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Abstract: Hexavalent chromium [Cr(VI)] is a high-priority environmental pollutant because of its
toxicity and potential to contaminate water sources. Biosorption, using low-cost biomaterials, is an
emerging technology for removing pollutants from water. In this study, Long Short-Term Memory
(LSTM) and bidirectional LSTM (Bi-LSTM) neural networks were used to model and predict the
kinetics of the removal capacity of Cr(VI) and total chromium [Cr(T)] using Cupressus lusitanica bark
(CLB) particles. The models were developed using 34 experimental kinetics datasets under various
temperature, pH, particle size, and initial Cr(VI) concentration conditions. Data preprocessing via
interpolation was implemented to augment the sparse time-series data. Early stopping regularization
prevented overfitting, and dropout techniques enhanced model robustness. The Bi-LSTM models
demonstrated a superior performance compared to the LSTM models. The inherent complexities
of the process and data limitations resulted in a heavy-tailed and left-skewed residual distribution,
indicating occasional deviations in the predictions of capacities obtained under extreme conditions.
K-fold cross-validation demonstrated the stability of Bi-LSTM models 38 and 43, while response
surfaces and validation with unseen datasets assessed their predictive accuracy and generalization
capabilities. Shapley additive explanations analysis (SHAP) identified the initial Cr(VI) concentration
and time as the most influential input features for the models. This study highlights the capabilities
of deep recurrent neural networks in comprehending and predicting complex pollutant removal
kinetic phenomena for environmental applications.

Keywords: LSTM; Bi-LSTM; chromium; SHAP; modeling

1. Introduction

Chemical pollution of the environment has been identified as one of nine critical
frontiers that should not be exceeded, in order to avoid catastrophic impacts on the Earth’s
balance and human well-being [1]. Metals are globally dispersed because of their persis-
tence, high production, global trade, and widespread use in multiple applications [2].

Chromium is a transition metal that is extensively utilized in various industrial pro-
cesses such as metal plating, wood treatment, metal refining, stainless steel production,
leather tanning, and chemical dye production [3]. However, one of its most stable forms,
Cr(VI), is considered a high-priority pollutant because of its high toxicity and ability to
contaminate soil and drinking water sources [4].
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The global dispersal of Cr(VI) and other metals seriously threatens food security, because
metals can accumulate in the food chain and reach hazardous levels in agricultural products [5].
Exposure to Cr(VI) can have detrimental health consequences for humans and is classified
as carcinogenic by the International Agency for Research on Cancer [6]. It can also cause
damage to the skin, mucous membranes, skin allergies, respiratory problems, stomach ulcers,
and harm to the kidneys and liver, depending on the form of exposure [3,7]. Controlling and
mitigating chemical pollution, especially metal-related pollution, is essential for maintaining
environmental sustainability and protecting human health.

Biosorption, a fundamental technology for treating metal-contaminated water, is a pro-
cess in which biological materials, notably agricultural and forestry waste products, operate as
effective adsorbents to remove metal ions from contaminated aqueous solutions. This process
relies on intricate interactions, including ion exchange, complexation, and surface adsorption,
to capture and retain metal ions [8]. Biosorbents are favored in this endeavor because of their
cost-effectiveness, wide availability, and remarkable adsorption capacity.

The study of metal biosorption involves extensive research, primarily on kinetic and
equilibrium studies. Typically, univariate analysis is employed, in which one variable is
studied independently, while keeping the others constant, often fitting different mechanistic
or empirical models [9,10]. This approach allows for a precise understanding of the
influence of each variable on the metal biosorption capacity of a given material. The key
variables that have garnered significant attention include the initial metal concentration,
pH, and temperature of the solution, as well as the particle size and concentration of the
biomaterial [11,12]. Multivariate analyses investigating the interrelationships between
various variables and their impact on biosorption have been explored to a lesser extent.
These techniques delve into how different variables interact and how their combinations
influence the adsorption capacity. The most frequently used tools for this analysis are the
response surface technique, machine learning (ML), and deep learning (DL) [13–16].

ML involves the development of algorithms and analytical models that can learn from
data, without explicitly relying on programming rules. These models automatically identify
patterns in input data and use them to perform tasks such as classification, regression,
clustering, and association [17]. Artificial neural networks (ANNs), decision trees, support
vector machines, and reinforcement learning are among the most popular machine learning
approaches [18].

DL refers to artificial neural networks with multiple layers that learn hierarchical rep-
resentations from data [19]. Recurrent neural networks (RNNs) are powerful deep learning
models for sequential data. A key feature of the RNN architecture is its cyclic connections,
which allow the RNN to update its current state based on past states and current input
data [20]. However, a standard RNN can struggle with long-term dependencies because
of the vanishing gradient problem. Long Short-Term Memory (LSTM) networks were
designed to overcome this limitation by introducing input, output, and forget gates [21,22].
The bidirectional LSTM (Bi-LSTM) further enhances sequence learning by processing data
in both temporal directions [23].

RNNs are uniquely adaptable to effectively utilize missing value patterns, time inter-
vals, and intricate temporal dependencies in irregular univariate and multivariate time-
series data [24,25]. The architectures of LSTM and Bi-LSTM networks are especially well
suited for addressing complex dynamics and nonlinear relationships in temporal data. This
suitability is attributed to their sophisticated gate structure, which allows precise informa-
tion flow control and enables them to effectively capture long-term dependencies [26].

When complex temporal dynamics are crucial, LSTM and Bi-LSTM networks may offer
superior modeling capability and predictive performance compared to other architectures,
such as GRU and standard RNNs [27]. Their versatility positions LSTM and Bi-LSTM
networks as efficient tools for tackling real-world problems, making them robust and adapt-
able models for analyzing and predicting complex processes across various domains. These
applications include contaminant removal through adsorption [14], biomass pyrolysis [28],
constructive peptide design [29], and blood glucose prediction [30].
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Cupressus lusitanica bark (CLB) was highly effective in removing Cr(VI) and Cr(T)
from aqueous solutions. The removal of Cr(VI) using CLB is a complex phenomenon that
involves both biosorption and Cr(VI) reduction. Biosorption adheres to pseudo-second-
order kinetics, indicating that chemisorption is the rate-limiting step [31,32].

The biosorption of chromium from Cr(VI) solutions using CLB involves four complex
reaction steps. This process begins with the formation of Cr(VI) complexes through interac-
tions between Cr(VI) ions and oxygen-containing groups, resulting in the adsorption of
Cr(VI) oxyanions. In the second step, Cr(VI) is reduced to trivalent chromium [Cr(III)]. The
third step involves forming carboxyl groups through the oxidation of oxygen-containing
groups. The last step involves the interaction of Cr(III) with the carboxyl groups, forming
Cr(III)–carboxylate complexes. These successive reactions collectively contribute to the
complex yet effective removal of chromium from Cr(VI) solutions using CLB [32].

The Cr(III) formed can either remain adsorbed or transition into the aqueous phase,
suggesting that the biomaterial may have a higher capacity for removing Cr(VI) from the
solution than Cr(T). Understanding this distinction is crucial for accurately assessing the
efficiency of a biomaterial in removing different chromium species (Cr(VI) and/or Cr(III)).
Furthermore, the literature contains a diverse range of biomaterials that exhibit mechanisms
like those of CLB [33,34]. These processes are intricately dependent on operational conditions
and time, posing a significant challenge in comprehending the kinetics of this phenomenon.

Prior studies have explored the application of ML techniques, such as ANNs, to model
and predict the removal of Cr(VI) or Cr(T) using various biomaterials. These investiga-
tions encompassed a range of approaches, including feed-forward neural networks with
backpropagation algorithms [35,36], multilayer perceptrons [37–39], support vector ma-
chines [40], hybrid models combining genetic algorithms with ANNs [41], ANNs paired
with Particle Swarm Optimization [42], Adaptive Neuro-Fuzzy Inference Systems [43,44],
and Random Forest algorithms [45]. However, most of these methods have primarily
focused on predicting removal efficiency and adsorption capacity in equilibrium studies,
with limited emphasis on modeling continuous and batch adsorption kinetics. Notably, the
complex kinetic removal of Cr(VI) using these biomaterials, considering both Cr(VI) and
Cr(T), has not been previously modeled using ML or DL techniques [46,47]. Understand-
ing this kinetic complexity is crucial for accurately assessing the material’s efficiency in
removing the different chromium species and optimizing process conditions.

LSTM and Bi-LSTM neural networks were chosen for their robustness in handling
incomplete data and their superior performance in modeling extended temporal sequences.
Their capability to capture long-term dependencies positions them as optimal choices for
the modeling objectives, particularly in predicting the dynamic adsorption capacities of
CLB for Cr(VI) and Cr(T). Notably, this study represents a pioneering effort and is the
first to consider the removal of Cr(VI) and Cr(T) through deep-learning-based modeling.
This groundbreaking approach advances our comprehension of CLB’s efficacy in Cr(VI)
removal and is a compelling example of applying ML and DL techniques in environmental
engineering research

2. Materials and Methods
2.1. Experimental Data

The experimental data utilized in this study originated from various univariate kinetic
investigations involving the removal of Cr(VI) and Cr(T) using CLB. The methodology
for data collection was previously documented by Netzahuatl-Muñoz et al. [31,32]. Un-
published kinetic datasets were integrated to expand the scope of the conditions under
examination. In total, 37 kinetic datasets were employed in this analysis, covering a range
of variables, including pH, temperature (T), initial Cr(VI) concentration (Co), smallest
particle size (SPS), and largest particle size (LPS). Each dataset comprised a sequence of
data points that recorded the removal capacities of Cr(VI) [qCr(VI)] and Cr(T) [qCr(T)],
using CLB, as a function of time.
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2.2. Data Preprocessing

Data preprocessing was critical because of missing and incomplete time-series data.
The original datasets had fewer than 25 data points per time series with irregular sampling
intervals, making measurements unavailable at all possible time points across all the ki-
netics. This data sparsity and irregular temporal coverage pose challenges, as inadequate
time-series data can negatively impact model performance and accuracy when training ML
models [48]. A Python linear interpolation algorithm was implemented to augment the data
to address this data density issue. By interpolating existing data points in time, missing
values were filled and the total number of data points for 34 kinetics was significantly
increased, achieving a 15-fold expansion to 7429 data points. Interpolation-based augmen-
tation enhances information density, while preserving the overall trends and patterns of
the original sparse datasets.

2.3. Data Partition and Input–Output Variable Assessment

The dataset was divided into training and testing sets, with 80% of the data allocated
for training the DL algorithms and the remaining 20% was reserved for evaluating the model
performance. The specific maximum and minimum values of each variable under consideration
are listed in Table 1. It is important to note that this analysis collectively considered both output
variables, as follows: the removal capacity of Cr(VI) and Cr(T) using CLB.

Table 1. Ranges of variables for network modeling of Cr(VI) and Cr(T) removal capacity using CLB.

Layer Variable Variable Code Minimum Value Maximum Value

Input

Temperature (◦C) T 15.0 45.0
pH pH 1.0 4.0

Initial Cr(VI) concentration (mg L−1) Co 10.6 1035
Smallest particle size (µm) SPS 150 1410
Largest particle size (µm) LPS 180 1700

Time (h) time 0 144

Output Cr(VI) removal capacity (mg g−1) qCr(VI) 0 611
Cr(T) removal capacity (mg g−1) qCr(T) 0 279

2.4. Neural Network Architecture and Regularization Techniques

The architecture employed in this study is based on two variants of recurrent neural
networks, LSTM and Bi-LSTM. These networks belong to a category recognized for their
ability to capture long-term dependencies in sequential data. A distinctive feature of LSTM
networks is their ability to address the vanishing gradient problem through an intelligent
cell design incorporating interactive gates to regulate the information flow.

2.4.1. LSTM Cell Mechanism

The components of an LSTM cell play a crucial role in managing the flow of infor-
mation within a network, as illustrated in Figure 1. The LSTM cell has three fundamental
gates, as follows: input, forget, and output [49]. The input gate regulates the integration
of new information into the cell, the forget gate controls the specific removal of previous
information, and the output gate determines the information emitted by the cell [20].

The key equations defining the LSTM cell function are as follows [20]:

ft = σ
(

W f · [ht−1; xt] + b f

)
(1)

it = σ(Wi · [ht−1; xt] + bi) (2)
∼
Ct = tanh(WC · [ht−1; xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (4)
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ot = σ(Wo · [ht−1; xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where ft, it, and ot are the activation vectors of the forget, input, and output gates at time t,

respectively; xt denotes the input at time t;
∼
Ct is the cell input activation vector, ct and ct−1

are the cell state at the current and previous time step, respectively; ht and ht−1 represent
the hidden state at t and from the previous time step, respectively; σ denotes the sigmoid
function, which bounds the gate outputs to a range between 0 and 1; tanh represents the
hyperbolic tangent function, ensuring cell state values remain within the interval [−1, 1];
W and b symbolize the weight matrices and bias vectors, respectively, optimized during
the learning process; concatenation is represented by [;]; and [*] signifies element-wise
multiplication, known as the Hadamard product.
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The conventional tanh activation function in an LSTM cell can be substituted by
alternative non-linear functions. The Exponential Linear Unit (ELU) and Rectified Linear
Unit (ReLU) activation functions were used. The ELU provides a smoother activation
for negative values, whereas the ReLU was selected for its computational efficiency and
capability to expedite convergence during network training [50,51].

2.4.2. LSTM and Bi-LSTM Networks

The LSTM network represents a specialized architecture design for processing se-
quences in a singular temporal direction, typically forward. This unidirectional approach
allows the network to capture the past context, fostering a cumulative understanding
of sequential data. The unidirectional LSTM network performs a specific calculation to
determine the final output at each time step (yt). The following equation can succinctly
express this process as follows:

yt = activation(W hyht + by

)
(7)

where Why is the weight matrix connecting the output of the LSTM cell to yt; by is the bias
vector; and activation represents the activation function.

The Bi-LSTM network is an extension of the LSTM architecture that introduces a
nuanced approach to sequence processing [23]. As highlighted in the visual representation
depicted in Figure 2, the Bi-LSTM network operates simultaneously in both the forward and
backward temporal directions [52]. This bidirectional configuration enables the network to
incorporate past and future information, providing a more comprehensive understanding
of the data.
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In a bidirectional LSTM, implemented in TensorFlow Keras, yt was computed by con-
catenating the hidden states from both the forward (h f

t ) and backward (hb
t ) directions [53].

Subsequently, a dense layer with an activation function was applied, as expressed by the
following equation:

yt = activation
(

Why ·
[

h f
t ; hb

t

]
+ by

)
(8)

where the weights Why and bias by constitute the dense layer, following the Bi-LSTM layers.
The choice of activation function (activation) in Equations (7) and (8) is determined by the
specific nature of the problem and the desired interpretation of the model outputs.

2.4.3. LSTM and Bi-LSTM Network Configuration

The architecture consisted of two hidden layers, each with the same number of units, 12,
25, or 50. The activation functions used were ‘elu’ for the first hidden layer, ‘relu’ for the second
hidden layer, and ‘softplus’ for the output layer. The recurrent activation function for the two
hidden layers was ‘sigmoid.’ The Adam optimization algorithm was applied to adjust the
network weights, with the mean square error (MSE) serving as the loss function (Equation (9)).
It quantifies the average of the squared differences between the actual values (Yi) and the
predicted values (Ŷi) of i-th sample for the number of data points in the dataset (N).

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2 (9)

The hyperparameter tuning process involved experiments with different dropout and
recurrent dropout value combinations in the second hidden layer. Dropout is a regular-
ization technique that helps mitigate overfitting by randomly deactivating and activating
neurons or neuron groups during training [54]. Recurrent dropout, however, regulates
recurrent connections within the LSTM units. The objective was to determine the optimal
configuration to achieve the best predictive performance. The network configurations of
the hyperparameters are summarized in Table 2.



Sustainability 2024, 16, 2874 7 of 25

Table 2. Hyperparameters for LSTM and Bi-LSTM neural networks in kinetics analysis.

Layer Hyperparameter Value

Input Number of neurons 6

First hidden

Number of cells LSTM 12, 25, 50
Activation function elu

Recurrent activation function sigmoid
Activation function dropout 0
Recurrent activation dropout 0

Return sequences true

Second hidden

Number of cells LSTM 12, 25, 50
Activation function relu

Recurrent activation function sigmoid
Activation function dropout 0, 0.3
Recurrent activation dropout 0, 0.3, 0.6, 0.9

Return sequences false

Output Number of neurons 2
Activation function softplus

Subsequently, the LSTM network was trained using the training dataset and predic-
tions were made using the test dataset. A methodology known as Early Stopping was
implemented to ensure the effectiveness of the LSTM and Bi-LSTM models in predicting
removal kinetics. Early Stopping is a regularization technique used during the training of
neural networks to prevent overfitting and to achieve a more generalizable model [55]. The
MSE of the validation set was used as an evaluation metric and a stopping threshold of
10 epochs, without improvement in the MSE of the validation set, was defined.

2.5. Implementation of Deep Learning Algorithm

The Keras library in Python was selected for implementing the proposed neural
networks because of its versatility and efficiency in developing neural network models.
This process was performed in a Visual Studio Code (VS Code, Microsoft, Redmond, WA,
USA) development environment, providing a highly versatile programming and code
development environment. In addition, Google Colab, a cloud-based platform based on
Jupyter Notebooks, was used to leverage high-performance computational resources, and
facilitate data analysis and deep learning algorithm implementation.

2.6. Model Fitting Evaluation

Various analyses were conducted to assess the quality of the tested LSTM and Bi-
LSTM models to ensure their accuracy and reliability. The coefficient of determination (R2)
provides insight into how the model explains data variability. This value was calculated
using the following formula:

R2 = 1 − ∑N
i=1

(
Yi − Ŷi

)2

∑N
i=1

(
Yi − Yi

)2 (10)

where Yi represents the mean of the observations. R2 was calculated using the test data to
evaluate the model’s goodness of fit.

2.7. Residual Analysis

The residuals (ri) are the difference between Yi and Ŷi for the test data, representing
the discrepancy between the observed and predicted values. Quantile–quantile (Q-Q) plots
were generated to examine the distribution of residuals in the test dataset. Furthermore,
skewness and kurtosis were computed to assess the distribution of the residuals and their
deviations from a normal distribution.
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The Fisher–Pearson coefficient of skewness (g1), which measures the asymmetry of
distribution, was calculated as follows:

g1 =
m3

m3/2
2

=
1
N ∑N

i=1(ri − r)3[
1
N ∑N

i=1(ri − r)2
]3/2 (11)

where r is the mean of the residuals, m3 is the third momentum, and m2 is the second
momentum.

The kurtosis, which quantifies the shape of the residual distribution, was calculated
using Fisher’s definition of kurtosis (g2).

g2 =
m4

m2
2
− 3 =

1
N ∑N

i=1(ri − r)4[
1
N ∑N

i=1(ri − r)2
]2 − 3 (12)

where m4 denotes the fourth momentum. Collectively, these measures assist in evaluating
the extent to which the residuals conform to a normal distribution.

Plots and calculations were conducted using the ‘stats’ module from the SciPy Python
library.

2.8. Post-Training Validation of Selected Models
2.8.1. Response Surface Validation

As a validation method, the predicted response surface of qCr(VI) and qCr(T) was
obtained as a function of pH and time, under previously studied conditions (T = 28 ◦C,
Co = 100 mg g−1, SPS = 400 µm, LPS = 500 µm). The generated response surfaces were
compared with the expected trends and behaviors, based on the understanding of the
chromium removal process using CLB.

2.8.2. Validation with Unseen Kinetic Data

To further validate the robustness and generalization capabilities of the developed
DL models, they were evaluated against experimental kinetic data from three independent
studies of Cr(VI) and Cr(T) removal using CLB. These studies were conducted under specific
conditions not included in the training and testing data to develop the deep learning model.
The experimental kinetic data were compared with the model predictions. The comparison
between the experimental time series and model predictions allowed the evaluation of how
the selected models generalized and performed in previously unseen situations.

2.8.3. K-Fold Cross-Validation

The k-fold cross-validation technique was used to ensure the stability and robustness
of the selected LSTM and Bi-LSTM models. This technique validates the model performance
by dividing the data into k subsets or folds, iteratively using one subset for testing and the
remaining for training, which provides a comprehensive evaluation of the model’s ability
to generalize to unseen data and maintain consistent performance across different subsets
of the dataset [56]. By exposing the models to a diverse range of training scenarios, this
approach helps to identify and correct potential weaknesses [57].

Using the scikit-learn library in Python, the dataset was divided into five distinct
subsets or folds. The 5-fold cross-validation process was then applied to each of the
selected LSTM and Bi-LSTM models. For each fold, key metrics such as R2, MAE, and
root-mean-squared error (RMSE = MSE1/2) were obtained for the predicted qCr(VI) and
qCr(T). The coefficient of variation (CoV) for each metric was subsequently calculated using
the following formula:

CoV =
σ

µ
× 100 (13)

where σ and µ (µ ̸= 0) are the metric’s standard deviation and mean, respectively.
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A feature with a CoV larger than 33% falls under the weak-to-high inconsistency
category [58].

2.9. SHapley Additive exPlanations (SHAP) Analysis

The SHAP value is derived from game theory, specifically the Shapley values. To
calculate the contribution of a specific feature, a permutation of that feature is performed
while keeping the others constant, assessing how this permutation impacted the model’s
prediction. The marginal contribution of the feature is determined by observing the
difference between the prediction with the permuted feature and the average prediction
without permutation [59].

SHAP analysis was executed using Python within a vs. Code development environ-
ment alongside the selected models. To evaluate the influence of each variable on model
predictions, a random sample of 300 data points was employed to ensure a comprehen-
sive assessment that captured the diverse scenarios present in the dataset. This process
involved generating summary plots and calculating the relative importance of each model
output. This analytical approach is particularly valuable for discerning the most influential
variables and gaining insights into their contributions to the Cr(VI) and Cr(T) removal
processes using CLB, as predicted by the selected models.

3. Results and Discussion
3.1. Model Performance

The results obtained from training the different LSTM and Bi-LSTM neural networks
proposed for predicting and modeling the removal kinetics of Cr(VI) and Cr(T) using CLB
are provided in Tables 3 and 4. The training process results were assessed using key metrics,
including the MSE and R2 for qCr(VI) and qCr(T), considering the network configuration
characteristics.

Table 3. LSTM model configurations and performance.

Model LSTM Cells
Second Hidden Layer

Epochs MSE Train MSE Test R2 qCr(VI) R2 qCr(T)
Dropout Recurrent

Dropout

1 12 0 0 307 23.77 23.87 0.9969 0.9955
2 12 0 0.3 226 44.00 41.94 0.9947 0.9916
3 12 0 0.6 297 20.26 21.01 0.9973 0.9960
4 12 0 0.9 343 28.92 29.10 0.9962 0.9945
5 12 0.3 0 136 94.52 101.82 0.9870 0.9802
6 12 0.3 0.3 186 43.54 41.74 0.9953 0.9903
7 12 0.3 0.6 155 54.25 55.30 0.9937 0.9873
8 12 0.3 0.9 92 118.36 126.02 0.9832 0.9772
9 25 0 0 193 49.98 50.60 0.9931 0.9912

10 25 0 0.3 188 27.78 27.95 0.9962 0.9951
11 25 0 0.6 228 28.70 29.71 0.9962 0.9943
12 25 0 0.9 203 31.44 31.54 0.9961 0.9935
13 25 0.3 0 92 75.61 78.40 0.9894 0.9861
14 25 0.3 0.3 125 35.74 34.84 0.9960 0.9921
15 25 0.3 0.6 158 31.52 30.57 0.9967 0.9925
16 25 0.3 0.9 121 38.91 38.09 0.9957 0.9912
17 50 0 0 213 18.77 18.67 0.9976 0.9964
18 50 0 0.3 121 28.05 28.51 0.9962 0.9947
19 50 0 0.6 126 35.58 34.22 0.9957 0.9933
20 50 0 0.9 117 28.03 27.70 0.9968 0.9939
21 50 0.3 0 79 54.07 54.16 0.9934 0.9887
22 50 0.3 0.3 117 38.73 36.56 0.9957 0.9921
23 50 0.3 0.6 85 54.56 54.96 0.9931 0.9890
24 50 0.3 0.9 115 30.46 28.25 0.9967 0.9939
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Table 4. Bi-LSTM model configurations and performance.

Model LSTM Cells
Second Hidden Layer

Epochs MSE Train MSE Test R2 qCr(VI) R2 qCr(T)
Dropout Recurrent

Dropout

25 12 0 0 188 21.98 22.06 0.9971 0.9959
26 12 0 0.3 235 30.41 30.72 0.9960 0.9942
27 12 0 0.6 199 33.83 33.87 0.9958 0.9932
28 12 0 0.9 175 34.25 34.10 0.9958 0.9929
29 12 0.3 0 153 48.89 48.61 0.9939 0.9902
30 12 0.3 0.3 147 35.33 33.70 0.9961 0.9925
31 12 0.3 0.6 112 42.84 42.52 0.9951 0.9903
32 12 0.3 0.9 156 51.35 50.86 0.9934 0.9903
33 25 0 0 120 36.37 37.36 0.9954 0.9922
34 25 0 0.3 246 12.94 12.99 0.9982 0.9977
35 25 0 0.6 147 16.98 17.14 0.9978 0.9967
36 25 0 0.9 131 23.03 24.70 0.9970 0.9949
37 25 0.3 0 155 25.09 23.72 0.9970 0.9954
38 25 0.3 0.3 139 25.52 24.27 0.9970 0.9950
39 25 0.3 0.6 160 19.59 19.11 0.9978 0.9958
40 25 0.3 0.9 118 27.96 27.05 0.9968 0.9942
41 50 0 0 144 21.00 20.76 0.9973 0.9962
42 50 0 0.3 175 19.14 19.68 0.9973 0.9967
43 50 0 0.6 152 11.45 11.82 0.9985 0.9977
44 50 0 0.9 104 21.33 20.69 0.9973 0.9960
45 50 0.3 0 83 27.72 27.87 0.9965 0.9943
46 50 0.3 0.3 116 18.81 18.38 0.9976 0.9965
47 50 0.3 0.6 123 17.16 16.27 0.9980 0.9966
48 50 0.3 0.9 132 19.31 18.73 0.9975 0.9965

The training process revealed notable variations in the number of epochs required for the
different network architectures. Networks with increased complexity, characterized by a larger
number of cells (25 and 50) and the incorporation of dropout techniques generally exhibited
faster convergence, achieving optimal performance within a reduced number of epochs.

Furthermore, the successful use of Early Stopping demonstrated minimal differences
between the MSE values of the training and testing datasets, indicating a reliable perfor-
mance; this suggests that the models achieved a commendable balance, effectively fitting
the training data while generalizing well to the unseen data, demonstrating a robust control
mechanism and effective measures to prevent overfitting.

In the comparative analysis between the LSTM and Bi-LSTM networks with similar
cell counts and dropout-related hyperparameters, the Bi-LSTM networks outperformed the
LSTM networks in 21 of the 24 cases. These Bi-LSTM networks showed a superior fit with
higher R2 and lower MSE values, attributed to their advanced capabilities in capturing
complex temporal dependencies through bidirectional data processing; this facilitated more
effective modeling of the removal kinetics of both Cr(VI) and Cr(T).

The results of MSE and R2 for different configurations of the LSTM networks showed
significant variability. There was no clear optimal configuration regarding the number of
cells, dropout, or recurrent dropout, which consistently improved the predictive capacity
of the LSTM networks. This lack of consistency suggests the complexity and sensitivity of
these models to different configurations, which may depend on the specific characteristics
of the dataset and the nature of the chromium removal process.

The analysis of the Bi-LSTM networks showed that those with 12 cells in their hidden
layers, subjected to dropout and recurrent dropout, exhibited higher MSE and lower R2

values than configurations with model 25 without this regularization; this suggests that the
introduction of dropouts, causing a deliberate loss of information during training, affected
the ability of these models to fully adjust to the training data, potentially hindering their
capacity to capture trends in chromium removal kinetics.
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In contrast, networks with 25 and 50 cells in the hidden layers consistently displayed
low MSE and high R2 values, regardless of the dropout and recurrent dropout hyperpa-
rameters variations in the second hidden layer. Despite the deliberate loss of information
through regularization, these models balanced between minimizing information loss and
optimizing overall performance in capturing the complexities of chromium removal ki-
netics. The unique architecture of the Bi-LSTM networks with 25 and 50 cells enabled
them to effectively adapt to diverse conditions and comprehend the intricate temporal
relationships in the data, making them less susceptible to changes in dropout or recurrent
dropout configurations.

3.2. Residuals Analysis

Tables 5 and 6 present the skewness (g1) and kurtosis (g2) results. Most models
show negative skewness (g1 < 0), indicating left-skewed residuals and a tendency to predict
values higher than the experimental data. Approaching the g1 to zero signal, the predictions
resembled a normal distribution. Models 1, 8, 31, 38, 43, and 46 displayed low g1 absolute
values for qCr(VI) residuals, with p-values exceeding 0.05, indicating a satisfactory fit to
symmetric residuals, comparable to a normal distribution. For the qCr(T) residuals, only
models 14 and 31 had g1 values close to zero and the p-values surpassed 0.05, suggesting
symmetric residuals.

Table 5. Skewness and kurtosis residual qCr(VI) and qCr(T) analysis for LSTM models.

Model g1 Test
qCr(VI)

g1 Test
qCr(T)

g2 Test
qCr(VI)

g2 Test
qCr(T)

1 −0.0455 −0.5549 2.2219 2.2004
2 −0.2822 −0.7838 3.3552 1.6272
3 −0.6210 −0.8913 3.9428 3.3062
4 −0.5061 −0.8911 2.8619 2.8945
5 0.4543 −0.2875 5.1015 2.1279
6 −0.1317 −0.1288 3.4923 1.3890
7 −0.6835 −0.2361 5.9065 2.5282
8 0.0472 −0.5873 4.8401 3.1900
9 0.3781 −0.6285 8.9449 3.0856

10 −0.6494 −1.0237 8.4897 5.4947
11 −0.6510 −1.6155 11.2792 8.1413
12 −0.4626 −0.9209 4.8655 2.8924
13 0.7905 −0.3265 6.2601 2.2734
14 −0.3529 −0.0508 4.6765 1.2591
15 −0.9428 −0.5088 5.3820 2.1579
16 −0.6515 −0.2183 5.2611 1.4242
17 −0.6180 −1.1433 8.0424 4.8109
18 −0.2996 −0.9488 5.7356 4.0755
19 −1.2285 −1.5220 9.3136 6.4644
20 −0.7954 −0.7378 6.3935 3.6898
21 −0.7349 −0.9557 9.0527 4.4115
22 −0.8613 −0.7387 5.1087 2.4119
23 −0.1437 −0.8407 7.0884 3.4345
24 −0.6956 −0.6577 4.4262 1.9243

Table 6. Skewness and kurtosis residual qCr(VI) and qCr(T) analysis for Bi-LSTM models.

Model g1 Test
qCr(VI)

g1 Test
qCr(T)

g2 Test
qCr(VI)

g2 Test
qCr(T)

25 −0.6114 −1.1884 8.9240 5.5195
26 −0.1719 −1.0423 10.7687 3.9308
27 −1.2914 −1.2329 −1.2329 6.3859
28 −0.7154 −0.9585 5.3889 3.7935
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Table 6. Cont.

Model g1 Test
qCr(VI)

g1 Test
qCr(T)

g2 Test
qCr(VI)

g2 Test
qCr(T)

29 0.6143 −0.3772 6.8712 1.6905
30 −0.9709 −0.3189 4.0618 1.2682
31 −0.0268 −0.0815 3.0070 1.5803
32 0.4572 −0.7314 6.2135 1.7421
33 −1.1742 −1.4410 10.6901 6.2448
34 −0.3874 −0.4980 3.7380 3.4149
35 0.3038 −0.7046 7.0371 4.8996
36 0.8650 −0.9404 18.2947 4.5444
37 0.3468 −0.5895 4.2708 3.1144
38 −0.0769 −0.1377 2.8427 2.6233
39 −0.8726 −0.4725 5.3467 3.6010
40 −0.5931 −0.5960 4.1516 2.3497
41 −0.2309 −1.0816 7.3694 5.1950
42 0.1425 −0.9537 5.5784 3.9419
43 −0.0485 −0.4250 8.0420 4.8184
44 −1.3757 −1.9055 12.2041 10.0599
45 −0.9037 −0.8925 7.3314 3.3707
46 0.0719 −0.4060 7.6136 3.0134
47 −0.5985 −0.5312 5.2234 3.5258
48 −1.5367 −0.8365 5.9042 3.4500

The kurtosis values displayed significant variations among the models, with 47 of
the 48 presenting positive kurtosis values for qCr(VI). Positive kurtosis, also known as
leptokurtosis, suggests that the residual distributions have heavier tails and a more peaked
shape compared to a normal distribution. This can be attributed to the presence of outliers
or extreme values in the data [60]. A g2 value of zero suggests a normal distribution. The
p-values associated with kurtosis consistently remained below the 0.05 threshold, indicating
that none of the models had residuals conforming to a normal distribution, due to outliers
in the tails.

Figures 3 and 4 display Q-Q plots for a subset of nine selected models (1, 6, 8, 14, 31,
38, 42, 43, and 46), characterized by low absolute g1 values (−0.143 < g1 <0.143) for qCr(VI)
or qCr(T) residuals. In these plots, it was observed that the residuals closely followed
the diagonal line in the central region, indicating a good fit for most models within the
theoretical quantiles range of −2 to 2. However, as expected, the high g2 values made
noticeable deviations at the extremes. For qCr(VI), the Q-Q plots revealed deviations in both
the negative and positive quantiles, suggesting that the residuals can vary significantly both
below and above expectations, compared to a normal distribution; this implies potential
overestimation and underestimation in different scenarios.

For qCr(T), the Q-Q plots present a more pronounced deviation in the negative quan-
tiles, suggesting that, in some cases, the models may overestimate the observed values of
qCr(T) under specific conditions. These deviations are represented as data points falling
below the diagonal line in the Q-Q plots, indicating that the residuals tended to have lower
values than expected, compared with a normal distribution in that region.

Additional analyses were performed to clarify whether the observed kurtosis and Q-Q
plot trends are due to outliers or extreme values associated with the inherent complexity of
the chromium removal process. The conditions consistently producing the highest residual
values in the nine selected models were identified. These corresponded to two kinetics
obtained at a Co of 805 mg L−1, but at different temperatures (35 and 45 ◦C). These were
the conditions in which the highest removal capacities were reached from the first hours of
the process for the entire dataset because temperature increases the initial removal rate of
Cr(VI) and Cr(T) using CLB [31].
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Once the conditions were identified, additional experiments were conducted by training
the nine selected models without considering these seemingly outlying data points, and the
g1 and g2 values were calculated for the residuals generated in the test set. The results are
presented in Table 7. The results showed g1 values further from zero, except for model 42. The
g2 values were also higher in most cases; some models showed improvement in this aspect,
but not enough to be considered statistically normal, with respect to the tails. This suggests
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that including these data points, rather than hindering model performance, enhances their
ability to capture the variability and complex relationships present in the process.

Table 7. Skewness and kurtosis residual qCr(VI) and qCr(T) analysis for LSTM and Bi-LSTM selected
models without seemingly outlying data.

Model g1 Test
qCr(VI)

g1 Test
qCr(T)

g2 Test
qCr(VI)

g2 Test
qCr(T)

1 −0.3647 −1.0891 3.9312 3.6341
6 1.5624 −0.3739 10.9953 3.7768
8 1.9569 −0.6549 14.7837 2.9181
14 −0.7895 −0.9101 4.2179 2.4109
31 −0.7046 −0.7783 4.3127 2.6463
38 −0.7653 −1.006 5.3230 4.1660
42 0.0421 −0.8881 8.0993 6.8762
43 −1.1964 −1.5219 5.5016 7.2949
46 −0.7880 −1.2769 4.5748 3.6477

It is important to highlight that, first, the seemingly outlying data points represent
valid but extreme experimental conditions that reflect the response of the chromium re-
moval system under specific circumstances. Second, including these data increases the
diversity and size of the training set, benefiting the models’ learning. A more diverse and
representative dataset allows the models to better capture the subtleties and nonlinear
relationships present in the system, especially when working with deep learning tech-
niques like LSTM and Bi-LSTM networks, which benefit from large amounts of data to
learn meaningful and generalizable representations [61].

Regarding the experimental design and data collection, it is crucial to emphasize the
importance of a well-planned approach that covers a wide range of conditions and ensures
representative data. In future studies, expanding the experimental design to include more
extreme conditions, diverse scenarios, and a more comprehensive range of water chemistry
parameters, such as the presence of co-existing ions or contaminants in the solution, will
enhance the robustness and generalizability of the developed models [62]. This compre-
hensive data collection will allow for establishing the reliability and applicability of the
models in practical metal removal systems, enabling their effective translation to real-world
environmental engineering applications.

3.3. Post-Training Validation of Selected Models

Figures 5 and 6 show the response surface plots the nine selected models predicted,
illustrating their relationships with pH and time. These predictions were made under
the same temperature, pH, and initial Cr(VI) concentration conditions as those reported
previously by Netzahuatl-Muñoz et al. [32]. This prior research served as a valuable
reference for assessing how well each model replicated the expected behaviors.

All nine models generally generated response surface plots that conformed to the
most anticipated characteristics. A noteworthy discovery is that all the models accurately
predicted values for qCr(VI) and qCr(T) well within the feasible range; specifically, less
than 100 mg g−1. They also demonstrated proficiency in predicting variations in the initial
rates of removal capacity based on pH. The response surfaces exhibited lower adsorption
capacity during the initial hours at high pH values than at low pH values. The model’s
success in capturing this relationship validates its ability to represent the expected behavior
concerning pH, which is vital for comprehending how changes in conditions influence the
kinetics of chromium removal.

However, regarding qCr(VI), most models predicted negative slopes in the later stages
of kinetics; this contradicted the well-documented irreversible nature of Cr(VI) reduction
using biomaterials under acidic conditions [63]. This issue could be related to the provided
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data, as it is incomplete and not all data points cover the same time, particularly for
extended contact times.
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In contrast, for qCr(T), a consistent transition from a positive to negative slope over
time, particularly at lower pH values, was observed for all response surfaces. This change
was expected and was attributed to the desorption of chromium in its trivalent form.

Furthermore, some models displayed slight irregularities in their response surface plots,
including changes in slope, rather than adhering to the anticipated systematic trends in the
behavior of the studied phenomenon. These peculiar behaviors appear to occur in specific
regions of the experimental space and may be attributed to potential overfitting. In these
cases, the models likely captured certain peculiarities or random fluctuations in the training
dataset that did not precisely reflect the actual phenomenon. Models 1 and 14 exhibited more
pronounced overfitting tendencies, as shown in Figures 5A,D and 6A,D.
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In Figures 7–9, the nine selected LSTM and Bi-LSTM models present predictions for
the three kinetics not included in the training data. Overall, the models showed a robust
fit, with only slight variations in the predictions of the specific models. For instance, in
kinetic 1, model 8 (Figure 7C) tended to slightly underestimate qCr(T) at longer contact
times. Additionally, inconsistent changes in slope were observed in models 1, 14, and
46, particularly in the predictions for kinetic 1, suggesting a potential overfitting concern.
Moreover, for kinetic 3, model 42 (Figure 9G) tended to underestimate qCr(VI), whereas
models 8, 14, 31, and 42 (Figure 9C–E,G) tended to underestimate qCr(T). In contrast, model
6 was the only model that predicted qCr(VI) values higher than the expected maximum
limit of 102 mg g−1.
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pH = 2.0, T = 28 ◦C, Co = 98.8 mg L−1, SPS = 420 µm, LPS = 500 µm.

These discrepancies could arise because the training data were not specifically tailored
for this analysis and originated from univariate studies; thus, they were not randomly
distributed in the sample space. The lack of a balanced and representative distribution in
the input variable space may introduce challenges in capturing the full complexity of the
underlying phenomena. Despite these challenges, the models exhibited a strong ability
to predict trends in these unseen kinetics. The models that performed best for the three
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post-training validation kinetics were Bi-LSTM models 38, 43, and 46, with g1 values close
to zero, especially for qCr(VI), and high R2 values for both qCr(VI) and qCr(T).

A 5-fold cross-validation technique was used to assess the precision and stability of
the selected LSTM and Bi-LSTM models in predicting chromium removal capacity. Table 8
reports CoV calculated for R2, RMSE, and MAE metrics to assess the consistency of model
performance across different data subsets.

Table 8. Coefficient of variation for k-fold cross-validation metrics.

Model
CoV R2 (%) CoV RMSE (%) CoV MAE (%)

qCr(VI) qCr(T) qCr(VI) qCr(T) qCr(VI) qCr(T)

1 0.2904 0.4501 27.22 28.10 21.56 25.17
6 0.5579 0.2700 20.23 7.72 15.12 7.44
8 1.1463 0.4794 37.88 16.93 29.31 16.12

14 0.2063 0.4036 17.89 21.54 17.64 21.40
31 0.1889 0.2553 19.88 15.93 16.51 14.62
38 0.0265 0.0398 5.62 5.01 6.11 4.54
42 0.1120 0.1625 19.75 20.67 16.85 18.64
43 0.0665 0.0736 10.58 7.71 8.06 7.25
46 0.0671 0.0992 15.35 16.15 16.78 16.67

The calculated CoV values for the R2 metric were notably low, below 1.2%. Low CoV
values for R2 indicate that the models are highly stable. Stability, in this context, refers
to the consistency of a model’s predictions when evaluated on different subsets of data.
Notably, the Bi-LSTM models 38, 43, and 46 demonstrated outstanding stability, with R2

CoV values below 0.1% for qCr(VI) and qCr(T). It is worth emphasizing that the R2 values
were high in all tests. For the LSTM models, the R2 values were higher than 0.9667 and
0.9800 for qCr(VI) and qCr(T), respectively, while for the Bi-LSTM models, the R2 values
were higher than 0.9752 for qCr(VI) and 0.9625 for qCr(T). The combination of low CoV
values for R2 and high R2 values across all folds provides strong evidence for the stability
and reliability of the developed models.

Precision relates to how close the model’s predictions are to the actual values. A model
is considered more precise if it has lower CoV values for RMSE and MAE, with values
below 10% suggesting good precision [64]. Bi-LSTM model 38 exhibited the best precision
for the qCr(VI) target, with the lowest CoV values for RMSE (5.62%) and MAE (6.11%). For
the qCr(T) target, LSTM model 6 and Bi-LSTM models 38 and 43 showed higher precision
regarding RMSE and MAE, with CoV values below 8%.

A robust model has few performance variations when faced with data changes. RMSE
is sensitive to outliers, so a low CoV in RMSE suggests robustness. Bi-LSTM models 38 and
43 demonstrated the most robust performance among the selected models. Bi-LSTM model
38 exhibited a CoV of 5.62% and 5.01% for qCr(VI) and qCr(T), respectively, while Bi-LSTM
model 43 showed a CoV of 10.58% for qCr(VI) and 7.71% for qCr(T). In contrast, most of
the remaining models presented CoV values for RMSE above 15% and this observation
is consistent with the findings from the residual analysis, which revealed heavy-tailed,
left-skewed distributions, indicating the occasional overprediction of extreme values.

The robustness of Bi-LSTM models 38 and 43 is further supported by their ability
to generate accurate response surfaces and predict unseen kinetic data. These models
demonstrate a remarkable capacity to capture the complex relationships in the data and
generalize well to new scenarios. Their consistent performance across various evaluation
metrics and validation techniques underscores their reliability and potential for practical
application in chromium removal using biosorption techniques.

3.4. SHAP Analysis

SHAP studies play a crucial role in interpreting machine learning models by providing
a detailed understanding of how each feature or variable influences model predictions. This
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methodology is essential for identifying the most relevant variables and understanding their
contributions to the prediction process. SHAP analysis was performed on nine selected models.

Figure 10 presents the SHAP values for 300 random samples used in the analysis of
LSTM model 1. The baseline, represented by the average values of qCr(VI) and qCr(T),
served as a reference for understanding the deviations caused by changes in the variable
values. Notably, Co, time, and T emerged as the three variables with the most significant
impacts on predicting qCr(VI), whereas, for qCr(T), the influential variables were Co, time,
and pH. Higher Co, time, and T values led to increased predictions for both qCr(VI) and
qCr(T), whereas elevated pH values had an inverse effect, reducing the model outputs.
The impact of these principal variables was more pronounced for qCr(VI) than for qCr(T),
consistent with the behavior of the chromium removal process in the chosen material. In
this context, qCr(T) is constrained by the available sites for chromium biosorption, which
have been reported to be significantly lower than its capacity for Cr(VI) reduction.
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Consequently, under saturation conditions, both Co and time cease to influence
qCr(T) [31]. Regarding the impact of SPS and LPS, it was observed that they had mi-
nor and similar effects for both qCr(VI) and qCr(T) within the employed particle size range.
Most SHAP values for these characteristics were concentrated around the baseline.

Table 9 reports the SHAP relative importance values, providing insight into the average
impact of each variable on the model outputs. As observed in model 1, the key drivers
influencing the predictions across all nine models for qCr(VI) and qCr(T) were Co, time, pH,
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and T, showing marginal differences in their calculated values. For instance, the most crucial
variable, Co, exhibited relative importance values ranging from 53.45 mg g−1 to 60.65 mg g−1

for qCr(VI), while its contributions to qCr(T) ranged from 39.25 mg g−1 to 44.06 mg g−1.

Table 9. Relative importance of SHAP features on model outputs.

Model
Feature Relative Importance on qCr(VI) (mg g−1)

Time pH T Co SPS LPS

1 34.91 11.84 6.83 56.32 1.53 1.43
6 30.69 11.04 8.13 55.41 1.44 1.51
8 33.24 10.44 5.69 54.96 0.61 0.25

14 36.35 12.64 6.95 60.65 2.09 1.31
31 34.41 7.86 6.68 57.59 1.60 2.26
38 36.42 11.09 6.97 59.47 1.12 1.19
42 32.99 10.33 5.06 57.59 1.34 1.30
43 34.82 12.53 6.27 53.45 2.05 0.70
46 39.05 11.80 5.48 59.34 0.97 2.02

Model
Feature Relative Importance on qCr(T) (mg g−1)

Time pH T Co SPS LPS

1 21.14 5.81 1.88 41.13 1.79 1.81
6 18.70 5.15 2.74 42.43 1.13 1.23
8 19.43 5.10 2.12 42.67 0.32 0.17

14 20.57 6.34 2.01 44.06 1.66 0.92
31 20.86 3.72 2.23 43.54 1.42 1.70
38 20.86 5.05 2.06 43.50 1.34 0.83
42 19.52 5.39 1.65 43.49 1.62 0.83
43 20.36 6.12 1.76 39.25 2.01 1.04
46 22.50 5.20 1.64 43.97 1.27 1.37

Consistent with model 1, the contributions of the LPS and SPS to qCr(VI) and qCr(T)
were minimal; this aligns with the findings of similar phenomena, where the particle size
has a more pronounced effect on the process rate than on the chromium removal capacity
of a lignocellulosic material [65]. The SHAP analysis reflected this in the models, assigning
higher importance to time than to SPS and LPS.

While there may be similarities in many aspects of the SHAP analysis, the observed
differences in the relative importance of variables among the models suggest that they are
not entirely equivalent in terms of how they interpret and utilize these variables to make
predictions, as evidenced by the predictions for unseen validation kinetics. This highlights
the need for a nuanced understanding of the strengths and limitations of each modeling
approach and their complementary roles in advancing the field.

Integrating ML and DL techniques in metal biosorption studies offers multifaceted
benefits. From an economic perspective, these advanced modeling approaches optimize
experimental design, reducing costs associated with extensive laboratory experiment,
while enhancing our understanding of the intricate biosorption processes [11,33]. The
optimization of biosorption processes through ML and DL can generate significant savings
in operating and capital costs for industries and wastewater treatment facilities [66,67].
Furthermore, these techniques can support the transition towards a circular economy by
optimizing recycling systems, predicting demand for recovered materials, and facilitating
industrial symbiosis [68].

From a social standpoint, using ML and DL to accurately predict contaminant removal
can reduce human exposure to toxic substances, prevent diseases, and promote equity in
access to clean and safe water [69,70]. The application of ML and DL aligns seamlessly
with the global shift towards sustainable practices [61]. The remarkable ability of these
techniques to extract insights from complex datasets positions researchers at the forefront
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of innovation, fostering a culture of continuous improvement and adaptive strategies in
the pursuit of sustainable environmental solutions [46].

However, it is essential to acknowledge some limitations and opportunities for future
research. A more comprehensive evaluation of the adaptability and universality of the
models under different real-world environmental conditions is required [47]. Moreover, the
scalability of the models and their potential application in removing various contaminants
besides chromium require further exploration [71]. Integrating multimodal data, such
as microscopic and spectroscopic images [72], along with kinetic and equilibrium data,
could provide a more complete understanding of the biosorption mechanisms and further
improve the accuracy of the predictive models.

4. Conclusions

The trained LSTM and Bi-LSTM models successfully captured the complex mecha-
nisms of Cr(VI) reduction, Cr(III) desorption, and simultaneous biosorption, which charac-
terize the kinetic phenomena. The combined use of Early Stopping, dropout, and recurrent
dropout methodologies effectively prevented overfitting and maintained a commendable
equilibrium between fitting the training data and generalizing it to unseen data.

The Bi-LSTM models set up with 25 and 50 cells in the hidden layers proved highly
effective for modeling and predicting the complexities of qCr(VI) and qCr(T) removal
kinetics. Their bidirectional architecture and resilience to dropouts improve their ability to
learn over time and make predictions, all accomplished within short training periods.

Residual analysis employing skewness, kurtosis, and Q-Q plots revealed heavy-tailed,
left-skewed distributions, indicating the occasional overprediction of extreme values. How-
ever, this behavior is likely tied to the inherent complexities of the process and data limitations.

Validation with unseen kinetic data and pH-time response surfaces demonstrated the
models’ proficiency in replicating the anticipated trends of initial rate changes with pH and
irreversible Cr(VI) reduction. Limitations related to overfitting in specific regions suggest
opportunities to enhance diversity during training.

According to the k-fold cross-validation, the Bi-LSTM models exhibited the best
characteristics in terms of stability, precision, and robustness. Specifically, models 38 and
43 demonstrated remarkable consistency, as evidenced by their low coefficients of variation
of R2, RMSE, and MAE. These findings highlight the suitability of Bi-LSTM models for
reliable and accurate predictions of chromium removal capacity.

The SHAP method underscores the dominance of the initial Cr(VI) concentration and
time as drivers of model outputs. This analysis provides interpretable insights into variable
contributions, enhances reliability, and reveals the differences in how models weigh inputs
for predictions.

The inclusion of extreme conditions and diverse scenarios in the training data improved
the models’ robustness and generalization capability. This information can guide the planning
of future experiments, ensuring that a wider range of operating conditions is covered and
representative data of the inherent variability in the biosorption process is generated.

This work highlights the potential of recurrent deep learning, showcasing the LSTM
and Bi-LSTM models as powerful tools for deriving kinetic predictors from experimental
data. Their remarkable ability to capture complex relationships and generalize to new
conditions holds great promise for advancing environmental engineering, especially for
removing toxic compounds from polluted waters. Developing these promising deep-
learning models necessitates a rigorous approach that prioritizes data quality, carefully
selects modeling techniques aligned with research objectives, and thoroughly evaluates
and validates models using diverse techniques. These practices are essential to ensure the
developed models’ generalization capabilities, robustness, and enhanced applicability in
real-world conditions.

As the world faces increasingly complex environmental challenges, adopting advanced
modeling approaches will be crucial in developing sustainable and resilient solutions.
Integrating deep learning into metal biosorption studies drives innovation in the field and
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contributes to global efforts to safeguard aquatic ecosystems, ensure human health, and
promote sustainable development.
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