA, and ETS are widely used time series forecasting models in en-
ergy consumption estimation. ARIMA, or Autoregressive Integrated Moving Average,
is a statistical method designed to capture and forecast patterns in time-series data by
incorporating autoregressive and moving average components. The model is characterized
by three primary parameters: p, d, and q, representing the autoregressive order, degree
of differencing, and moving average order, respectively. SARIMA, or seasonal ARIMA,
extends the ARIMA framework to account for seasonal patterns and trends in the data. It
incorporates additional parameters to capture seasonal variations, making it particularly
suitable for forecasting energy consumption data, which often exhibits recurring patterns
over time. ETS, or Error, Trend, and Seasonality, is another widely used forecasting model
that decomposes time-series data into components representing error, trend, and seasonal-
ity. ETS models are flexible and adaptable, capturing various patterns and dynamics in the
data [19–21].

These models play a crucial role in energy consumption estimation and forecast-
ing. Accurate energy consumption forecasts are essential for efficient resource planning,
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allocation, and management in the public and private sectors. By providing insights into
future energy demand, these models enable utilities, energy providers, and policymakers
to make informed decisions regarding infrastructure investments, capacity planning, and
energy procurement strategies. This, in turn, helps optimize resource utilization, reduce
wastage, and minimize the environmental footprint associated with energy production and
consumption [22,23].

1.2. Related Literature

Energy efficiency initiatives rely heavily on accurate energy consumption forecasts
to identify optimization opportunities and reduce costs [24–26]. Accurate predictions
are crucial for promoting sustainability and achieving climate goals by informing strate-
gies to transition to cleaner, renewable energy sources and improve energy efficiency
standards [23]. ARIMA, SARIMA, and ETS models are critical in energy consumption
estimation and forecasting, facilitating efficient resource planning and supporting sustain-
ability initiatives [27,28]. These models enable utilities to balance load effectively, anticipate
peak demand periods, and manage energy storage systems efficiently [29–31]. Predictive
models also aid in planning maintenance and infrastructure upgrades, informing gov-
ernment policies, and guiding investments in renewable energy [32–34]. As the energy
sector evolves, accurate energy consumption forecasting remains essential for shaping a
sustainable energy future.

The literature on electricity consumption predictions offers several merits and de-
merits that shape the understanding and application of forecasting models in the energy
sector. The literature showcases a wide array of methodologies, such as Convolutional
Neural Networks (CNNs), Long Short-Term Memory (LSTM) Networks, Support Vector
Machines (SVM), and Artificial Neural Networks (ANNs) [35–37]. This diversity allows for
exploring various approaches to electricity consumption prediction, catering to different
data characteristics and prediction requirements. Studies have demonstrated that advanced
prediction models, such as those incorporating deep learning techniques like LSTM with
attention mechanisms, can significantly enhance prediction accuracy [36,38]. These models
leverage complex patterns in electricity consumption data, leading to more precise forecasts.
Some research integrates external factors like climate information, economic indicators,
and geodemographic factors to enhance the predictive capabilities of models [39–41]. The
literature explores electricity consumption predictions in diverse sectors such as residential
buildings, hospitals, universities, and public buildings [42–45]. This broad application
scope demonstrates the versatility of prediction models across different domains. On the
other hand, one of the challenges highlighted in the literature is the issue of insufficient
training data, which can hinder the performance of traditional prediction methods [46].
Limited data availability may restrict the accuracy and generalizability of models, espe-
cially in complex prediction scenarios. Some studies highlight the high computational
cost of specific prediction models, such as those utilizing deep learning algorithms [46].
This complexity can pose challenges in real-time applications or scenarios requiring rapid
decision-making based on forecasts. While advanced models like CNN and LSTM of-
fer improved accuracy, they may lack interpretability compared to traditional regression
models [47]. The black-box nature of some complex models can make it challenging to un-
derstand the underlying factors driving predictions. Single intelligent algorithmic models,
while effective in capturing patterns in data, may lack robustness in predicting electricity
consumption under varying conditions [48]. Combining multiple models or developing
ensemble approaches may be necessary to enhance prediction stability.

While a substantial body of literature concerning electricity consumption forecasts
exists, comprehensive research examining the ramifications of these predictions for the
energy sector is scarce. The research gap in the literature regarding the implications of
electricity consumption predictions for the energy sector lies in the need for holistic studies
that integrate electricity consumption forecasts and the broader impact of their results.
The existing literature provides valuable insights into the technical aspects of electricity
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consumption prediction and its relevance for energy planning. However, understanding
the societal implications of these predictions for consumers and industries and the need
for continuous monitoring and adaptation strategies to ensure a resilient and sustainable
energy future is crucial. Despite advancements in sustainable energy management, a critical
need exists for accurate energy consumption forecasts to guide decision-making in the
energy sector and facilitate the transition to a more sustainable energy future. Compre-
hensively evaluating the performance of these models and understanding their broader
implications for energy sector planning and societal well-being is crucial. This study aims
to address this gap by employing advanced time series analysis techniques to accurately
forecast electricity consumption and explore these forecasts’ multifaceted implications. By
combining technical forecasting with a comprehensive analysis of social consequences,
this study aims to create a more resilient, equitable, and sustainable energy future for all
stakeholders involved.

1.3. Objectives and Research Questions

As the global energy view continues to evolve, the importance of accurate energy
consumption forecasts will only increase, underscoring the significance of these models
in shaping a more sustainable and resilient energy future. This study will employ time
series analysis to understand the stochastic mechanisms of electricity usage patterns and
predict future consumption based on historical data. The benefits of time-series data will be
analyzed, and the optimal p, d, and q values in time-series models will be determined. The
primary aim of this study is to conduct a comprehensive analysis of electricity consumption
forecasting models, with a specific focus on evaluating the performance of the Exponential
Smoothing and Seasonal Autoregressive Integrated Moving Average (SARIMA) approaches.
By employing these models on electricity consumption data, this study aims to assess their
compatibility with historical trends, emphasizing the consideration of multiplicative trends
and seasonal effects. The overarching goal is to provide insights into the effectiveness of
these models in predicting electricity consumption, thus contributing to the advancement
of forecasting methodologies within the energy sector.

The primary objective of this study is to harness the power of advanced time series
analysis techniques to forecast electricity consumption patterns accurately. Beyond the
technical aspect of prediction, this study explores the multifaceted implications of these
forecasts. It aims to explore how these predictions can inform energy sector planning
strategies, guiding decisions related to infrastructure development, resource allocation,
and policy formulation. Moreover, this study seeks to unravel the societal repercussions of
accurate energy consumption forecasts, delving into their impact on community well-being,
social equity, and environmental sustainability. By combining technical forecasting with a
comprehensive analysis of social implications, this study aspires to create a more resilient,
equitable, and sustainable energy future for all stakeholders involved.

This study aims to address several key research questions to fulfill its objectives. These
questions will be answered and discussed by interpreting the results of the Exponential
Smoothing model and the SARIMA model test for predicting electricity consumption patterns.

RQ.1. Model Performance and Comparison—How do the Exponential Smoothing and SARIMA
models compare in predicting electricity consumption?

RQ.2. Implications for Energy Sector Planning—How does accurate electricity consumption
forecasting impact the energy sector?

RQ.3. Consumer and Industry Impact—How do accurate electricity consumption forecasts
empower consumers?

RQ.4. Continuous Monitoring and Adaptation—Why are continuous monitoring and forecasting
crucial for staying updated on evolving trends in electricity consumption?
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1.4. Practical Implications and Study Outline

The importance of this study is multifaceted, stemming from its unique combination
of technical forecasting and social analysis. Firstly, by rigorously evaluating the perfor-
mance of forecasting models such as ARIMA, SARIMA, and ETS, this study provides
energy stakeholders with essential insights. These insights are instrumental in guiding
strategic decisions on energy infrastructure development, resource allocation, and policy
formulation. Accurate electricity consumption forecasts are crucial for strategic energy
infrastructure development, resource allocation, and the effective integration of renewable
energy sources. The findings of this study provide valuable insights into the reliability of
forecasting models. The emphasis on consumer-centric analysis underscores the practical
implications of accurate forecasts for decision-makers, urging the adoption of advanced
models like SARIMA. Additionally, the study’s exploration of the societal implications of
accurate energy consumption predictions fills a crucial gap in existing research. Shining
a light on issues of fairness, equity, and sustainability brings attention to the broader so-
cietal impacts of energy practices. This holistic approach enhances our understanding of
energy dynamics and paves the way for more inclusive and sustainable energy policies
and practices.

The following Materials and Methods Section outlines a comprehensive approach to
studying electricity usage patterns, employing advanced time series analysis techniques,
including Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive
Integrated Moving Average (SARIMA), and Error, Trend, Seasonality (ETS) models, with
meticulous calibration and dataset preprocessing, to gain nuanced insights into histori-
cal trends and fluctuations, providing a foundation for strategic decision-making in the
energy sector. The Results Section provides a detailed analysis of the performance of the
Exponential Smoothing (ETS) and Seasonal Autoregressive Integrated Moving Average
(SARIMA) models in forecasting electricity consumption. A comprehensive discussion
provides valuable insights into the strengths, limitations, and future directions of electricity
consumption forecasting, emphasizing the need for continuous monitoring, adaptation,
and collaboration across sectors and disciplines. This study ends with the Conclusion
Section, which summarizes the analysis of electricity consumption forecasting models, un-
derscores the broader implications for energy sector planning, and addresses the challenges
and opportunities in the evolving energy sector.

2. Materials and Methods

This research comprehensively explores electricity usage patterns by applying ad-
vanced time series analysis techniques, focusing on leveraging data. The overarching
objective is to gain a nuanced understanding of historical trends and fluctuations in electric-
ity consumption and to develop robust forecasting models capable of accurately predicting
future usage patterns. Forecasting methods are critical in estimating power consumption
and its variation in high resolution because, in actuality, the power market interactions
are carried out in minutes, 5 min, 15 min, and 30 min [23]. Annual power forecasting is
useful for general decisions at a national or international level. The methodology employs
the Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive Inte-
grated Moving Average (SARIMA), and Error, Trend, and Seasonality (ETS) models. These
models are chosen for their effectiveness in capturing non-seasonal and seasonal patterns
in time-series data. Each model is carefully calibrated to align with the characteristics of
the electricity consumption dataset spanning from 1973 to 2019 [49]. The research aims
to capture long-term trends and cyclical patterns that may influence present and future
consumption behaviors by encompassing a broad historical perspective. This section eluci-
dates the step-by-step process, from model selection to dataset preprocessing, validation,
and model calibration, underscoring the robustness of our approach in providing reliable
insights for strategic decision-making.
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2.1. ARIMA and SARIMA Models

The ARIMA (Autoregressive Integrated Moving Average) model is a powerful statis-
tical technique for time series forecasting that effectively captures and predicts patterns
and trends. It comprises three main components: Autoregressive (AR), Integrated (I), and
Moving Average (MA). The AR component assesses the relationship between observations
separated by a fixed time lag (p). The Integrated component makes the data stationary
by differencing (d), while the Moving Average component models short-term fluctuations
in the data (q) [50–54]. The ARIMA model combines these three components to capture
complex patterns in time-series data. By adjusting the parameters (p, d, q), analysts can
tailor the model to fit the specific characteristics of the analyzed data. ARIMA models are
widely used for forecasting purposes in various fields, such as finance, economics, epi-
demiology, and climate science. They offer a flexible and versatile framework for modeling
and predicting time-series data, making them indispensable tools for decision-making and
planning in numerous domains [55,56].

SARIMA, an acronym for Seasonal Autoregressive Integrated Moving Average, is
a variation in the ARIMA model specifically designed to capture seasonal patterns in
time-series data. It introduces seasonal components (P, D, Q) for seasonal variations.
The seasonal autoregressive order (P) captures past observations’ influence on the series’
current value, while seasonal differencing (D) removes seasonal trends. The seasonal
moving average order (Q) models the relationship between an observation and the residual
error from a moving average model applied to lagged seasonal observations [57]. Similar
to the ARIMA model, SARIMA consists of three main components: Autoregressive (AR),
Integrated (I), and Moving Average (MA). However, SARIMA introduces an additional set
of parameters to capture seasonal patterns. These parameters are P, D, and Q, representing
the seasonal autoregressive order, seasonal differencing, and seasonal moving average
order, respectively. The SARIMA model incorporates seasonal components (P, D, Q,s) and
non-seasonal components (p,d,q) found in the ARIMA model. The seasonal components
include the autoregressive order, the difference order, the moving average order, and the
number of periods.

The seasonal autoregressive order (P) captures the relationship between an observa-
tion and its seasonal lagged values. Considering the data’s seasonality, it accounts for
past observations’ influence on the series’ current value. The seasonal differencing (D)
component involves subtracting the observation from its lagged value to remove seasonal
trends and make the data stationary. Finally, the seasonal moving average order (Q) models
the relationship between an observation and the residual error from a moving average
model applied to lagged seasonal observations [58–60]. By incorporating these seasonal
components into the ARIMA framework, SARIMA models can effectively capture and
forecast time-series data with seasonal patterns. This makes them particularly useful for
analyzing and predicting phenomena that exhibit regular seasonal variations, such as
monthly sales data, quarterly financial reports, or yearly weather patterns [60,61]. SARIMA
models are widely used in various fields, including economics, finance, meteorology, and
epidemiology, where understanding and predicting seasonal trends are crucial for decision-
making and planning. They offer a powerful tool for analysts and researchers to extract
insights from seasonal data and make informed forecasts, facilitating better strategic and
operational decisions in diverse domains.

Time series forecasting typically favors using the autoregressive Integrated Moving
Average (ARIMA) model. Utilizes the historical data points of the time series. Precise pre-
diction reduces costs and ensures accurate planning and production activities. Univariate
time series prediction refers to predicting future values based solely on previous time series
values. When the series is not utilized for prediction purposes, it is called multivariate
time series forecasting. ARIMA uses historical data to forecast future values. ARIMA
consists of three primary components. The elements in question are p, d, and q. The order
p represents the autoregressive (AR) term. A time series is given by it. p is the number of
time lags to regress on, ϵt is the noise at time t, and β is a constant. The linear regression
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model exhibits both time delays and predictors. For the estimators to be independent, they
must have a difference (d), making the series stationary. The value is 0 when the series has
already achieved stationarity. The symbol q represents the moving average (MA) series
yt = Φ(L)q ∈t + ∈t. Φ, which is defined analogously to being absorbed into the constant
Θ polynomial. In addition, ARMA(p,q) models are simply a sum of AR(p) and MA(q)
models. Displays the count of prediction errors that have been deferred. If p denotes the
number of lags of Y, then Y was utilized as the predictor. Then, ARIMA can be represented
as a time series forecast t, as shown in Equation (1). To transform ARMA (p,q) to ARIMA
(p,d,q) to help tackle non-stationary data, an integration operator ∆d and d, where d is
the order of differencing, are expressed and used. To clarify this statement, LY is Y delays
[extended to P delays], and LYE has lagged prediction errors [extended up to q lag] [62], as
shown in Equation (1).

Yt = Const + LY + LYE (1)

The combination used here is a linear combination of delays. Thus, the primary
purpose is to determine the values of p, d, and q. The minimum difference d must be
chosen so that the autocorrelation (AC) reaches zero. The order of AR can determine P. It
should equal the lags in partial autocorrelation (PAC), significantly exceeding the specified
limit. This is also a conditional correlation. It shows PAC, where y is considered the
response variable, and the predictor variables are x1, x2, and x3. The PAC between y and x3
is shown in Equation (2). It is calculated as the correlation between the regression residuals
of y on x1 and x2 and the residuals of x3 on x1 and x2 [62].

In regression, this partial correlation could be found by correlating the residuals from
two different regressions: the first is the regression in which we predict y from x1 and x2.
The second is the regression, which predicts x3 from x1 and x2. Basically, it is correlated
with the “parts” of y and x3 that are not predicted by x1 and x2. More formally, we can
define the sample autocorrelation function as just described as

p̂k = rk =

n−k
∑

t=1
(Yt − Y)(Yt−k − Y)

n
∑

t=1
(Yt − Y)2

, k = 0, 1, 2, . . . (2)

A plot p̂k versus k is a sample correlogram. For large sample sizes, p̂k is normally
distributed with mean pk, and variance is approximated by Bartlett’s approximation for
processes in which pk = 0 for k > m. The sample partial autocorrelation function can be
represented as Equation (3).

ϕ̂11 = p̂1

ϕ̂kk =
p̂k−

k−1
∑

j=1
ϕ̂k−1,j p̂k−j

1−
k−1
∑

j=1
ϕ̂k−1,j p̂k−j

(3)

where ϕ̂kj = ϕ̂k−1,j − ϕ̂kkϕ̂k−1,k−j, j = 1, 2, . . . k − 1. For a white noise (WN) process,
Var(ϕ̂kk) ≈ 1

n . ±2/n1/2 can be used as critical limits ϕkk to test the hypothesis of a WN pro-
cess. It shows the error in the lagged prediction. AC can be calculated using Equation (4).
y represents the time series average, k indicates the delay (accepted for k ≥ 0), and N
represents the full series value.

AC =
∑N−K

i=1 (yi − y)(yi+k − y)

∑N
i=1(yi − y)2 (4)

If seasonal patterns are needed in the time series, the seasonal term is added to
ARIMA and becomes the seasonal ARIMA model (SARIMA). The model can be written as
Equation (5) [63].

ARIMA(p, d, q)x(P, D, Q)S (5)
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(p,d,q) is the non-seasonal part; (P,D,Q)S is the seasonal part of the model, and S is the
season’s period number. SARIMA is used in this paper because ARIMA does not support
time series with a seasonal component, but it is used for univariate data that includes
seasonality and trends. Therefore, the following steps have been taken into consideration
in SARIMA:

1. The first step is to check whether the series is stationary. If a time series has a trend
average that varies over time or seasonality that varies over specific time periods,
then it should be converted to a stationary time series.

2. The differencing mechanism is applied. If the time series is not stationary, differencing
is applied to make the time series stationary. Take the first difference and check
stationarity until it becomes stationary. Seasonal differences should also be controlled.

3. Validation samples are created.
4. AR and MA are included based on AC and PAC.
5. The model becomes ready for prediction.
6. Validate the model by comparing the predicted values.

The parameters (p,d,q) of the SARIMA model are selected. ‘p’ determines the number
of autoregressive terms, ‘d’ determines the differencing level, and ‘q’ determines the
number of moving average terms. These parameters were manually selected by looking at
partial autocorrelation and autocorrelation functions. The p and d parameters are identified
according to the behavior of ACF and PCF presented in Table 1 [64].

Table 1. The behavior of ACF and PACF for ARMA models.

Model ACF PACF

MA(q) Cuts off after lag q Exponential decay and/or damped sinusoid
AR (p) Exponential decay and/or damped sinusoid Cuts off after lag p

ARMA (p,q) Exponential decay and/or damped sinusoid Exponential decay and/or damped sinusoid

Information criteria such as the Akaike Information Criterion (AIC) or Bayesian
Information Criterion (BIC) were used to evaluate the model’s fit. After the model was
selected, the prediction and model validation stages were started. The model parameters
were chosen as follows in Equation (6):

ARIMA (p = 1, q = 1, d = 1) x (P = 1, D = 0, Q = 1, T = 12) (6)

These parameters were set as p = 1 (number of autoregressive terms), d = 1 (de-
gree of differencing), and q = 1 (number of moving average terms). While p = 1 and
q = 1 indicate that the model is built on the previous value and the previous error term,
d = 1 suggests that the data are made stationary by differencing once. In the ARIMA
model, seasonal_order = (1,0,1,12) defines the seasonal components of the SARIMA model.
Additionally, 1,0,1 indicates the order of the seasonal AR and MA terms, and 12 indi-
cates the length of the seasonal cycle (e.g., 12 months for monthly data). If enforce_
invertibility = False, it does not enforce that the model’s moving average (MA) polynomial
is invertible. This can make the model more stable in some cases. enforce_stationarity = False:
It does not require the model’s autoregressive (AR) structure to be stationary. This parame-
ter can be helpful when working with non-stationary series [62,65].

Since the SARIMA model has seasonal components (P,D,Q,s) in addition to the non-
seasonal components (p,d,q) in the ARIMA model, it has been emphasized in the literature
that the SARIMA model should be used for the analysis of such non-seasonal data. When
seasonal components (P,D,Q,s) were examined, it was stated that the results gave the
necessary prediction results despite the non-seasonal data (p,d,q) without comparison with
the ARIMA model.
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2.2. ETS Model

The ETS model is an abbreviation for “Error, Trend, Seasonality” components and
is a forecasting method used to analyze time-series data. The ETS model predicts future
values using the series’ error, trend, and seasonality components. Considering these three
components, the model produces a smoothed version of the data, which is used to predict
the future behavior of the time series. ETS models are used primarily when seasonality and
trends exist in time-series data. This model is an effective tool for analyzing and forecasting
time-series data by providing flexibility to different trend and seasonality structures. In
this study, an ETS model is defined using the ExponentialSmoothing class, and this model
can be explained as follows:

trend = ‘mul’: Indicates that the trend component is modeled as a multiplier. This
means the trend changes proportionally, increasing or decreasing over time.

seasonal = ‘mul’: Indicates that the seasonal component is also modeled as a multiplier.
This means that the seasonal effect has a rate that varies periodically.

seasonal_periods = 12: Defines the length of the seasonal cycle. It is specified here as
12, a standard period generally used for monthly data. The state space model of the ETS is
given below.

yt = w(xt−1) + r(xt−1)εt

xt = f (xt−1) + g(xt−1)εt
(7)

Here, w, f, and g are coefficients. εt represents the Gaussian white noise series. The
equation that gives yt is known as the observation equation. Explains the relationship
between xt−1 and yt. The equation that gives xt is the transition equation that describes the
development of situations over time.

Fit (smoothing_level = 0.1, smoothing_trend = 0.2, smoothing_seasonal = 0.5): Trains
the model with the specified smoothing parameters. smoothing_level determines the
smoothing coefficient of the error component, smoothing_trend determines the trend
component’s smoothing coefficient, and smoothing_seasonal determines the smoothing
coefficient of the seasonal component. These coefficients affect how “close” or “smooth”
the model will be to the data [62,63,65–67].

2.3. Dataset

The World Energy Consumption dataset used in this study, which shows energy
consumption by different countries, is a collection of critical metrics maintained by “Our
World in Data” and is drawn from “kaggle.com” [49]. The dataset has two primary
variables: date (“DATE”) and electricity consumption (“Electricity_Consumption_in_TW”).
There are a total of 561 full data points in both areas. The dataset comprises power
consumption numbers recorded on specific dates, either annually or monthly. The “DATE”
column displays the dates, while the “Electricity_Consumption_in_TW” column indicates
the electricity usage on those dates, measured in terawatt hours (TW).

Proper formatting of dates is required. If the dates are not in a standardized format,
such as YYYY MM DD, they must be provided for analysis. Code snippets are explicitly
created for preprocessing and checking tasks. The Python NumPy and Panda libraries were
utilized to preprocess the data by removing missing values, as the initial data obtained
were considered sufficient and accurate. In addition, the dataset was examined for any
instances of missing or inaccurate data. Below are the data, arranged by month and year.

Table 2 provides data on the world’s electricity use from 1973 to 2019. The data will
be analyzed to ascertain the changes in electricity usage throughout the provided period
and to forecast future consumption patterns. The dataset includes a graph (Figure 1) that
displays electricity usage over the years. This graph allows us to observe the overall
patterns and recurring changes in electricity consumption over time. In addition, electricity
consumption predictions will be generated after 2019 utilizing time series forecast methods
such as ARIMA and SARIMA. These models demonstrate efficacy in forecasting future
values by using past data. Figure 1 illustrates the temporal evolution of power use.

https://www.kaggle.com/
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Table 2. World electricity consumption between 1973 and 2019 [49].

Electricity_Consumption_in_TW Month Year

35.9728 1 1973
36.1334 2 1973
35.0625 3 1973
33.8416 5 1973
33.5107 6 1973

. . . . . . . . .

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 24 
 

Proper formatting of dates is required. If the dates are not in a standardized format, 
such as YYYY MM DD, they must be provided for analysis. Code snippets are explicitly 
created for preprocessing and checking tasks. The Python NumPy and Panda libraries 
were utilized to preprocess the data by removing missing values, as the initial data ob-
tained were considered sufficient and accurate. In addition, the dataset was examined for 
any instances of missing or inaccurate data. Below are the data, arranged by month and 
year. 

Table 2 provides data on the world’s electricity use from 1973 to 2019. The data will 
be analyzed to ascertain the changes in electricity usage throughout the provided period 
and to forecast future consumption patterns. The dataset includes a graph (Figure 1) that 
displays electricity usage over the years. This graph allows us to observe the overall pat-
terns and recurring changes in electricity consumption over time. In addition, electricity 
consumption predictions will be generated after 2019 utilizing time series forecast meth-
ods such as ARIMA and SARIMA. These models demonstrate efficacy in forecasting fu-
ture values by using past data. Figure 1 illustrates the temporal evolution of power use. 

Table 2. World electricity consumption between 1973 and 2019 [49]. 

Electricity_Consumption_in_TW Month Year 
35.9728 1 1973 
36.1334 2 1973 
35.0625 3 1973 
33.8416 5 1973 
33.5107 6 1973 

… … … 

 
Figure 1. Yearly electricity consumption. 

This study examined the spectral distribution of annual electricity usage to draw 
more precise results. Spectral analysis primarily uncovers concealed periodic patterns, 
trends, and cyclical elements in time-series data. It displays the frequency components 
present in the dataset and quantifies the intensity of these frequencies. Figure 2 shows the 
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This study examined the spectral distribution of annual electricity usage to draw more
precise results. Spectral analysis primarily uncovers concealed periodic patterns, trends,
and cyclical elements in time-series data. It displays the frequency components present in
the dataset and quantifies the intensity of these frequencies. Figure 2 shows the spectrum
analysis graph. The spectral analysis graph is utilized to identify periodic or seasonal
components in the data, providing insights into how the data vary over time. Figure 2
displays the time series graph of annual electricity use statistics. The primary axis depicts
the progression of consumption over a certain period, while the shaded region indicates the
estimated range of uncertainty. This uncertainty is calculated using the following equations
in Phyton: Coding was performed on Jupyter using Python. Python, NumPy, Statsmodels,
and Pandas libraries were used. Statsmodels were used in the development of the SARIMA
and ARIMA models. The shaded area shows the max/min monthly electricity consumption
over the year, while the line shows the average consumption. The chart exhibits a prevailing
upward trajectory with periodic oscillations over the year. The primary trend depicted in
the graph illustrates a progressive rise in power use as time progresses. This scenario is
interconnected with the expansion of the population and advancements in industry and
technology. The variations observed throughout the year indicate a rise in electricity usage,
particularly during the summer, as seen in Figure 3 [49]. Seasonal variations, such as the
extensive utilization of air conditioning equipment, cause this circumstance.



Sustainability 2024, 16, 2958 11 of 23

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 24 
 

spectrum analysis graph. The spectral analysis graph is utilized to identify periodic or 
seasonal components in the data, providing insights into how the data vary over time. 
Figure 2 displays the time series graph of annual electricity use statistics. The primary axis 
depicts the progression of consumption over a certain period, while the shaded region 
indicates the estimated range of uncertainty. This uncertainty is calculated using the fol-
lowing equations in Phyton: Coding was performed on Jupyter using Python. Python, 
NumPy, Statsmodels, and Pandas libraries were used. Statsmodels were used in the de-
velopment of the SARIMA and ARIMA models. The shaded area shows the max/min 
monthly electricity consumption over the year, while the line shows the average consump-
tion. The chart exhibits a prevailing upward trajectory with periodic oscillations over the 
year. The primary trend depicted in the graph illustrates a progressive rise in power use 
as time progresses. This scenario is interconnected with the expansion of the population 
and advancements in industry and technology. The variations observed throughout the 
year indicate a rise in electricity usage, particularly during the summer, as seen in Figure 
3 [49]. Seasonal variations, such as the extensive utilization of air conditioning equipment, 
cause this circumstance. 

 
Figure 2. Spectral analysis graph. 

 

Figure 2. Spectral analysis graph.
Sustainability 2024, 16, x FOR PEER REVIEW 12 of 24 
 

0

20

40

60

80

100

120

140 Summer 2014winter 2014Summer 2015

 
Figure 3. World electricity consumption observed and forecasted values. 

3. Results 
The Mean Absolute Percentage Error (MAPE) metric will be employed to assess the 

predictive capabilities of the SARIMA and ETS models. This metric quantifies the percent-
age difference between the model’s predicted and actual values and is commonly used to 
evaluate the precision of time series forecasts. MAPE is determined by computing the av-
erage of the absolute values of all forecast errors and then expressing this average as a 
percentage concerning the actual values. This metric will assess the effectiveness of the 
SARIMA model in capturing intricate seasonal and trend patterns and evaluate the ETS 
model’s predictive capability using the smoothed version of the time-series data. This in-
vestigation will have a crucial impact in showcasing the efficacy of both models in fore-
casting electricity consumption data and will offer significant insights for formulating en-
ergy management strategies. 

3.1. Exponential Smoothing Model Results 
Table 3 shows the results of the Exponential Smoothing model applied to an electric-

ity consumption time-series dataset. The figure’s components and metrics reveal the 
model’s performance and applicability. 

Table 3. Results of the Exponential Smoothing model. 

Dependent Variables Electricity Consumption in TW Number of Observations 537 
Model Exponential Smoothing SSE 0.469 

Optimized Yes  AIC −3749.979  
Trend Multiplicative BIC −3681.403 

Seasonal period 12 months AICC −3748.658 

The variable that the “Dependent Variable Model” in Table 3 tries to predict is “Elec-
tricty_Consumption_in_TW”. There are 537 observations in the dataset on which the “No. 

Figure 3. World electricity consumption observed and forecasted values.

3. Results

The Mean Absolute Percentage Error (MAPE) metric will be employed to assess
the predictive capabilities of the SARIMA and ETS models. This metric quantifies the
percentage difference between the model’s predicted and actual values and is commonly
used to evaluate the precision of time series forecasts. MAPE is determined by computing
the average of the absolute values of all forecast errors and then expressing this average
as a percentage concerning the actual values. This metric will assess the effectiveness
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of the SARIMA model in capturing intricate seasonal and trend patterns and evaluate
the ETS model’s predictive capability using the smoothed version of the time-series data.
This investigation will have a crucial impact in showcasing the efficacy of both models in
forecasting electricity consumption data and will offer significant insights for formulating
energy management strategies.

3.1. Exponential Smoothing Model Results

Table 3 shows the results of the Exponential Smoothing model applied to an electricity
consumption time-series dataset. The figure’s components and metrics reveal the model’s
performance and applicability.

Table 3. Results of the Exponential Smoothing model.

Dependent Variables Electricity Consumption in TW Number of Observations 537

Model Exponential Smoothing SSE 0.469
Optimized Yes AIC −3749.979

Trend Multiplicative BIC −3681.403
Seasonal period 12 months AICC −3748.658

The variable that the “Dependent Variable Model” in Table 3 tries to predict is “Elec-
tricty_Consumption_in_TW”. There are 537 observations in the dataset on which the
“No. Observations” model was trained. It is stated that the model used is “Exponential
Smoothing,” and the trend is multiplicative. It also indicates that the trend is increasing
or decreasing proportionally. The Sum of Square Error (SSE): The sum of squares of the
model’s prediction errors is 0.469. This seems like a low value and shows that the model
fits the data well. The “Akaike Information Criterion (AIC)” and “Bayesian Information
Criterion (BIC)” models were selected and used for comparison. The 3749.979 value ob-
tained with AIC and the 3681.403 value obtained with BIC show that the model fits the data
well and, with high probability, handle complexity in a balanced manner. Lower AIC and
BIC values generally indicated better model fit. Seasonality is also modeled as a multiplier.
It states that seasonal effects show variable rates over time [68].

As a result, the model presented a very low SSE and negative AIC/BIC values, indicat-
ing that the model fits the dataset well and the predictions are reliable. Furthermore, multi-
plier trends and seasonality indicate that electricity consumption is increasing or decreasing
and has seasonal patterns throughout the year. These results showed that the model effec-
tively models time-series data and can be used to predict future electricity consumption.

Using the available data, electricity consumption for the next 24 months was esti-
mated. The results obtained were evaluated using the MAPE evaluation metric. forecast =
np.exp(ets_model.forecast(steps = 24)): Here, the ets_model.forecast(steps = 24) function
returns the forecasts for the next 24 time steps using the ETS model. If the model was
trained on logarithmically transformed data, the np. exp() function transforms the predic-
tions back to the original scale. This step ensured that the model’s predictions were directly
comparable to real-world data.

When evaluating the estimated consumption results for the next 24 months, MAPE_Train
(0.040432974677989626): This is the average percentage error rate of the ETS model on the
training dataset. It can be interpreted as 4.04%. This value indicates how well the model
fits the training data and shows a low error rate. MAPE values below 5% suggest that the
model reasonably predicts the training data. MAPE_Test (0.024232019088546015): This is
the average percentage error rate reflecting the model’s performance on the test dataset
and can be interpreted as 2.42%. This low MAPE value on the test set indicates that the
model can generalize well to the training data and data it has not seen before. Generally,
higher error rates are expected on test data because the model is not trained on those data.
However, in this case, it was observed that the model performed well with a low error rate
in the test data.
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3.2. SARIMA Model Results

The developed model was trained on 537 observations. Log Likelihood: the log-
likelihood value of the model is 1289.004. This high value shows that the model fits the
data well. The AIC value of the model was calculated as 2568.009. AIC is a criterion that
measures the model’s quality and balances the model’s complexity and fit. A low AIC
value indicates that the model fits the data well and avoids unnecessary complexity. Table 4
shows the SARIMA model results. The training data are selected at 80%, and the test data
are set at 20%.

Table 4. Results of the SARIMA model.

Dependent Variables Electricity Consumption in TW Number of Observations 537

Model SARIMAX (1,1,1) × (1,0,1,12) Log-likelihood 1289.004

Sample 01-01-1973 AIC −2568.009
01-09-2016 BIC −2546.720

Covariance Type the outer product of gradients HQIC −2559.670

As given in Table 4, the BIC value of the model is 2546.720. BIC is used to evaluate the
quality of the model and has generally produced results similar to AIC’s. A low BIC value
indicates that the model fits and explains the data well enough without overfitting. The
Quinn Information Criterion is also used for model selection and is calculated as 2559.670.
This indicates that the model captures the dataset well and has an appropriate model
complexity. Covariance Type: the covariance type of the model is ‘up,’ which indicates that
the covariance parameter estimates of the model are calculated by the ‘outer product of
gradients’ method.

For the forecast of the next 24 months, the SARIMA model gave the value of MAPE_Train
(0.022055772623528584). The average percentage error rate of the model on the training
dataset is approximately 2.21%. This value indicates that the model accurately predicts
electricity consumption in the training dataset. MAPE_Test (0.02443793308819474) has an
average percentage error rate of approximately 2.44%, reflecting the model’s performance
on the test dataset. This value is significant because the test set generally better reflects the
actual world performance of the model. The fact that the model has a low error rate in the
test data indicates that the model has a high generalization capacity for unknown data.

Since both MAPE values are low, it is concluded that the predictions for the future
24 months are highly accurate, even though the SARIMA model was trained on historical
data. This has shown that the model is reliable for analyzing and forecasting time-series
data such as electricity consumption. Accurate energy consumption forecasting is critical
for resource planning, demand management, and strategic decision-making processes,
particularly in the energy sector. The forecast for the next two years is given in Figure 3.

In Figure 3, the time-series data display the observed power consumption values
represented by a blue dashed line, while the anticipated values are shown by an orange
line. The graphic displays both empirical data for a given time frame and prognostications
made by the model after the conclusion of that data. The recorded data, shown by blue
dashed lines, exhibit a progressive pattern over time and evident cyclicality. The upward
trajectory signifies an increasing need for electricity usage as time progresses. The orange
line represents the model’s projections for future power usage values. This line extrapolates
from the final point of the observed data and projects into the future. The Model Perfor-
mance chart demonstrates that the projected values represent the data’s overall pattern and
cyclical variations. The model accurately captures previous data and accurately predicts
present data patterns. However, to assess the long-term precision and dependability of the
orange forecast line, it is necessary to have actual test data that can be used to compare
the forecasts with the observed values. These test data will enhance our understanding
of the model’s ability to generalize and reliably predict future values. Figure 4 provides
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the lag graph of the model for a detailed analysis of existing and future data for a more
comprehensive study.
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The scatter plot in Figure 4, known as the lag plot, demonstrates that the model’s
residuals do not exhibit autocorrelation at a lag of 1. This graph illustrates the dispersion
of residuals. The histogram indicates that the residuals’ distribution closely approximates
the standard distribution curve (shown by the green and orange lines). Simultaneously, the
standard probability plot (Q–Q plot) can be assessed to determine if the residuals conform
to a normal distribution. The graphic displays a time-series plot depicting the temporal
evolution of the residuals. If the residuals exhibit homoscedasticity and lack discernible
patterns, it suggests that the model reflects the temporal fluctuations of the data well.

When considering the four graphs in the picture collectively, it can be shown that
the SARIMA model effectively captures the dataset, and the forecasts are statistically
dependable. Thus, the SARIMA model is likely appropriate for forecasting electricity
consumption demand for the subsequent two years.

4. Discussion
4.1. Model Analysis

The Exponential Smoothing model demonstrated compatibility with historical trends
in electricity consumption. Considering a multiplicative trend and seasonal effects on a
yearly cycle, the model provided promising results with a low Sum of Squared Errors (SSE)
value (0.469), indicating accurate predictions. Negative Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) values affirmed a well-balanced, low-complexity
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model. The model’s forecasting effectiveness was evident with a low Mean Absolute
Percentage Error (MAPE) on both the training (4.04%) and test (2.42%) datasets. Similarly,
with its seasonal ARIMA structure, the Seasonal Autoregressive Integrated Moving Average
(SARIMA) model improved electricity consumption forecasting. High log-likelihood and
low AIC and BIC values confirmed an excellent fit with appropriate model complexity.
SARIMA slightly outperformed Exponential Smoothing, exhibiting even lower MAPE
values on both the training (2.21%) and test (2.44%) datasets. Visualizations (refer to
Figures 3 and 4) illustrated SARIMA’s ability to capture historical data patterns accurately
and maintain statistical reliability in predicting future values.

Enhancing the connection between decision-making and forecast evaluation can im-
prove prediction accuracy, a critical factor for stakeholders such as consumers [69]. Low
MAPE values, especially for SARIMA, signify high accuracy and reliability in predicting
electricity consumption, ensuring efficient resource planning and demand management
for a stable energy ecosystem. Despite the complexity of the models, the low MAPE
values indicate practical interpretation by consumers. Accurate forecasting is pivotal for
strategic decision-making in resource planning, allowing energy providers to optimize
resource allocation sustainably. Decision-makers may consider adopting advanced models
like SARIMA, supported by lower MAPE values, influencing technology adoption and
future-proofing decisions.

In essence, both Exponential Smoothing and SARIMA models are reliable for fore-
casting electricity consumption. SARIMA, slightly outperforming Exponential Smoothing,
emerges as a more precise forecasting tool. Detailed analysis and visualization offer a
comprehensive understanding of the models’ performance, marking a significant stride
toward a consumer-centric and technologically advanced energy sector.

The results of the Exponential Smoothing (ETS) and SARIMA models, along with
associated MAPE metrics, provide insights into the future of electricity consumption. Both
models exhibit low MAPE values on training and test datasets, suggesting accurate and re-
liable predictions. Specifically in SARIMA, the models effectively capture intricate seasonal
and trend patterns, which are crucial for understanding cyclical variations in electricity
demand. Both models demonstrate a high generalization capacity for unseen data, which is
essential for forecasting persisting patterns into the future. The upward trajectory signifies
an increasing need for electricity usage, providing valuable insights for energy providers
and policymakers. Low MAPE values, coupled with statistical dependability and valida-
tion through actual test data, contribute to building trust in the models’ ability to predict
future electricity consumption reliably. Trust is essential for informed decision-making
regarding resource planning and strategic investments.

4.2. Implications for Energy Sector Planning

Accurate electricity consumption forecasts are crucial for guiding strategic infrastruc-
ture development within the energy sector [70]. These forecasts assist power plant planners
and operators in making informed decisions to balance capacity with anticipated demand.
Moreover, implementing energy efficiency measures, demand-side management, and stor-
age technologies in buildings aids in maintaining a balance between energy supply and
demand, facilitating sustainable energy transitions [71]. Energy sector planning relies on
efficient resource allocation [72]. Forecasts optimize the deployment of resources like fuel,
workforce, and equipment, ensuring efficient and cost-effective operations aligned with
forecasted consumption patterns. Forecasted trends support the integration of renewable
energy sources into the energy mix [73]. Understanding peak demand periods enables
strategic deployment of renewables, such as solar and wind, to supplement traditional
energy generation during high-consumption periods. Based on consumption forecasts,
demand-side management strategies allow energy providers to incentivize consumers
to shift energy use to non-peak hours, promote energy efficiency, and deploy smart grid
technologies [74]. These initiatives enhance grid stability, reduce the need for excessive
peak capacity, and support sustainable energy consumption practices. Grid modernization
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initiatives, guided by forecasted consumption trends, involve upgrading infrastructure,
integrating smart technologies for real-time monitoring, and enhancing overall reliability.
These efforts ensure that the energy delivery system is robust and capable of meeting evolv-
ing consumer and industrial needs. Long-term policymaking benefits from consumption
forecasts, aiding in setting energy efficiency targets, establishing emission reduction goals,
and creating incentives for investments in clean energy technologies [75,76]. Investors in
the energy sector can use consumption forecasts for informed investment planning [77].
Forecasted trends help identify areas with growing demand, allowing for strategic invest-
ments in projects that align with future needs. Understanding consumption patterns also
aids in risk mitigation by avoiding overinvestment in areas with stagnant or declining
demand. Forecasted energy usage is a baseline for resilience against uncertainties such
as economic fluctuations, technological advancements, and geopolitical factors [78,79].
Scenario planning based on different consumption projections enables the development
of flexible strategies that can adapt to changing external conditions. Forecasting energy
usage aids in setting energy efficiency standards and complying with environmental reg-
ulations [80]. Accurate reporting becomes feasible when realistic expectations of future
consumption trends inform regulatory frameworks. Engaging communities and stakehold-
ers in energy planning is essential [81]. Consumption forecasts provide a transparent basis
for communication, foster a sense of shared responsibility, and garner support for energy
initiatives [82]. In conclusion, accurate consumption forecasts are essential for shaping the
trajectory of the energy industry, aiding in infrastructure development, renewable energy
integration, policy formulation, investment planning, and resilience against uncertainties.
The adaptive nature of planning, supported by reliable forecasts, positions the energy sector
to sustainably address current and future challenges.

4.3. Consumer and Industry Impact

Accurate electricity consumption forecasts empower consumers to make informed
decisions about their energy usage, potentially leading to cost savings [83]. By understand-
ing future consumption trends, individuals can strategically adjust their behavior, shifting
activities to off-peak hours and adopting energy-efficient appliances and smart home
technologies aligned with forecasted patterns. The forecasted increase in electricity con-
sumption underscores the importance of energy conservation programs [84]. Utilities can
educate consumers about energy-efficient practices by incentivizing participation through
rewards or discounted rates during non-peak hours to align behavior with sustainability
goals [85]. Industries heavily reliant on electricity benefit from accurate consumption fore-
casts for planning and operational purposes [86]. Anticipating future demand allows them
to optimize production schedules, implement load-shifting strategies, and invest in energy-
efficient technologies, contributing to cost efficiency and sustainability. Forecasts guide
energy providers and businesses in strategically allocating resources to meet anticipated
demand [87], supporting uninterrupted service delivery, and fostering a reliable energy
supply. Businesses, particularly those in the energy sector, can make informed decisions
based on the forecasted consumption trends, which include investment planning, adopting
new technologies, and aligning business strategies with the expected market demands.
Energy companies can position themselves as reliable providers by staying ahead of the
curve and adapting to evolving consumer and industry needs, ultimately enhancing their
competitiveness in the market. Forecasted consumption trends influence energy pricing
models. Utilities may adjust pricing structures to encourage off-peak consumption, help-
ing to manage peak loads and reduce strain on the grid. Consumers benefit from flexible
pricing options that reflect the forecasted variations in demand, allowing them to make cost-
conscious decisions and save on energy bills. Accurate forecasts contribute to the resilience
of the energy ecosystem by mitigating supply-demand imbalances [88]. This is crucial for
maintaining stable and reliable energy services, especially during periods of high demand
or unexpected events. Resilience against imbalances enhances overall energy security and
minimizes the risk of service disruptions, ensuring a consistent and reliable energy supply
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for consumers and industries. Transparency in forecasting models builds consumer trust,
fostering a positive relationship between consumers and energy providers [89]. Industries
benefit from accurate forecasts to ensure compliance with energy efficiency standards and
environmental regulations [90]. The impact of accurate electricity consumption forecasts on
consumers and industries is multifaceted, shaping behaviors and strategies in the energy
sector toward a more sustainable, efficient, and resilient energy ecosystem.

4.4. Continuous Monitoring and Adaptation

Energy consumption patterns are dynamic, influenced by technological advancements,
societal changes, and economic fluctuations. Continuous monitoring is crucial to track these
trends and maintain the accuracy of forecasting models [91,92]. Emerging technologies
such as electric vehicles, smart grids, and decentralized energy sources reshape consump-
tion patterns, necessitating real-time insights to update forecasting models [93]. Climate
change and environmental concerns further impact energy usage, highlighting the need
for continuous monitoring to adapt to shifts in demand related to weather variations and
policy changes [94]. As consumer preferences evolve and global energy consumption rises,
particularly in developing nations, forecasting models must incorporate these changes to
remain effective [95,96]. Economic fluctuations and geopolitical events can significantly
affect energy consumption, emphasizing the importance of continuous monitoring for
accurate predictions [97–99]. Regulatory changes also influence consumption patterns,
requiring proactive adjustments in forecasting models to ensure compliance [100–103].
Urbanization and infrastructure developments further complicate energy demand patterns,
necessitating ongoing monitoring and adaptation of forecasting models to meet future
energy requirements [104]. In the integrated global energy market, continuous tracking
of international dynamics is essential for reacting to price changes and supply interrup-
tions [105]. Continuous monitoring provides stakeholders with up-to-date insights for
informed decision-making, ensuring the ongoing relevance of forecasting models in ad-
dressing the increasing electricity demand [106]. The results of this study suggest a future
trajectory of increasing electricity consumption, and the accuracy of the forecasting models
provides confidence in the reliability of these predictions. Decision-makers in the energy
sector can leverage these insights for strategic planning, resource allocation, and meeting
the growing demand for electricity. Continuous monitoring and adaptation to changing
conditions will ensure the forecasting models’ ongoing relevance.

4.5. Limitations

While this study offers valuable insights into electricity consumption forecasting
using Exponential Smoothing and SARIMA models, it is important to recognize several
limitations that may affect interpretation and generalization.

Model Complexity: Despite their accuracy, the intricate nature of Exponential Smooth-
ing and SARIMA models may hinder understanding and adoption among non-
expert stakeholders.

Economic Uncertainties: Predicting consumption patterns amid unpredictable eco-
nomic fluctuations introduces uncertainty that may affect long-term forecasts and strategic
planning in the energy sector.

Technological Advancements: Emerging technologies like electric vehicles and smart
grids pose challenges in predicting their specific impacts on consumption patterns, poten-
tially limiting forecasting precision.

Interpretation by Consumers: While low Mean Absolute Percentage Error values
suggest practical interpretation, effective communication strategies are necessary to convey
forecasted trends to diverse audiences.

Generalization Capacity: The effectiveness of the models may vary across different geo-
graphical, socio-economic, and cultural contexts, requiring caution in generalizing findings.
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Data Limitations: Data accuracy and reliability, as well as gaps and biases, can
influence prediction precision, highlighting the importance of robust data quality and
collection processes.

Contextual Factors: Geographical and socio-economic contexts may influence the
applicability and generalizability of the models, considering factors such as regulatory
environments and consumer behaviors.

Short-Term Focus: While this study examines short-term trends, future research could
explore longer forecasting horizons to capture evolving patterns more comprehensively.

Addressing these limitations is crucial for refining forecasting models, enhancing
stakeholder acceptance, and ensuring resilience in diverse scenarios. Future research could
focus on improving model interpretability, incorporating economic uncertainties more
effectively, and examining the impacts of emerging technologies on consumption patterns
across various contexts.

4.6. Future Research Directions

Building on this study’s findings, future research can advance electricity consumption
forecasting by addressing evolving technologies and current limitations. Several research
directions are proposed:

Interdisciplinary Model Interpretability: Collaborations between data scientists,
social scientists, and communication experts can enhance model interpretability for
diverse stakeholders.

Incorporating Economic Indicators: Future research can integrate economic indi-
cators like financial data and market trends to improve forecasting accuracy amid
economic uncertainties.

Long-Term Forecasting: Extending forecasting horizons to analyze long-term
trends and patterns, considering sustained technological advancements and shifting
consumer behaviors.

Enhancing Consumer Engagement: Exploring innovative communication methods
and user-friendly interfaces to empower consumers to utilize forecasted information for
energy-efficient practices.

Geographical and Socio-economic Variability: Comparative studies across diverse set-
tings can provide insights into contextual factors influencing model effectiveness, guiding
the development of adaptable forecasting frameworks.

Dynamic Adaptation to Technology: Developing adaptive forecasting models capable
of dynamically incorporating the impacts of emerging technologies through continuous
monitoring and real-time adjustments.

Machine Learning and Advanced Analytics: Integrating sophisticated algorithms,
including deep learning approaches, to capture intricate patterns in electricity consumption
data and improve prediction accuracy.

They are incorporating climate change variables and exploring the inclusion of climate-
related variables like temperature variations and extreme weather events to understand
their impact on electricity demand.

Cross-Sector Collaboration for Data Quality: Collaborative efforts between the energy
sector, regulatory bodies, and technology providers can enhance data quality and the
reliability of forecasting models.

Validation in Real-World Settings: Emphasizing comprehensive field testing and
verification to validate the real-world effectiveness of forecasting models, contributing to
their practical applicability and reliability.

Exploring these directions can enhance the adaptability, accuracy, and societal impact
of electricity consumption forecasting models, supporting the sustainable development of
the energy sector.
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5. Conclusions

This study analyzed electricity consumption forecasting models, focusing on the Ex-
ponential Smoothing and Seasonal Autoregressive Integrated Moving Average (SARIMA)
approaches. The Exponential Smoothing model and SARIMA model, when applied to
electricity consumption data, demonstrated robust compatibility with historical trends.
Both models’ multiplicative trends and seasonal effects resulted in promising outcomes.
Exponential Smoothing showed accurate predictions, as indicated by a low Sum of Squared
Errors (SSE) value of 0.469, while SARIMA, with its seasonal ARIMA structure, slightly
outperformed Exponential Smoothing, exhibiting even lower Mean Absolute Percentage
Error (MAPE) values on both training (2.21%) and test (2.44%) datasets.

The implications of this study extend beyond the realm of Model Performance. Accu-
rate electricity consumption forecasts profoundly impact energy sector planning, resource
allocation, and the integration of renewable energy sources. This study underscores the
importance of consumer-centric analysis, emphasizing the role of stakeholders and decision-
makers in utilizing forecasted information for strategic planning and demand management.

This study highlights the importance of continuous monitoring and adaptation in
the face of dynamic technological advancements, economic fluctuations, and changing
consumer behaviors. While the models demonstrate high generalization capacity and
robustness to unseen data, it is essential to acknowledge several limitations, including the
complexity of the models, uncertainties in economic conditions, and the need for enhanced
consumer engagement strategies.

Future research directions are proposed to advance electricity consumption forecasting
further. These include interdisciplinary approaches to enhance model interpretability,
incorporating economic indicators and climate change variables, extending forecasting
horizons to analyze long-term trends, and exploring machine learning techniques for
improved prediction accuracy.

Providing a roadmap for future research and action in electricity consumption fore-
casting, this study underscores the significance of forecasting in guiding strategic planning,
resource allocation, and meeting the growing demand for electricity. The field of electricity
consumption forecasting can evolve to meet the challenges posed by technological advance-
ments, economic uncertainties, and changing consumer behaviors, ultimately contributing
to the sustainable development of the energy sector.

The continuous monitoring of evolving trends, interdisciplinary collaboration, and
incorporation of innovative technologies stand out as crucial aspects for advancing the field.
Decision-makers, stakeholders, and researchers are urged to embrace these findings to foster
a sustainable, adaptive, and consumer-centric energy landscape. We stand on the cusp
of a transformative energy sector era characterized by increasing demand, technological
advancements, and environmental consciousness. Robust forecasting models and proactive
decision-making are imperative for shaping an energy ecosystem that not only meets
current needs but also anticipates and adapts to future challenges. This study catalyzes
informed, strategic, and collaborative efforts toward a resilient, sustainable energy future.
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