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Abstract: The creation of frameworks for lowering natural hazards is a sustainable development goal
specified by the United Nations. This study aims to predict drought occurrence in Tamil Nadu, India,
using 26 years of data, with only 3 drought years. Since the drought-occurrence years are minimal, it
is an imbalanced dataset, which gives a suboptimal classification performance. The accuracy metric
has a tendency to produce misleadingly high results by focusing on the accuracy of forecasting the
majority class while ignoring the minority class; hence, this work considers the metrics’ precision and
recall. A novel strategy uses attribute (or instance) weighting, which allots weights to attributes (or
instances) based on their importance, to improve precision and recall. These weights are found using
a bio-inspired optimization algorithm, by designing its fitness function to improve precision and recall
of the minority (drought) class. Since increasing precision and recall is a tug-of-war, multi-objective
optimization helps to identify optimal attribute (or instance) weight balancing precision and recall
while maximizing both. The newly introduced Synergistic Optimization Algorithm (SOA) is utilized
for multi-objective optimization in order to ascertain weights for attributes (or instances). In SOA, to
solve multi-objective optimization, each objective’s population was generated using three distinct
algorithms, namely, the Genetic, Firefly, and Particle Swarm Optimization (PSO) algorithms. The
experimental results demonstrated that the prediction performance for the minority drought class was
superior when utilizing instance (or attribute) weighting compared to the approach not employing
attribute/instance weighting. The Gradient Boosting classifier with an attribute-weighted dataset
achieved precision and recall values of 0.92 and 0.79, whereas, with instance weighting, the values
were 0.9 and 0.76 for the drought class. The attribute weighting shows that in addition to the default
drought indices SPI and SPEI, pollution factors and mean sea level rise are valuable indicators in
drought prediction. From instance weighting, it is inferred that the instances of the months of March,
April, July, and August contribute most to drought prediction.

Keywords: multi-objective optimization; imbalanced dataset; precision; recall; meteorological
drought forecasting; Firefly Algorithm; Particle Swarm Optimization; Genetic Algorithm

1. Introduction

The introduction section begins by discussing the advantages of using attribute (or in-
stance) weighting instead of attribute (or instance) selection. It also highlights the challenges
associated with attribute (or instance) weighting. To address the challenge of determining
optimal weights, this study proposes the use of bio-inspired optimization algorithms. A
short introduction to the concepts of multipopulation and ensemble algorithms is also
discussed. The discussion then focuses on the precision–recall tug-of-war phenomenon.
Finally, the introduction lists the research gaps, emphasizes the strong motivation behind
this research, and outlines its significant contributions.
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1.1. Attribute and Instance Weighting

Our study adopts a unique approach to improving classification performance. In-
stead of using the most commonly used feature or instance selection approach, which
solely selects the most important attributes (or instances) and disregards the less important
ones, we assign weight to attributes (or instances) based on their importance in the clas-
sification process. The inclusion of even a small piece of information associated with an
attribute (or instance) holds the potential to significantly enhance the overall classification
performance [1].

The disadvantages of the attribute (or instance) selection approach are the curse of
dimensionality, data loss, and overfitting. The attribute (or instance) weighting strategy
has the advantages of detecting subtle trends in a dataset.

There are three types of attribute weighting:

1. Global attribute weighting involves assigning weights to attributes without taking the
class label into account. It gives equal weight to all traits, regardless of their relevance
to specific classes.

2. In the local attribute weighting approach, attribute weights are assigned based on the
class label as well as the attribute’s applicability to certain classes. It acknowledges
that different traits may be of differing relevance based on the considered class.

3. In the attribute value weighting method, the weights are applied to specific attribute
values. It enables a more detailed evaluation of attribute relevance by taking into
account the precise values within each attribute.

The application of bio-inspired algorithms, for instance, and attribute selection are
performed by many researchers and have produced good results. Christo [2] and Derrac [3]
used the Genetic algorithm for selecting instances and features. Akinyelu and Ezugwu [4]
aimed to improve the training speed and prediction accuracy of SVM using the instance
selection technique. The authors proposed two novel instance selection algorithms based on
the Social Spider Instance Selection Algorithm (SSISA) and the Flower Pollination Instance
Selection Algorithm (FPISA). The fitness function designed for filter-based technique is data
reduction, and the one for wrapper-based techniques is prediction accuracy using SVM.
Their results suggest that it is advisable to use a filter-based technique when classification
speed is more important e.g., video surveillance, and use wrapper-based techniques when
prediction accuracy is more important, e.g., email filtering.

Czarnowski [5] used the Firefly algorithm for instance selection. The process is carried
out in two stages. In stage 1, training data are clustered using a similarity-based clustering
algorithm. The similarity coefficient of the instance is calculated, and then the disjoint
cluster is created. In the second stage, the instances selected from the created clusters form
the reduced dataset. Suganthi and Karunakaran [6] applied instance selection and feature
extraction to reduce datasets. The Cuttlefish algorithm was used for instance selection, and
Principal Component Analysis (PCA) was used for feature extraction. The reduced dataset
given as input to the SVM classifier reduced the training time by 142 min. The accuracy,
false positive rate, and detection rate were used as the performance metrics, and the testing
was carried out using 4 popular datasets.

Based on the above idea of using bio-inspired optimization algorithms for instance/feature
selection, this paper also determines the optimal weight of instances (or features) by deploying
bio-inspired optimization algorithms.

1.2. Bio-Inspired Optimization Algorithms

Bio-inspired optimization algorithms are a diverse set of techniques that draw in-
spiration from the principles of nature, the theory of evolution, and specific behaviors
observed in living organisms. These algorithms are highly effective in addressing various
optimization challenges by mimicking natural processes.

According to Ni [7], bio-inspired optimization algorithms can be categorized into
three groups based on their behavior, structure, and evolutionary approach. This classification
helps in understanding the underlying mechanisms and characteristics of these algorithms.
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Multi-objective optimization is a complex process that aims to find a set of solutions
that simultaneously optimize multiple conflicting objectives. Unlike single-objective opti-
mization, where there is a single best solution, multi-objective optimization involves finding
a trade-off between different objectives. This trade-off is represented by the Pareto front,
which consists of solutions where improving one objective may result in the deterioration
of another. Bio-inspired algorithms are well suited for multi-objective optimization due to
their inherent ability to efficiently explore the search space and handle complex objective
functions with trade-offs.

In research on drought prediction with machine learning algorithms, the authors
predict drought indices from their past values, and a bio-inspired optimization algorithm
is used to fine-tune the machine algorithm’s hyperparameters. Some works of this kind
are discussed below. Aghelpour [8] predicted PDSI, which is used as a reference index
for agricultural drought; it was predicted using the machine learning models Radial Basis
Function Neural Network (RBFNN) and Support Vector Machine (SVM). The Dragonfly
algorithm was used to tune the SVM parameters, and there was a 29% improvement
in results.

Reconnaissance drought index (RDI) prediction for the timescales of 6, 9, and 12 months
was found using a hybrid SVR with a Firefly and Whale optimization algorithm by Ahamadi [9].
Here also, the Firefly and Whale optimization algorithm are used to optimize the SVR parame-
ters. In RDI 6 prediction, hybrid SVR produced slightly better performance than standard SVR.

A random vector functional link (RVFL) network [10] is a randomized version of a
single hidden layer feedforward neural (SLFN) network. RVFL integrated with Particle
Swarm Optimization (PSO), the Genetic Algorithm (GA), Grey Wolf Optimization (GWO),
Social Spider Optimization (SSO), Salp Swarm Algorithm (SSA), and Hunger Game Search
(HGS) is used in predicting SPI3, SPI6, SPI9, and SPI12. Hybrid algorithms have proven to
be powerful than standalone RVFL; in particular, the hybrid RVFL with the Hunger Game
Search algorithm has given the best results.

Ali Danandeh Mehr [11] performed SPEI3 and SPEI6 prediction using hybrid Extreme
Learning Machine (ELM) with the water cycle and bacterial foraging. To improve the
accuracy of ELM, identification of the optimum value of the total number of hidden
neurons and maximum number of iterations is required, and this task was carried out using
the water cycle and bacterial foraging. In SPEI 3 forecasting, ELM–water cycle improved
the model accuracy up to 72% compared to standalone ELM.

In the work of Nabipour [12], short-term hydrological drought was predicted using
the index known as the Standardized Hydrological Drought Index (SHDI). SHDI was
calculated on 1-, 3-, and 6-month scales using the previous SHDI, SPI, and precipitation
values. These indices were predicted using ANN coupled with SSA, Biogeography-Based
Optimization (BBO), the Grasshopper Optimization Algorithm (GOA), and PSO. The
hybridized ANN’s performance was better than the conventional ANN’s performance, and
in particular, the ANN with PSO gave superior performance.

Soil moisture is estimated from the input variables of maximum air temperature,
minimum air temperature, soil temperature, relative humidity, sunshine hours, and hu-
midity using the hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) model [13].
Three hybrid ANFIS models were generated by adding the bio-inspired algorithms WOA,
the Krill Herd Algorithm (KHA), and the Firefly algorithm (FA) to find optimal parameter
values for ANFIS.

Babak Mohammadi [14] used a hybrid ANN–FA model to predict SPI3, SPI6, SPI18,
and SPI24 using neighboring stations’ SPI series. This method is useful when there is a lack
of data. Here also, FA was used to find the optimal weight and bias of the ANN.

1.3. Drought

Drought has a slow onset; hence, with the use of machine learning models, it can be
forecasted and mitigation plans can be taken. Drought indices are computed using the
climatic variables, and they represent drought severity. There are four types of drought:
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meteorological drought, hydrological drought, agricultural drought, and socio-economic
drought. There are nearly 100 drought indices in use for identifying drought of specific
types or for a specific geographical location [15].

In the handbook of drought indicators and indices, it is suggested to use multiple
indices [16]. Each drought index has its own advantages and disadvantages. At present,
however, there is no drought index that is globally accepted. The SPI and Aridity Anomaly
Index (AAI) are commonly used in India. The Palmer Drought Severity Index (PDSI) is
used in the USA and Canada [17,18].

Machine learning techniques were applied to predict the drought index, which shows
the drought severity level.

Ekmekcioğlu [19] employed a self-calibrated PDSI (Palmer Drought Severity Index)
to forecast short-term, mid-term, and long-term outcomes. The study conducted a com-
parison between XGBoost and two signal processing techniques, namely, Discrete Wavelet
Transform (DWT) and Variable Mode Decomposition (VMD). The evaluation of results,
measured using the Root Mean Square Error (RMSE), clearly indicated that VMD-XGBoost
outperformed DWT-XGBoost. Ali Danandeh Mehr [20] proposed an evolutionary explicit
model, Variable Mode Decomposition Genetic Programming (VMD-GP) for SPEI prediction
in ungauged catchment areas. GP is a regression technique. The transfer of data from
the Global Drought Monitoring (GDM) data repository to the required areas is performed
using the inverse distance weighting interpolation technique. The fluctuation in the SPEI
series is removed using VMD by first changing it into multiple intrinsic mode functions
(IMFs) and then applying a noise reduction filter. The results showed that VMD provided
better results than Empirical Mode Decomposition (EMD).

Another decomposition technique, Multivariate empirical mode decomposition
(MEMD) [21], is applied to the handle mode alignment and factorize IMF of wind speed
data, which have a high degree of non-linearity and non-stationarity. Hai Tao developed it
as a hybrid MEMD–Random Forest–PSO and MEMD–Kernel Ridge Regression (KRR)-PSO
model for wind speed prediction, and its performance was compared with that of stan-
dalone RF and KRR. Optimization algorithms were used to optimize the parameters of the
hybrid model.

Wavelet decomposition [9] was used to decompose the RDI time series. Six-wavelet
function performance was evaluated with hybrid SVR, and the Coifflet with SVR gave the
best results. Two levels of decomposition were performed. and it proved its excellence. In
a separate study conducted by Danandeh [22], the performance of Genetic Programming,
Decision Tree, and Gradient Boosting was evaluated. The results of meteorological drought
forecasting suggested that the Gradient Boosting Decision Tree classifier exhibited the
highest effectiveness.

In a separate study conducted by Reihanifar [23], a multi-objective genetic algorithm
was utilized to optimize both the root mean square error and expressional complexity. This
approach aimed to achieve higher accuracy while reducing the complexity of the model.
The study focused on meteorological drought forecasting, utilizing a 50-year dataset of the
SPI 6 series.

The use of the climatic indicators ENSO and El Niño in drought prediction has been
adopted by many authors. A strong connection existing between ENSO and SPEI in
drought prediction has been found in the South African region [24]. The study performed
by Malak Henchiri also proved the strong relationship existing between ENSO-SPI in West
Africa and North Africa [25]. Streefkerk et al. [26] put forth the idea of integrating local
farmers’ knowledge into climate change studies, alongside the commonly used ENSO (El
Niño-Southern Oscillation) indicators. The authors assert that the inclusion of this local
knowledge enriches the comprehension of climate change dynamics.

As per the recommendation of the Indian Meteorological Department (IMD), SPI is
used in drought prediction in all the Indian states. There were studies on other indices,
such as SPI, DI, EDI, PNI, and RAI [27]. Pandiyarajhan Govindasamy [28] compared the
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efficiency of SPI with the percent of normal precipitation index method used by IMD in
drought forecasting.

There have been may works on drought index prediction for the state of Tamil Nadu
through machine learning methods, ARIMA, SARIMA, and many more using in situ and
remote sensing data.

Sellaperumal Pazhanivelan [29] used satellite precipitation products in SPI estimation.
He proved that the satellite precipitation data products from CHIRPS, TRMM, PERSIANN,
and GPM3IMERGE were more accurate than rain-gauge data. He also recommended the
rainfall deviation score method for meteorological drought prediction.

ANFIS was used to estimate the SPI at a 3-month scale for the Erode district of Tamil
Nadu using 39 years of data by Indhuja [30]. The efficiency of the result was measured
using the metrics RMSE and MAE. The drought years of 2002, 2009, and 2016 were marked
as extremely dry by the SPI value.

The ARIMA model was applied to predict meteorological drought in the Thiruman-
imuthar Sub-basin, a semi-arid region, by Karthika [31]. The model performance was eval-
uated using the minimum Akaike Information Criterion (AIC) and Schwarz Bayesian Crite-
rion (SBC). The results showed that the model was able to predict drought 2 years ahead.

1.4. Precision and Recall—Tug-of-War

Precision refers to the proportion of instances correctly classified as positive, regardless
of their overall accuracy. It measures how accurately positive instances are identified. On
the other hand, recall focuses on correctly identifying the total number of positive instances.
The formulas for precision and recall are provided below in Equations (1) and (2):

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

The classification threshold plays a crucial role in determining the assignment of
instances to either the positive or negative class. Adjusting this threshold has a direct impact
on the occurrence of false positives or false negatives. To be more specific, an increase in
false positives leads to a reduction in precision, indicating a higher rate of incorrect positive
classifications. Similarly, an increase in false negatives causes a decrease in recall, indicating
a higher rate of missed positive instances. It is important to find the right balance when
setting the classification threshold to optimize precision and recall simultaneously.

1.5. Research Challenges and Limitations

i. There is no drought index that is universally accepted as efficient in predicting
the drought.

ii. Previous research has predominantly concentrated on predicting the Standardized
Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index
(SPEI) based on historical data, while the exploration of other climatic indicators in
relation to meteorological drought has been relatively limited [19,32].

iii. There is a significant need for algorithms that specifically address the challenge of
improving the performance of the minority class in imbalanced datasets.

iv. Relying solely on the accuracy metric can lead to misleadingly high-performance
results, as it primarily reflects the accuracy of predicting the majority class. It is crucial
to develop dedicated algorithms that focus on precision and recall performance metrics
for the minority class, rather than relying on weighted averages or macro averages.

v. To enhance multi-objective optimization, it is valuable to explore new concepts by
developing frameworks that utilize an ensemble of optimization algorithms.

vi. When evaluating the performance of a classifier model on imbalanced datasets, it is
essential to carefully assess and improve on a per-class basis, with particular emphasis
on the minority class.
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1.6. Motivation and Contributions of This Work

Drought presents a significant and persistent challenge due to its gradual onset, which
allows for the implementation of effective mitigation plans. Our primary objective is
to accurately predict drought occurrences using climatic indicators and drought indices.
However, the existing body of research on the correlation between climatic indicators and
drought is currently limited. Additionally, the scarcity of drought-occurrence years has
resulted in imbalanced datasets, posing a significant obstacle to improving classification
performance. Hence, our research aims to explore novel approaches such as attribute
and instance weighting to enhance predictive performance and address the challenges
associated with imbalanced datasets. We hope to increase drought forecast accuracy and
contribute to more effective drought management by using these unique methodologies.

The primary contributions of this work are as follows:

1. Our approach does not involve predicting specific drought index values. Instead, we
forecast whether a particular year will experience drought based on the values of
multiple climatic indicators and drought indices.

2. To the best of our knowledge, this is the first attempt to correlate drought occurrence
with the climatic indicators suggested by GCOS. The Centre for Climate and Energy
Solutions and NASA have also highlighted how climate change and global warm-
ing contribute to drought occurrence. Hence, we have selected important climatic
indicators and studied their influence in drought occurrence [33,34].

3. We develop a novel approach that incorporates attribute (or instance) weighting to
enhance the performance of imbalanced datasets.

4. We utilize bio-inspired optimization algorithms to assign appropriate weights to
attributes (or instances), aiming to improve precision and recall for minority classes.

5. We introduce a synergistic optimization algorithm (SOA) that leverages multiple
populations generated by various nature-inspired optimization algorithms.

6. We apply multi-objective optimization using SOA to strike a balance between precision
and recall in predicting occurrences of drought within weighted datasets.

7. We evaluate attribute and instance importance in our dataset to achieve accurate
prediction of meteorological drought occurrences.

The following section of this paper offers a thorough literature review that encom-
passes various concepts, including multipopulation algorithms, ensemble learning, neigh-
borhood learning, and the application of machine learning techniques in drought forecast-
ing. Section 2 delves into the proposed framework for accurately predicting meteorological
drought occurrences, outlining the underlying concept and the steps involved in its im-
plementation. Finally, Section 4 presents a detailed discussion of the experimental results
obtained in this study.

2. Methodology
2.1. Study Area

The study area selected is the state of Tamil Nadu, located in the southern part of
India. The latitude of Tamil Nadu is 11.127123, and the longitude is 78.656891. The state
has a tropical climate and has moderately hot temperatures during the year except during
the monsoon seasons. The average yearly temperature is 87.48◦ F (30.82 ◦C). Tamil Nadu’s
geography consists of the Indian Ocean to the south, the Bay of Bengal to the east, the
western ghats and Deccan plateau to the west, and the eastern ghats to the north. A map
of the study map is given in Figure 1. Tamil Nadu has seven Agro-Climatic Zones (ACZ),
namely the Cauvery Delta Zone, the High-Altitude Zone, the Heavy-Rainfall Zone, the
Northeastern Zone, the Northwestern Zone, the Southern Zone, and the Western Zone.
In the past 42 years, the Cauvery Delta zone, the High-Altitude Zone, and the Heavy-
Rainfall Zone have suffered from 1 annual drought; the Western Zone, Northwestern Zone,
and Northeastern Zone have experienced 2 annual droughts; and the Southern Zone has
experienced 3 annual droughts.
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2.2. Proposed Framework

Our research introduces a framework aimed at predicting occurrences of meteorologi-
cal drought. This framework utilizes attribute-weighted (or instance-weighted) datasets
and leverages the Synergistic Optimization Algorithm (SOA), as illustrated in Figure 2.
Attribute weighting and instance weighting are performed as separate experiments in
this study.
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The input for the drought-occurrence prediction framework is the dataset containing
21 attributes (including 6 drought indices and 15 climatic indicators) and 312 instances.
The attribute (or instance) weights are found using the Synergistic Optimization Algorithm
(SOA). SOA is the combination of three algorithms, namely the Genetic Algorithm, Firefly
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Algorithm, and modified PSO algorithm. For attribute weighting, the 21 attributes’ weight
values are returned by the SOA. In the case of instance weighting, SOA returns 312 instances’
weights. The next step is the construction of a weighted dataset using the weights returned
by SOA and the actual data values. The last step is the classification of “Drought” or “Not
Drought” using the weighted dataset. The performance metrics used in evaluating the
classification are precision and recall.

Most existing research focuses on assessing drought severity using indices such as
SPI, SPEI, and PDSI, which are calculated based on precipitation and evapotranspiration.
Additionally, this work aims to investigate the use of attribute and instance weighting
approaches to improve minority-class prediction in imbalanced datasets. To implement the
proposed framework, Python and the Sci-kit library were utilized. The classifiers employed
default hyperparameter values provided by Sci-kit. Three classifiers, namely, Random
Forest, Decision Tree, and Gradient Boosting, were used for model evaluation. Five main
comparison studies were conducted to assess the performance of the proposed framework.

2.3. Weighted-Dataset Construction

The attribute (or instance) weights given by SOA are used to generate a weighted
dataset, referred to as D’. The position vector of SOA holds the weights. Figure 3 depicts
the processes involved in weighted-dataset construction using attribute weighting. The
data point Dij is multiplied by the attribute value weight Attriwt, and the weighted data
value of Dij. Attriwt is created. Next, Figure 4 depicts weighted-dataset construction using
instance weighting, where the instance weight Inst‘j’wt is multiplied by the actual data
point Dij and the weighted data value Dij. Inst‘j’wt is updated in the weighted dataset.

Dij: Data value for attribute ‘i’ at the instance ‘j’
Attri: ‘i’th attribute
Instj: ‘j’th instance
Xk: ‘k’th position value of the position vector of SOA
Attr‘i’wt: Weight value of the ‘i’th attribute
Inst‘j’wt: Weight value of the ‘j’th attribute
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2.4. Algorithms Used in the Proposed Framework

A short introduction of the standard algorithms (PSO, the Genetic Algorithm, and the
Firefly Algorithm) used in the implementation of SOA are discussed below. These algorithms
have demonstrated a performance in resolving a variety of engineering optimization issues.

The PSO algorithm has shown its efficiency in healthcare applications for disease
diagnosis, medical image segmentation, and many more tasks. It has also proved its
efficiency in business to predict cost, risk, and profit. In our environmental applications,
it helps in monitoring wild vegetation, flood control and routing, and pollution level and
water quality monitoring.

The Firefly Algorithm has been widely employed in optimizing diverse applications.
For instance, it has been utilized in node placement for underwater wireless sensor net-
works, with a particular emphasis on achieving optimal coverage [35], connectivity rates,
and communication criteria. Additionally, the algorithm has found successful applications
in routing for cognitive radio ad hoc networks (CRAHN) [8] and even in facial emotion
recognition [36].

Genetic algorithm is used in solving a variety of problems in ship routing, traffic rout-
ing, and scheduling construction projects. Jinquan [37] proposed Dynamic Neighborhood
Genetic Learning PSO (DNGL-PSO), which is an enhancement of Genetic Learning PSO
(GL-PSO). This approach was designed primarily to maximize the power density of an
electric propulsion motor.

2.4.1. Genetic Algorithm

Genetic algorithms are based on natural evolution and genetics, offering a faster and
more efficient approach to solving both continuous and discrete optimization functions [38].
A genetic algorithm’s key strength is its ability to depict a problem’s solution as an individ-
ual defined by a set of parameters known as genes that make up the chromosome, which
contains the potential solution. The fitness value of a chromosome signifies its usefulness
or ‘goodness’ in handling a specific situation.
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To optimize a solution, the genetic algorithm executes a sequence of processes. The
procedure starts with initialization, which creates a population of chromosomes repre-
senting potential solutions. Following that, a fitness function is constructed to evaluate
each member of the population based on the objectives, which aids in determining their
fitness value. Subsequently, selection takes place, in which chromosomes with high fitness
values are chosen as parents for the immediate next generation. Crossover happens when
these parents choose a crossover point and exchange genes to produce new offspring. This
adds diversity and possibilities for advancement. Mutation is used to increase diversity by
introducing random changes in the genes of the offspring. This aids in exploring various
parts of the solution space. The subsequent phase is replacement, which involves replacing
the old population with a new generation of offspring. Finally, termination criteria specify
when the algorithm should be terminated, such as upon reaching a maximum number
of iterations or after finding a satisfactory solution. Following these steps, the genetic
algorithm iteratively evolves a population of chromosomes across numerous generations
to find optimal solutions.

2.4.2. Firefly Algorithm

The Firefly Algorithm draws inspiration from the natural behavior of fireflies, specifi-
cally their attraction to each other’s light, and harnesses this behavior to search for optimal
solutions. By modifying key components, various variants of the Firefly Algorithm can
be created, allowing for customization based on specific requirements [39]. These mod-
ifications include altering the representation of fireflies (binary or real), the population
scheme (swarm or multi-swarm), the fitness function’s evolution, the calculation of the
best solution (elitism or non-elitism), and the movement patterns of fireflies (uniform, Levy
flights, Gaussian, or chaos distribution).

The Firefly Algorithm follows these steps:

1. Initialization: Generate an initial population of fireflies, where each firefly represents a
potential solution to the optimization problem.

2. Attraction and Movement Calculation: Determine the level of attraction (A) between
two fireflies based on their fitness values and the distance separating them. The
attraction diminishes as fitness values increase (lower values being more desirable)
and as the distance between fireflies increases (greater distance being less desirable).
The attractiveness calculation is defined by Equation (3).

A = e−γr2
(3)

where:
A: Attractiveness
γ: Light absorption coefficient
r: Euclidean distance between two fireflies’ positions
Move each firefly in the direction of fireflies that are more appealing. The formula for

the movement of firefly ‘i’ toward firefly ‘j’ is given in Equation (4) as:

xt+1
i = xt

i + β.Aij.
(

x(t)j − xt
i

)
+ α.rand(−1, 1) (4)

where:
xt+1

i : New position of firefly ‘i’ in the next generation.
xt

i : Current position of firefly ‘i’.
β: Attractiveness factor.
Aij: Attractiveness between fireflies ‘i’ and ‘j’.

x(t)j : Current position of firefly ‘j’.
α: Randomization parameter for exploration.
rand (−1, 1): A random number between −1 and 1.

3. Light Intensity Update: Calculate the light intensity for each firefly based on its
fitness value.
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4. Sorting: Arrange the fireflies in descending order according to their light intensity, with
the brightest fireflies (those with the best fitness values) placed at the top positions.

5. Selection and Replacement: Select a subset of the highest-performing fireflies to be
retained for the next generation. Replace the remaining fireflies with newly generated
solutions chosen randomly.

6. Termination: Repeat steps 3 to 6 until the specified cycle count is reached or a termina-
tion condition is met, such as the discovery of an acceptable solution.

2.4.3. Modified PSO Algorithm

The standard Particle Swarm Optimization (PSO) algorithm has undergone several
enhancements over the years and is widely employed in various domains [40]. According
to the standard PSO Equations (5) and (6) provide the formulas for updating particle
positions and velocities.

X(t + 1) = X(t) + V(t + 1) (5)

V(t + 1) = wi ∗ V(t) + c1 ∗ rand() ∗ (Ppbest − X(t) + c2 ∗ rand()
∗(Pgbest − X(t))

(6)

wi: Inertia weight
V(t): Particle’s velocity at time ‘t’
X(t): Position of the particle at time ‘t’
c1: Personal learning factor
c2: Neighborhood learning factor
rand: Random number distributed between 0 and 1 uniformly
Ppbest: Particle’s best position
Pgbest: Global best position
A linearly decreasing weight is employed, where the inertia weight is determined

based on the iteration and can be represented by Equation (7).

wi = wmax −
(

wmax − wmin
max_iteration

)
∗ i (7)

wmax = 0.9, wmin = 0.2, wi = weight at iteration ‘i’, max_iteration = Maximum Iteration.
In the modified PSO, the concept of neighborhood learning is expanded. Unlike stan-

dard PSO, which only learns from the personal best and global best, the modified PSO incor-
porates populations generated by other optimization algorithms. In our work specifically,
the best population sets obtained from the Firefly Algorithm (known for high precision) and
the Genetic Algorithm (known for high recall) are utilized as neighborhood learners for the
modified PSO algorithm. The velocity formula of the modified PSO algorithm encompasses
three learning components: self-best (Ppbest), the best population of the Genetic Algorithm
(geneticpop), and the best population of the Firefly Algorithm (fireflypop).

The modified formula to find the velocity of the particle is given in Equation (8)

V(t + 1) = V(t) + c1 ∗ rand() ∗ (Ppbest − X(t)) + c2 ∗ rand() ∗ (geneticpop − X(t)) + c3 ∗ rand()
∗(fireflypop − X(t))

(8)

fireflypop—Best firefly returned by the Firefly Algorithm.
geneticpop—Best chromosome returned by the Genetic Algorithm.
V(t): Particle’s velocity at time ‘t’
X(t): Position of the particle at time ‘t’
c1: Personal learning factor
c2,c3: Neighborhood learning factor
rand: Random number distributed between 0 and 1 uniformly
Ppbest: Particle’s best position
Pgbest: Global best position
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2.4.4. Synergistic Optimization Algorithm (SOA)

The fundamental concept of the proposed SOA is that collaboration leads to superior
outcomes compared to individual efforts. By employing multiple optimization algorithms
and utilizing multiple populations, the performance is significantly enhanced compared to
using a single optimization algorithm. Increasing population diversity provides the opti-
mization algorithm with a wider range of options for discovering superior solutions. There-
fore, the central idea of the SOA revolves around enhancing population diversity through
the incorporation of multiple populations derived from various optimization algorithms.

In the context of solving multi-objective optimization problems, the SOA strategy
involves dividing the problem into subproblems. Each subproblem focuses on optimizing
an individual objective using a dedicated optimization algorithm. Subsequently, the best
populations obtained from these subproblems are used as neighborhood learners for
the optimization algorithm, which aims to find a balanced solution that addresses the
conflicting objectives.

The SOA returns weight values ranging from 0 to 50 for each climatic indicator, which
are then multiplied by the corresponding climate indicator value, as shown in Figure 3. If
the classifier properly identifies the drought years, this weight value is preserved; otherwise,
SOA calculates the weight values again and re-builds the weighted dataset. The classi-
fication performance of this weighted dataset is evaluated, and if necessary, the process
is repeated.

In our SOA-weighted drought occurrence detection framework, we utilize an ensem-
ble process that incorporates three optimization algorithms: the Firefly Algorithm, the
Genetic Algorithm, and the Modified Particle Swarm Optimization Algorithm. These algo-
rithms generate multiple populations aimed at achieving the multi-objective of enhancing
precision and recall. To address this multi-objective optimization problem, we divide it into
three subproblems as follows:

a Enhancing precision with the Firefly Algorithm;
b Improving recall with the Genetic Algorithm;
c Balancing the increases in precision and recall without them adversely affecting each

other using the modified PSO.

Below are the detailed steps for executing the aforementioned subproblems:

a. Enhancing precision with the Firefly Algorithm

In the firefly algorithm, each firefly holds attribute (or instance) weights and measures
its fitness value through the precision score. The objective of the algorithm is to maximize
the precision score, which is achieved by constructing a fitness function. This function
takes the attribute (or instance) weight values as input, creates a weighted dataset, applies
classification, and calculates the precision score. By comparing the fitness scores of the
fireflies and using the best global firefly as a reference, new fireflies are generated. This
process is repeated until the maximum iteration is reached. Please refer to Appendix A.1
for the detailed steps of the attribute weighting algorithm. In the case of instance weighting,
please substitute the 21 weight values with 312 weight values.

b. Improving recall with the Genetic Algorithm

Each gene in the Genetic Algorithm represents an attribute or instance weight. The
chromosome contains the attribute (or instance) weights, and its fitness value is measured
by the recall score. The objective of the Genetic Algorithm’s fitness function is to maxi-
mize the recall score. To achieve this, the fitness function takes the attribute (or instance)
weight values as input, constructs a weighted dataset, applies classification techniques, and
calculates the precision score. The chromosomes’ fitness scores are compared, and new chro-
mosomes are generated based on the best chromosome using mutation operations. Please
refer to Appendix A.2 for the detailed steps of the attribute weighting algorithm using the
Genetic Algorithm. In the case of instance weighting, instead of using 21 weight values, we
utilize 312 weight values. The program returns The module returns the individual(s) with
the highest fitness (highest recall score) obtained by the Genetic Algorithm.
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c. Balancing the increase in precision or recall

The task of maximizing precision and recall without them affecting one another is
performed using the Modified PSO algorithm. It receives the ‘m’ best particles from the
Firefly Algorithm and Genetic Algorithm. The neighborhood learning is performed using
these particles, and the velocity is updated using Equation (8). The position is updated
using Equation (5).

The detailed pseudocode is given in Appendix A.3.

2.5. Multipopulation Communication

Our modified PSO algorithm incorporates the use of both the Genetic Algorithm and
the Firefly Algorithm to enhance its performance. Modified PSO requests ‘m’ fireflies and
chromosomes from the respective algorithms. This requisition communication interval
is set to occur at the end of every 10th iteration until the maximum iteration count is
reached. After the requisition, the Genetic Algorithm and Firefly Algorithm are each run for
5 iterations. The Genetic Algorithm identifies the best precision population, while the Firefly
Algorithm identifies the best recall population. The top ‘m’ fireflies and chromosomes,
where ‘m’ is the number of particles set by the modified PSO algorithm is returned.

The detailed workflow of attribute weighting with SOA using the Gradient Boosting
Classifier is given in Figure 5.
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2.6. Dataset

The research focuses on the state of Tamil Nadu in India, specifically analyzing drought
patterns from 1995 to 2020. Three significant drought years within this period: 2002, 2009,
and 2017 are declared as drought years by the government based on the recommenda-
tion of the Indian Meteorological Department (IMD) [41]. To conduct the analysis, the
study utilizes various input attributes, including drought indices recommended by the
IMD and climatic indicators suggested by the Global Climate Observing System (GCOS),
co-sponsored by the World Meteorological Organization (WMO). The GCOS categorizes
the climatic indicators into three main categories: land, atmosphere, and sea. The following
monthly climatic indicators are considered: average maximum temperature [42], pean
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temperature [42], minimum temperature [42], vapor pressure [42], wind speed [42], precip-
itation [42], shortwave radiation [42], mean dew point [42], cloud amount [43], mean sea
levels in three locations (Bay of Bengal, Arabian Sea, and Indian Ocean) [44], PM2.5 [45],
and CO2 [46]. In terms of drought indices, the study employs the Standardized Precipita-
tion Index (SPI) [47] with timescales of 3, 6, and 12 months, as well as the Standardized
Precipitation Evapotranspiration Index (SPEI) [48] with timescales of 3, 6, and 12 months.

2.7. Explainable AI–SHAP Method

Machine learning models are black boxes, one cannot understand how the final
output was predicted. Explainable AI helps in understanding any machine learning
model; it gives an interpretation of how the prediction was made [49]. Hence, the model
transparency creates trust in the model. The popular explainable AI techniques are SHAP, or
SHapley Additive explanations; LIME, or Local Interpretable Model-agnostic Explanations;
Permutation Importance; Partial Dependence Plots; and many more. The SHAP method
was based on the coalitional game theory, which calculates the Shapley value of the players.
Here shapely value is the feature importance score given among the participating features.
SHAP summary plot shows the shapely value of feature per instance.

3. Results

This research aims to assess the impact of various climatic indicators on drought
occurrence. A total of 21 attributes were considered, including SPI3, SPI6, SPI12, SPEI3,
SPEI6, SPEI12, monthly average maximum temperature, mean temperature, minimum
temperature, vapor pressure, wind speed, precipitation, shortwave radiation, mean dew
point, cloud amount, PM2.5, and mean sea levels in three locations (Bay of Bengal, Arabian
Sea, and Indian Ocean). The output variable is a binary class indicating the presence or
absence of drought. Interestingly, not many researchers have explored the relationship
between these climatic indicators and drought occurrence, making this study unique.

The first comparison involved comparing the performance of the model with and
without attribute weighting and instance weighting using the three wrapper classifiers. The
second comparison focused on predicting the minority drought class using stratified cross-
validation. The third comparison involved selecting the top 15 attributes and evaluating
the results achieved using the attribute selection approach. The fourth comparison study
evaluated the performance of attribute and instance weighting carried out with two-stage
PSO and SOA. The fifth comparison study investigated how attribute and instance weight-
ing with standalone use of the standard PSO, standard Genetic Algorithm, and standard
Firefly Algorithm performed in drought class prediction using the three classifiers.

In the first comparison experiment, the dataset was directly applied to the classifier
without any weighting or selection operation on either attributes or instances. In imbal-
anced datasets, the prediction performance for the majority class tends to be excellent, while
it is lower for the minority (target) class. Higher performance values for the majority class
result in increased precision average, recall average, and accuracy values automatically.
Table 1 presents the classwise performance report, highlighting the performance differences
between the prediction of the drought class (minority) and the Not Drought class (majority)
in this study. For all classifiers, the precision value for the Not Drought class is above
0.9, and importantly, the recall value is also above 0.95. However, the recall values for
the Drought class are below 0.6 with different classifiers, with Random Forest achieving
a precision value of 0.9 and Gradient Boosting achieving a moderately good precision
value of 0.81, while Decision Tree shows a lower precision value. Another observation
is the difference between precision and recall. Random Forest exhibits a difference of
(0.9–0.3 = 0.6), and Gradient Boosting shows a difference of (0.8–0.6 = 0.2). To address
this, a multi-objective optimization technique is employed to achieve a balance between
precision and recall values. Additionally, high accuracy values are noted. Despite the recall
value for the minority class (drought) being below 0.5, the accuracy remains above 0.9 for
all three classifiers. This indicates that accuracy is not a reliable measure for imbalanced
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datasets, as it includes the performance of the majority class prediction, leading to inflated
accuracy values.

Table 1. Prediction performance using various classifiers without Attribute/Instance weighting.

S. No Method

Drought Class
(Minority)

Not Drought Class
(Majority) MCC Accuracy

Precision Recall Precision Recall

1 Without Attribute Weighting with Random Forest 0.9 0.3 0.91 1.0 0.46 0.96
2 Without Attribute Weighting with Gradient Boosting 0.81 0.6 0.94 0.97 0.72 0.96
3 Without Attribute Weighting with Decision Tree 0.61 0.48 0.94 0.96 0.54 0.95

The fitness function of the SOA is designed to enhance both precision and recall in
predicting the minority drought class. Our objective was to improve these values using
SOA in conjunction with three wrapper classifiers. The initial experiment focused on
predicting the minority drought class using SOA attribute-weighted datasets, and the
results are presented in Table 2. Subsequently, SOA instance-weighted datasets were
utilized, and the outcomes are provided in Table 3. A significant performance improvement
is observed when comparing the experimental results in Tables 2 and 3 with those in
Table 1. The results indicate that the Random Forest Classifier solely increases precision
without affecting the recall value. The Decision Tree Classifier achieves a balance between
precision and recall, albeit not at high levels. On the other hand, the Gradient Boosting
Classifier demonstrates greater success in achieving high precision and recall values while
maintaining balance. When comparing attribute weighting and instance weighting results
under different wrapper classifiers, the Gradient Boosting classifier with attribute weighting
yields superior outcomes compared to instance weighting. The precision value with
attribute weighting reaches 9.2, while simultaneously increasing recall to 0.79. In contrast,
instance weighting results in a precision value of 0.9 and a recall value of 0.76.

Table 2. Minority drought class prediction performance using various classifiers with attribute
weighting using synergistic optimization algorithm.

S. No Method Precision Recall MCC Accuracy

1 Synergistic optimization algorithm with Random Forest 0.95 0.5 0.57 0.92
2 Synergistic optimization algorithm with Gradient Boosting 0.92 0.79 0.82 0.97
3 Synergistic optimization algorithm with Decision Tree Classifier 0.75 0.69 0.68 0.94

Table 3. Minority drought class prediction performance using various classifiers with instance
weighting using synergistic optimization algorithm.

S. No Method Precision Recall MCC Accuracy

1 Synergistic optimization algorithm with Random Forest 1 0.45 0.54 0.93
2 Synergistic optimization algorithm with Gradient Boosting 0.9 0.76 0.81 0.96
3 Synergistic optimization algorithm with Decision Tree Classifier 0.7 0.69 0.65 0.93

Based on the SOA weighting with the Gradient Boosting Classifier, the attribute and
instance weights are analyzed as follows. The attribute weights provide insights into the
significance of each attribute in predicting drought. Remarkably, the primary attribute
contributing to drought prediction is the drought index SPEI, followed by other notable
factors such as CO2 pollution, PM2.5 pollution, and sea level rise (refer to Figure 6).
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As per SHAP the contributions of the climatic variables SPI12, PM2.5, CO2, SPI6, mean
sea level of the Bay of Bengal, SPEI12, and mean sea level of the Indian Ocean are prominent
in drought-occurrence prediction. A comparison of Figures 6 and 7 shows that both SOA
weighting and SHAP give high weighting to climatic variables such as mean sea level
and pollution. The attribute of mean sea level of the Bay of Bengal is contradictory, since
SOA assigns it a lesser priority, while SHAP assigns it a higher importance. Classwise, the
attributes are equally weighted. The dataset consists of a comprehensive collection of data
spanning 26 years, with information available for each month. The instance weights are
calculated based on the 312 monthly instances, indicating that the months of March, April,
July, and August significantly contribute to the prediction of drought (refer to Figure 8).
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Figure 8. Month-by-month instance weight found by SOA.

The second set of comparison experiments aimed to evaluate the performance of the
SOA-weighted classification approach in handling imbalanced datasets, in comparison to
the popular stratified cross-validation technique. The Repeated Stratified K-Fold function
with n_splits = 10 was utilized for this evaluation. Upon comparing the results of drought
class prediction using the SOA attribute weighting and stratified cross-validation (as shown
in Table 4), it is evident that our proposed SOA method achieved results that were nearly
equivalent to stratified cross-validation.

Table 4. Minority drought class prediction performance comparison of proposed work with stratified
cross-validation.

S. No Classifier
Stratified Cross-Validation SOA Attribute Weighting

Precision Recall Precision Recall

1 Random Forest 0.8 0.6 0.95 0.5
2 Gradient Boosting 1 0.9 0.92 0.79
3 Decision Tree 0.73 0.64 0.75 0.69

For the third comparison study, attribute selection was implemented, and the attribute
importance scores given by all three classifiers were analyzed. Based on these scores,
the 15 most common attributes with high importance scores across all classifiers were
selected. The drought classification process was then conducted using these 15 attributes,
and the results are presented in Table 5. When comparing the performance of the Attribute
selection technique with our proposed SOA attribute weighting, it was observed that
attribute selection yielded a precision and recall score of 0.76 with the Gradient Boosting
Classifier. However, the performance of attribute selection with the other two classifiers
was poor. Similarly, Random Forest exhibited a significant difference between precision
and recall, whereas Decision Tree provided a more balanced performance, albeit with lower
overall accuracy.

Table 5. Minority Drought Class Prediction Performance comparison of proposed work with
Attribute Selection.

S. No Classifier
Attribute Selection SOA Attribute Weighting

Precision Recall Precision Recall

1 Random Forest 0.66 0.15 0.95 0.5
2 Gradient Boosting 0.76 0.76 0.92 0.79
3 Decision Tree 0.33 0.25 0.75 0.69
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The comparison work involved attribute and instance weighting using two-stage
PSO [50]. The results are presented in Figures 9 and 10. It was observed that the wrapper
classifier Gradient Boosting performs exceptionally well, ranking at the top. Both instance
weighting and attribute weighting yielded similar results when combined with gradient
boosting. However, a limitation of two-stage PSO is its inability to improve the recall value
equal to precision, regardless of attribute or instance weighting and the wrapper classifier.
The best precision and recall value pair achieved was 0.82 and 0.69.
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Comparing two-stage PSO with the SOA attribute and instance weighting, the results
in Figures 9 and 10 demonstrate that SOA exhibited significant improvements in recall
compared to two-stage PSO. In terms of precision enhancement, both methods performed
equally well.

The fifth comparison pertained to the performance of a single optimization algorithm
in comparison to SOA performance. The outcomes revealed that collective performance
yielded favorable results. Specifically, the standard PSO algorithm in conjunction with
the Gradient Boosting Classifier demonstrated promising results. However, the standard
Firefly and Genetic algorithms failed to surpass a recall value of 0.7. Please refer to
Figures 11 and 12 for a visual representation of the obtained results.
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The analysis focuses on the performance of the Gradient Boosting Classifier in conjunc-
tion with attribute weighting, which yielded the most optimal results. The precision–recall
curve of this combination is examined in Figure 13. Notably, the achieved AUC score for
drought-occurrence prediction was 0.85.
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4. Discussion

From the review work, we developed an understanding that most works on drought
prediction have been on predicting drought indices using statistical techniques or machine
learning techniques. Nonetheless, every drought index has a flaw, and at present, there
does not exist a drought index that is universally accepted by all the scientists of the world.
There are many successful works that include factors such as wind speed, solar radiation,
SST, ENSO, El Niño, and many more along with drought indices in the prediction of
drought [51]. Hence, as per the list of climatic indicators given by GCOS, we included
the indicators under the categories of temperature, atmosphere, and sea. The atmosphere
category included the pollution element, since pollution plays a major role in global climate
changes; thus, in our work, we have included the pollution element as well. We used the
drought indices and climatic indicators to predict whether a year would be a drought year
or not. The study aimed to find the relationship between climatic indicators and drought
occurrence, and it also aimed to determine which months’ data strongly contributed to
drought occurrence.

As per the results, SOA gives the topmost importance to SPEI and, more specifically,
SPEI on a 6-month scale in predicting drought. The reason is that SPI is based on the
precipitation data, whereas SPEI is based on a complete package of precipitation and
evapotranspiration. The next most important factors discovered are sea level changes and
pollution factors. They are marked as important climatic indicators of global climate change
by the United States Environmental Protection Agency (US EPA) and National Oceanic
and Atmospheric Administration (NOAA) [52,53]. From the instance weighting, it was
identified that the summer months of March and April and the southwest monsoon months
of July and August play the crucial roles in predicting drought. We can conclude that sea
level changes, wind speed, and pollution levels in the summer and southwest monsoon
periods will contribute highly to drought-occurrence prediction for a given year.

The drought-occurrence prediction dataset created by us is an imbalanced one; hence,
to increase its precision and recall, attribute (or instance) weighting with SOA was used.
This new approach achieved good improvements in precision and recall. The prediction
of Drought or Not Drought is determined by the classification threshold value. Deter-
mining the classification threshold is a crucial task in classification. The multi-objective
optimization employed will tune the weights of attributes (or instances) and find the per-
fect threshold value that results in maximizing both precision and recall. Since the weight
tuning is performed using an optimization algorithm in an iterative manner, it is able to
find the perfect threshold value. In this study, the precision–recall curve was able to reach
an AUC score of 0.85.

Our previous work with two-stage PSO employed a single optimization algorithm
and a fine-tuned population. In this way, it was able to achieve precision of 0.82 and
recall of 0.69. However, the proposed SOA algorithm combines the capabilities of multiple
optimization algorithms and neighborhood learning. As a result, the population diversity
increases and optimal weights of attributes (or instances) were successfully determined. In
this way, a precision score of 0.9 and a recall score of 0.76 were achieved.

5. Conclusions and Future Work

According to the WMO, drought poses a threat to sustainable development. Therefore,
forecasting drought is essential for achieving sustainability in food, water, the economy,
and health. Our goal is to enhance the prediction of drought, which is the minority class
in an imbalanced dataset, by employing attribute/instance weighting. The proposed
SOA weighting approach effectively leverages multiple populations and optimization
algorithms to maximize precision and recall with weighted datasets. On average, the
inclusion of either attribute or instance weighting results in a 10% improvement in precision
and a 20% enhancement in recall compared to scenarios without weighting (results are
given in Table 1). Through experiments conducted on attribute weighting and instance
weighting, we have found that attribute weighting yields more significant improvements
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in results than instance weighting. Notably, the prediction of drought involves factors
such as sea level rise and CO2 levels, which are of substantial significance, in addition
to conventional factors such as precipitation and temperature. When its efficiency is
evaluated with stratified cross-validation, it reveals that the proposed approach performs
closer to a stratified approach. The limitation of the work in terms of methodology is
the global attribute weighting, since calculating weights using class labels (local attribute
weighting) may improve the results. When the number of climatic indicators increases,
the use of bio-inspired algorithms to determine the optimal weight becomes more difficult,
since applying bio-inspired optimization algorithms to high-dimensional datasets is a vast
study area in and of itself. Moving forward, it is crucial to extend research to include
other pollution factors such as NO2, SO2, and O3, as well as global sea level changes.
Furthermore, to gain a deeper understanding of the specific indicators that contribute
to drought occurrence, attribute value weighting using the Kullback–Leibler divergence
measure could be conducted in the future.
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Appendix A

Appendix A.1. Algorithm for Attribute Weighting with Firefly Optimization Algorithm

Algorithm A1: Attribute Weighting with Firefly Optimization Algorithm

1. Initialization: Create ‘m’ fireflies. Each firefly holds the 21 attributes’ weight values.
Initialize 21 Attributes’ weight values randomly.

2. Fitness Function:

• Using the input weight values, create the weighted dataset.
• Train a classification model with Gradient Boosting Classifier using a weighted dataset.
• Calculate the precision score and assign it to the fitness value.
• Return the fitness value.

3. Firefly Algorithm:

• Use the precision score obtained from the fitness function as the objective to
be maximized.

• Update the positions of the fireflies based on their attractiveness and movement rules.
• Adjust the 21 weight values iteratively to maximize the precision score.

4. Termination Criteria: Stop when the maximum number of iterations is reached.

5. Output: The 21 optimized weight values correspond to the highest precision score obtained
using the Firefly algorithm.
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Appendix A.2. Algorithm for Attribute Weighting with Genetic Algorithm

Algorithm A2: Algorithm for Attribute Weighting with Genetic Algorithm

1. Initialization
Generate an initial population of ‘m’ chromosomes (each representing 21 attribute weight values).

Evaluate the population using the fitness function.

2. Genetic Algorithm
Select two chromosomes with the best fitness value from the current population.
Perform one-point crossover to create offspring.
Apply random bit-flip mutation to the offspring.
Add mutated offspring to the new population.
Call fitness function and evaluate the chromosome.

Fitness Function ( )
for each chromosome in the population do:

Using the weight values in the chromosome creates the weighted dataset.
Train a binary classification model with Gradient Boosting Classifier using
weighted dataset.
Calculate the recall score and store it as the fitness value.
Return the fitness value.

4. Termination Criteria: Stop when the maximum number of iterations is reached.

5. Output: The 21 optimized weight values correspond to the highest recall score obtained by the Genetic algorithm.

Appendix A.3. Algorithm for Modified PSO for Attribute Weighting

Algorithm A3: Modified PSO for Attribute Weighting

Input Variables:
Particle position vector X = [X1, X2. . .X21] // Holds the Weight of 21 Input attributes
Velocity Vector V = [V1, V2. . .V21] // Holds the velocity of the particles
Input Dataset D
Weighted Dataset D‘

Initialization steps
1. For ‘m’ particles initialize position vector X, with random values.
2. For ‘m’ particles, using the X [ ] as weights, construct the weighted dataset set D‘ = XD.
3. Apply Gradient Boosting Classifier to D‘ and find precision and recall.
4. Choose the particle_best from ‘m’ particles.

Iteration steps

5. Iter = 0
6. While ( Iter < Max_Iteration)
7. If ( Iter %10==0 ) //check for every 10 th iteration
8. Call the firefly algorithm and receive the best ‘m’ fireflies with high precision value.
9. Call the genetic algorithm and receive the best ‘m’ chromosomes with a high recall value.
10. Use Equation (8) to update the velocity of the particle.
11. Use Equation (5) to update the particle position.
12. Using the updated position, construct a weighted dataset D‘= X D.
13. Perform fitness operation of maximizing precision and recall in drought

prediction using Gradient Boosting Classifier.
14. Increment Iter
15. End While

Output: The 21 optimized weight values that correspond to the highest precision and recall score.
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