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Abstract: Precise prediction of the power generation of photovoltaic (PV) stations on the island
contributes to efficiently utilizing and developing abundant solar energy resources along the coast. In
this work, a hybrid short-term prediction model (ICMIC-POA-CNN-BIGRU) was proposed to study
the output of a fishing–solar complementary PV station with high humidity on the island. ICMIC
chaotic mapping was used to optimize the initial position of the pelican optimization algorithm
(POA) population, enhancing the global search ability. Then, ICMIC-POA performed hyperparameter
debugging and L2-regularization coefficient optimization on CNN-BIGRU (convolutional neural
network and bidirectional gated recurrent unit). The L2-regularization technique optimized the loss
curve and over-fitting problem in the CNN-BIGRU training process. To compare the prediction effect
with the other five models, three typical days (sunny, cloudy, and rainy) were selected to establish the
model, and six evaluation indexes were used to evaluate the prediction performance. The results
show that the model proposed in this work shows stronger robustness and generalization ability.
K-fold cross-validation verified the prediction effects of three models established by different datasets
for three consecutive days and five consecutive days. Compared with the CNN-BIGRU model, the
RMSE values of the newly proposed model were reduced by 64.08%, 46.14%, 57.59%, 60.61%, and
34.04%, respectively, in sunny, cloudy, rainy, continuous prediction 3 days, and 5 days. The average
value of the determination coefficient R2 of the 20 experiments was 0.98372 on sunny days, 0.97589
on cloudy days, and 0.98735 on rainy days.

Keywords: short-term photovoltaic forecasting; pelican optimization algorithm; ICMIC chaotic
mapping; CNN-BIGRU; L2 regularization

1. Introduction

In recent years, the global focus on developing clean energy sources has led to the
increasing prominence of solar energy as a viable alternative for meeting energy de-
mands [1,2]. Photovoltaic (PV) stations are categorized into land-based and water-based
stations, depending on their geographical location. Land-based PV stations have a well-
established power-generation technology, while water-based PV stations have emerged as
a relatively new type of facility in recent years. The PV array is primarily installed on lakes,
reservoirs, or oceans, thereby minimizing land usage [3,4]. This approach offers the advan-
tage of maximizing the synergistic benefits between power generation and aquaculture,
commonly referred to as the “upper power generation, lower aquaculture” concept. Placing
solar panels on the water’s surface provides shading for fish, improves the local water
temperature, and enhances the economic returns of aquaculture. Additionally, the higher
relative humidity around the solar panels contributes to reduced module temperature and,
consequently, enhances the photoelectric conversion efficiency of the solar panels to some
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extent. The power generation of water-based PV stations surpasses that of land-based PV
stations when considering the same area [5]. Accurately and swiftly predicting the power
generation of PV stations [6–9] enables enterprises to develop timely power-scheduling
plans, addressing the issue of temporal mismatch between supply and user demand. This
facilitates timely adjustment of electricity prices and maximizes the promotion of user
demand for power consumption, enhancing demand-side flexibility and mitigating excess
power generation. These objectives align well with China’s “dual-carbon” goals. Con-
sequently, the establishment of a high-precision prediction model with robustness and a
strong generalization ability holds significant importance.

With the rapid advancement of artificial intelligence algorithms, an increasing number
of algorithms are being employed for solar power prediction. Direct prediction utilizing
data-driven algorithm models has proven to be more reliable and accurate compared
to indirect prediction methods [10]. Traditional machine-learning techniques, such as
principal-component analysis (PCA) [11,12], variable modulus decomposition (VMD) [13],
and random forest (RF) [14], are utilized for data-feature extraction and prediction. Addi-
tionally, support-vector machine (SVM) [15], artificial neural network (ANN) [16], Elman
neural network [17], radial basis function neural network (RBF) [18], Bayesian meth-
ods [19], among others, are employed for power-generation prediction. For instance, in
references [20,21], SVM was utilized to enhance the accuracy of PV power-generation
prediction. Reference [22] used VMD to extract feature variables and input them into the
ANN model to predict the output power of the PV system. In Reference [23], the K-means
algorithm was utilized to cluster different weathers, and Elman served as the prediction
model to improve the prediction accuracy and robustness. The literature [24] employed
PCA to extract data-feature information and reduce dimensionality, which was then fed
into a generalized regression neural network (GRNN) model for prediction.

The aforementioned methods often exhibit limitations in data mining, as they tend to
focus on shallow feature extraction without delving into deeper internal feature information.
Consequently, their data-driven capabilities are relatively general [25]. When faced with
the challenge of predicting power generation in the presence of high volatility, shallow
learning models may produce significant errors. To address these issues effectively, deep
learning models offer promising solutions.

The deep learning model exhibits a more intricate network structure compared to the
shallow learning model, enabling it to effectively express complex functions and possess
deep learning capabilities. Notably, the convolutional neural network (CNN) and time
convolutional network (TCN) [26] excel in data-feature extraction. These models can adeptly
capture temporal dependencies in sequential data, showcasing robust data depth mining
and feature information-extraction capabilities. Such performance is not attainable with
shallow learning models. Deep learning models, including stacked autoencoder (SAE) [27,28],
deep belief network (DBN) [29,30], recurrent neural network (RNN) [31], and enhanced
variants of long short-term memory (LSTM) [32,33] and gated recurrent unit (GRU) [34], offer
enhanced accuracy and stability in prediction. In References [1,35], CNN was employed
for data filtering and denoising, while the pooling layer reduced data dimensionality and
memory requirements and improved processing speed. By establishing deep connections
between feature information and leveraging its memory unit, LSTM achieved high-precision
prediction outputs. References [36,37] proposed a hybrid CNN-GRU model to minimize
power-prediction errors. In [38], the accuracy of the LSTM-RNN prediction model was
enhanced through a time-dependent correction method. Reference [39] introduced the LSTM-
TCN hybrid model, which demonstrated superior prediction performance compared to single
models across diverse weather conditions and multiple time-prediction periods.

It is worth noting that the adjustment of hyperparameters is crucial for harnessing the
strong learning ability of deep learning models. Manual adjustment or traditional methods for
hyperparameter optimization can be time-consuming and costly, making them impractical for
enterprises. To efficiently address this optimization problem, heuristic optimization algorithms
offer a viable solution. These algorithms employ automatic iteration to rapidly converge to the
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global optimal value by considering constraints, objective functions, and decision variables.
They are capable of effectively solving various hyperparameter-optimization combination
problems [31]. Examples of such algorithms include genetic algorithm (GA) [40–42], particle-
swarm optimization (PSO) [43,44], firefly algorithm (FA) [45], ant-colony algorithm (ACO) [21],
bat algorithm (BA) [46,47], and others.

Limited research has been conducted on the prediction of fishing–solar complemen-
tary PV stations. In this study, we propose a hybrid prediction model, ICMIC-POA-CNN-
BIGRU, which leverages historical PV power-generation data and numerical weather pre-
diction (NWP) meteorological data as the original dataset to drive the algorithm. The CNN
component of our model effectively mines the relevant information between PV power
generation and power-generation variables, extracting deep features from the data. These
features are then inputted into the bidirectional gated recurrent unit (BIGRU) component
for prediction. BIGRU, consisting of two GRUs, processes sequence data bidirectionally, en-
abling the model to capture deep feature information before and after specific moments and
enhance its generalization ability. To efficiently optimize the hyperparameter combination
of CNN-BIGRU, we utilize the latest heuristic optimization algorithm, the pelican opti-
mization algorithm (POA). Additionally, the ICMIC chaotic mapping technique optimizes
the initial population position of POA, preventing the model from getting stuck in local
optima and improving global convergence speed. It is worth noting that the shortcoming
of the hybrid model relative to the single model is the increase in computational cost. The
main contributions of this study are summarized as follows:

• Combining CNN’s powerful data-feature extraction ability with BIGRU’s two-way
use of time series prediction, the latest heuristic algorithm (POA) is proposed for the
first time to optimize CNN-BIGRU hyperparameters;

• To enhance the convergence speed and global optimization ability of the algorithm, the
ICMIC chaotic mapping technique is employed to optimize the initialization position
of the POA population;

• To address potential overfitting issues during training, the L2-regularization technique
is employed, which facilitates rapid convergence of the loss curve for CNN-BIGRU.
Furthermore, the optimal L2-regularization coefficient is automatically iteratively
optimized using the POA algorithm;

• The prediction performance of the six models under diverse weather conditions is eval-
uated using six evaluation indicators. K-fold cross-validation is conducted to compare
the prediction effects of the three hybrid models on different datasets spanning three
consecutive days and five consecutive days. The results demonstrate that the hybrid
model proposed in this study exhibits the most superior prediction performance.

Section 2 introduces the source of the data and provides a detailed explanation of
the data preprocessing methods and the working principles of the hybrid prediction
model; Section 3 discusses the prediction results of the different test sets; Section 4 draws a
conclusion.

2. Materials and Methods
2.1. Data Sources

For this study, we conducted prediction research using a fishing–solar complementary
PV power station with an installed capacity of 100 MWp, located in the East China Sea
Island (110.38◦ E, 21.03◦ N) of Guangdong Province, China. This PV station serves as our
experimental platform. Situated in close proximity to the sea, the station benefits from
abundant solar irradiation resources, high temperatures, minimal rainfall, and extended
daily sunshine hours, making it an ideal location for PV power generation. Notably, the
solar panels are tilted and positioned above the water surface, reducing dust deposition
compared to terrestrial environments. However, this arrangement leads to increased water
evaporation and remarkably high relative humidity. Figure 1 displays the PV arrays and
the weather station of the PV station, which enable data monitoring and collection.
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Figure 1. PV arrays and weather station.

While numerous prediction studies have been conducted on various types of PV
stations characterized by low relative humidity, we deliberately concentrate on a distinct
aspect by focusing on the time intervals exhibiting high relative humidity. Specifically,
we observe that during the months of March to May, there is a greater probability and
frequency of rainfall, thereby accentuating the elevated relative humidity levels specific
to the fishing–solar complementary PV power station. We obtained a two-month dataset
(5 March 2023 to 4 May 2023) from the collection-monitoring system and the weather
station database. The data was collected at 15 min intervals within the time range of
7:00–18:00. The original dataset includes 19,215 sets of data, including normal direct
irradiance (NDI, W/m2), global horizontal irradiance (GHI, W/m2), scattered irradiance
(SI, W/m2), ambient temperature (AT, ◦C), relative humidity (RH, %), module temperature
(MT, ◦C), and actual power generation (APG, MW). Figure 2 illustrates the actual power
generation observed from 12 March 2023 to 16 March 2023.
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2.2. Data Preprocessing

High-quality data is the basis of data analysis and driving. Conversely, low-quality
data can significantly impact the learning ability of prediction models and result in subop-
timal prediction outcomes. Within the PV-station system, equipment failures are inevitable
and can lead to deviations in the recorded real data, consequently diminishing the quality
of the dataset. To address this issue, employing data preprocessing methods can effectively
enhance the data quality.

2.2.1. Correlation Analysis

The data contained within the PV power-station database exhibits nonlinear rela-
tionships across different types. To assess the degree of nonlinear correlation between
variables, the Spearman correlation coefficient (SCC) is employed. Unlike the Pearson
correlation coefficient (PCC), SCC is a non-parametric rank correlation measure that offers
enhanced robustness and better handling of outliers. Moreover, SCC remains unaffected
by dimensionality and can effectively measure the correlation between variables even in
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the presence of missing data. The calculation of the Spearman correlation coefficient (ρ) is
as follows:

ρ = 1− 6∑n
i=1 d2

i /n
(

n2 − 1
)

(1)

where di is the rank order difference, n is the number of samples, ρϵ[−1, 1], and |ρ|, the
closer to 1, indicates the stronger correlation between the two variables.

Figure 3 illustrates the SCC analysis conducted on the variables within the original
dataset. The variable exhibiting the strongest correlation with APG is GHI, with a coefficient
of 0.96, indicating a highly significant correlation. SI (0.71), MT (0.52), RH (−0.51), and AT
(0.44) also display notable correlations with APG. It is worth noting that solar irradiance
directly impacts the power-generation efficiency of PV panels. Furthermore, particular
attention must be given to the influence of high RH environments on PV-panel power
generation. High RH levels can also affect the module and ambient temperatures of PV
panels. To support these findings, Figure 4 presents a three-day record of GHI, RH, and
APG, further confirming the results of the correlation analysis.
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2.2.2. Outlier Processing

The data outliers in this study encompass both missing values and non-conforming
values. To address this issue, two variables were removed: NDI (−0.31), which exhibited
a weak correlation with APG, and MT (0.52), which did not pertain to meteorological
data. Subsequently, four external meteorological variables (GHI, SI, RH, and AT) that were
significantly correlated with APG were used as input characterization variables for the
prediction model.

Regarding missing data, there were five instances of SI data missing, along with four
instances of missing GHI, RH, and APG data. These missing values were exclusively
observed on March 26. Utilizing such incomplete data as input for the prediction model
can undermine the training effectiveness and diminish prediction accuracy. It is important
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to note that filling in missing values does not guarantee the authenticity and effectiveness
of the imputed data. In this study, the occurrence of missing values was relatively limited.
Given that the dataset utilized in this research comprised time-series data, the deletion
method was employed for handling these missing values. It is important to note that
simply removing the missing data at those specific time points could disrupt the time step
and period of the time-series data. This disruption could adversely impact the validity and
continuity of the time series, ultimately affecting the predictive performance of subsequent
models. To maintain the integrity of the data sequence and ensure the reliability of the
dataset after missing-value processing, all data corresponding to the day when the missing
value appeared were removed. This approach preserved the 15 min time resolution of the
data sequence.

To ensure the authenticity, integrity, and reliability of the data, the following criteria
were applied for data retention throughout the day: (1) GHI values greater than 0; (2) RH
values within the range of 0% to 100%; and (3) APG values greater than 0. Additionally, if
any of the four external meteorological variables or APG exhibited abnormal values, all
data corresponding to that specific time were removed. There were 45 instances of APG
values equal to or less than 0, warranting the deletion of all-day data. Moreover, the RH
values recorded on March 29 and 31 consistently reached 100% at most time points, offering
limited informative value. Consequently, the data for these two days were excluded. In this
study, the boxplot was employed to identify potential anomalies within the entire dataset.
Following the quartile principle, data points above or below the upper or lower boundary
of the boxplot were classified as abnormal values. The boxplot visually represents the
median within the box and displays horizontal lines. Figure 5 illustrates that the GHI, SI,
and APG datasets exhibit normal distributions, while the RH dataset reveals 31 abnormal
values (depicted in red beyond the lower boundary of the box). Furthermore, the AT
dataset contains four abnormal values. The deletion method was utilized to remove the
entire day’s data with anomalies. Upon completing the entire data-processing procedure, a
total of 12,600 sets of data (56 days) remained.
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2.2.3. Data Normalization

The various types of data exhibit different dimensions and significant variations
in numerical values, which can severely hinder the learning capability and prediction
effectiveness of neural network prediction models. To address this issue, data normalization
is employed as an effective solution. In this study, the (0.1) standardization method is
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utilized to normalize the aforementioned data. The formula for this normalization method
is as follows:

x′ =
x− xmin

xmax − xmin
(2)

where: x′ is the normalized value, x is the input data before normalization, and xmax and
xmin are the maximum and minimum values of the input data.

To facilitate a visual assessment of the prediction performance, the predicted data is
subjected to a back-normalization process that restores the dimensional and numerical
characteristics of the original features. This process utilizes the following formula:

x = x′ ∗ (xmax − xmin) + xmin (3)

2.3. Prediction Model
2.3.1. CNN-BIGRU

When it comes to data-feature extraction, the convolutional neural network (CNN)
stands out as one of the most powerful methods. Traditionally employed in image process-
ing and computer vision, CNNs have proven effective in capturing meaningful patterns. In
this study, we utilize a one-dimensional convolutional neural network (1D-CNN) specifi-
cally designed for time-series data. Compared to two-dimensional and three-dimensional
counterparts, the 1D-CNN demonstrates superior feature-extraction capabilities for time-
series data. Its ability to filter out noise and uncover intricate relationships within the
data allows for a deeper understanding of temporal dynamics. The CNN consists pri-
marily of three key components: the convolution layer, the pooling layer, and the fully
connected layer. These components are designed to effectively reduce model complexity
and computational costs while enhancing model generalization and preventing overfit-
ting. Weight sharing and local connection techniques play a vital role in achieving these
objectives. The convolution layer serves to extract meaningful feature vectors from the
input data, encompassing PV power generation and factors influencing power generation.
This extraction is achieved by sliding a convolution kernel over the input, followed by
activation through a modified linear unit (ReLU) and nonlinear mapping. Subsequently,
the obtained features are passed to the pooling layer, which plays a crucial role in feature
selection. By employing techniques such as average pooling or maximum pooling, the
pooling layer retains the essential data features while reducing the dimensionality and
simplifying the model. The output from the pooling layer is then forwarded to the fully
connected layer, which ultimately produces the desired results in the output layer. In this
study, we propose a model comprising two convolution layers and two maximum pooling
layers, as illustrated in Figure 6. The mathematical modeling process is outlined as follows:

C1 = f (xt ⊙W1 + b1)
P1 = Max(C1) + b2
C2 = f (P1 ⊙W2 + b3)
P2 = Max(C2) + b4
HFC = f (P2 ⊙W3 + b5)

(4)

where xt is the feature variable of the CNN input layer; ⊙ stands for matrix operation; C1
and C2 are the first and second convolutional layers, respectively; P1 and P2 are the first
and second maximal pooling layers, respectively; b and W are the biases and weights of
the corresponding layers; and HFC is the fully connected layer.
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Once the data-feature information has been thoroughly mined, it is directly fed into
the bidirectional gated recurrent unit (BIGRU) model for prediction. The data under
investigation in this study falls into the category of time-series data. For processing such
data, the recurrent neural network (RNN) proves advantageous due to its ability to retain
memory. Unlike the feedforward neural network, the RNN incorporates connections
between hidden-layer nodes, enabling it to effectively capture temporal dependencies.
The hidden layer at the current moment can incorporate information from the hidden
layer at the previous moment, allowing for the processing of input sequences in any time
sequence. However, when dealing with long sequences, RNNs are susceptible to the issues
of “gradient disappearance” and “gradient explosion”, necessitating limitations on the
utilization of historical data. To address this challenge, the long short-term memory (LSTM)
model was introduced. It consists of a main memory unit comprising a forgetting gate, an
input gate, and an output gate. Nonetheless, the LSTM’s increased network complexity,
higher parameter count, and slower convergence speed pose certain drawbacks. In contrast,
the gated recurrent unit (GRU) represents an upgraded and simplified version of LSTM.
Its memory unit features only a reset gate and an update gate, which effectively retains
the memory function while significantly reducing training parameters. The GRU achieves
faster processing speeds and proves highly efficient with large-scale sequence data, all at
minimal computational cost, as depicted in Figure 7. The mathematical modeling process
is detailed as follows:

Rt = σ(WRxt + URht−1 + bR) (5)

Zt = σ(WZxt + UZht−1 + bZ) (6)
∼
ht = tanh(Whxt + Rt ⊙Uhht−1 + bh) (7)

ht = (1− Zt)⊙ ht−1 + Zt ⊙
∼
ht (8)

where xt is the input variable at the current moment; Rt and Zt are the reset and update
gates; W and U are the weights of the corresponding functions, and b is the bias; σ is

the Sigmoid activation function; ⊙ stands for the matrix operation;
∼
ht is the intermediate

memory state; and ht and ht−1 are the outputs at the current moment and the outputs at
the previous moment.

RNN, LSTM, and GRU are limited to unidirectional propagation, flowing solely
from past moments to future moments. However, predicting future PV power generation
requires consideration of both historical and future meteorological data. In contrast, the
BIGRU model comprises two GRUs that process sequence data bidirectionally, allowing
information flow not only from historical data to future data but also from future data to
historical data, as depicted in Figure 8. This model structure is advantageous for effective
mining and utilizing deep feature information from both the preceding and subsequent
data points, thereby enhancing the model’s generalization capability.
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The output at time t is ht , which represents the sum of the output of the front and rear
bidirectional hidden layers. The calculation formula is as follows:

←
h t = GRU

(
xt,
←
h t−1

)
→
h t = GRU

(
xt,
→
h t−1

)
ht = W

←
h t + U

→
h t + bt

(9)

where:
←
h t and

→
h t are the backward and forward propagation, respectively, and GRU (·)

represents the model’s arithmetic process.

2.3.2. POA

The pelican optimization algorithm (POA) was introduced by Trojovsky Pavel et al. in
2022 as a cutting-edge swarm-intelligence optimization algorithm known for its remarkable
global search-optimization capability [48]. POA is inspired by the pelican-hunting method,
and it establishes a mathematical model by simulating the process of pelicans capturing
food. In this algorithm, each pelican’s position represents a candidate solution to the prob-
lem at hand. The solution and optimization processes are realized through the emulation
of the pelican’s food-capture behavior. Similar to other swarm-intelligence optimization
algorithms, the initialization of the population positions follows a standard approach, as
shown in the following formula:

xi,j = lj + rand·
(
uj − lj

)
, i = 1, 2, . . . , D , j = 1, 2, . . . , K. (10)

where xi,j is the position of the ith pelican in the jth dimension; D is the number of pelican
populations; K is the dimension of the solution problem; rand is a random function that
generates random numbers of [0,1]. uj and lj are the upper and lower bounds of the solution
problem in the jth dimension, respectively.
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Pelican population location distribution can be represented by the following matrix
search space:

X =



X1
...

Xi
...

XD

 =



x1,1
...

xi,1
...

xD,1

. . .

. . .

. . .

. . .

. . .

x1,j
...

xi,j
...

xD,j

. . .

. . .

. . .
. . .
. . .

x1,K
...

xi,K
...

xD,K

 (11)

where Xi is the search position of the ith pelican.
The objective function value of the pelican is computed by incorporating the objective

function of the problem being solved. To determine the specific value of the objective
function, the following equation can be employed.

F =



F1
...
Fi
...

FD

 =



F(X1)
...

F(Xi)
...

F(XD)

 (12)

where F is the objective function vector of the pelican population; Fi is the objective function
value of the ith pelican.

Phase I is the flying to the prey (exploration phase).
Contrary to the behavior of other birds, pelicans exhibit a unique hunting strategy

by swiftly flying towards the location of their spotted prey. By mathematically modeling
this predatory approach, POA effectively scans the search space, leveraging its inherent
capacity to explore various regions within this space. Notably, the prey’s location is
randomly generated within the search space, thereby enhancing the algorithm’s exploratory
capability in precisely identifying the problem’s solution. This process is mathematically
represented as follows:

xP1
i,j =

{
xi,j + rand·

(
pj − I·xi,j

)
, Fp < Fi

xi,j + rand·
(

xi,j − pj
)
, else

(13)

where xP1
i,j is the updated position of the ith pelican in the jth dimension; pj is the position of

the prey in the jth dimension; I is a random integer of 2 or 1, which is randomly generated
at each iteration; and Fp is the objective function value.

If the objective function value improves at a given position, indicating better problem-
solving performance, the position is updated after accepting it. This efficient position-
update method helps prevent the algorithm from searching in non-optimal regions. The
formula for this update process is as follows:

Xi =

{
XP1

i , FP1
i < Fi

Xi, else
(14)

where XP1
i is the new position of the ith pelican; FP1

i is the value of the objective function
after updating the position based on the first stage.

Phase II is surface flight (development phase).
Upon reaching the water where the fish are located, pelicans employ a distinctive

hunting technique by flapping their wings to force the fish to swim upwards. Subsequently,
they ensnare the fish within a capacious throat pouch. This capture method enables
pelicans to efficiently accumulate a larger quantity of fish. By mathematically modeling this
predatory behavior, POA enhances its convergence towards optimal positions and obtains
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improved problem solutions. Consequently, the search capability of the POA algorithm is
enhanced. This process can be mathematically represented as follows:

xP2
i,j = xi,j + L·(1− t/T)·(2·rand− 1)· xi,j (15)

where xP2
i,j is the position of the ith pelican after updating in the jth dimension; L = 0.2.

The variable t represents the current iteration number, while T represents the maximum
iteration number. The coefficient L·(1− t/T) is the radius of the neighborhood of xi,j,
which is searched in the vicinity of each member to get the local optimal solution and then
aggregated to each local optimal solution to get the global optimal solution. During the
initial iteration, this coefficient has a large value, resulting in a wide search region around
each member. As the algorithm progresses, the coefficient gradually decreases, leading
to a reduction in the radius of the search domain for each member. This iterative process
enables the POA algorithm to effectively locate the best solution in close proximity to the
global optimum. Notably, the effective update position method remains the same as in the
first stage.

2.3.3. ICMIC Chaotic Mapping

The distribution of initial positions within the heuristic algorithm significantly impacts
both the global optimization accuracy and convergence speed. However, the randomly
generated initial population in the POA exhibits uneven distribution and low ergodicity,
leading to suboptimal population quality. To address this limitation, this paper proposes
the utilization of ICMIC mapping, a chaotic mapping technique, to generate the initial
position of the pelican population. This approach greatly enhances the randomness of the
initial population and facilitates the selection of individuals with superior fitness as the
initial population. Consequently, the global search capability of the algorithm is enhanced,
and the convergence speed is accelerated. The ICMIC chaotic mapping employed in this
study is characterized by infinite folding times [49,50], making it more likely to exhibit
chaotic phenomena compared to other maps with limited folding times. The mathematical
expression for the ICMIC chaotic mapping is as follows:

Xk = sin
(

α

xk−1

)
(16)

where xk is the chaotic sequence generated by the mapping, α ∈ (0,+∞). As in Figure 9,
the chaotic sequence is generated by taking α = 100 and k from 2 to 500; the chaos is
more obvious.
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2.4. CNN-BIGRU Prediction Model Based on ICMIC-POA

This paper introduces the ICMIC-POA-CNN-BIGRU prediction model, which consists
of two components: the main prediction model (CNN-BIGRU) and the heuristic optimiza-
tion algorithm model (ICMIC-POA). The selection of appropriate hyperparameters for the
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main prediction model plays a crucial role in ensuring robustness and prediction accuracy.
However, traditional methods for hyperparameter optimization often require extensive
manual debugging, resulting in high computational and time costs. In contrast, heuristic
algorithms offer unique advantages in solving optimization problems and efficiently ob-
taining global optimal solutions. Figure 10 illustrates the prediction process of the overall
prediction model proposed in this study, which can be expressed as follows:

1. The original dataset is partitioned into training and test sets, and the data is normalized;
2. Three optimization search parameters are input into the POA as the variables to

be optimized;
3. The initialization of the pelican population’s position is carried out using the ICMIC

chaotic mapping technique. In this study, the three parameters subject to optimization
are the learning rate, the number of nodes in the hidden layer of the BIGRU, and
the L2-regularization coefficient λ. The fitness function of the POA, which is the
mean-square error, serves as the objective function, while the remaining parameters
are set accordingly;

4. Randomly generated prey locations;
5. In the exploration phase, pelicans scan the search space and fly to the water where the

prey is located (action strategy);
6. The objective function of the exploration phase is worth improving and updating the

pelican position. Otherwise, return to step (5);
7. In the developmental stage, pelicans flutter their wings to force their prey to swim

toward the surface, easily gaining more prey (action strategy);
8. The objective function of the development phase is worth improving and updating

the pelican position. Otherwise, return to step (7);
9. Satisfy the stop iteration condition and output to the CNN-BIGRU model. Otherwise,

return to step (4);
10. CNN deep mines the features of time series variables and inputs them to BIGRU

for prediction;
11. After the end condition is satisfied, output the optimal 3 parameter values. Otherwise,

return to step (3);
12. The best-trained ICMIC-POA-CNN-BIGRU model for prediction and performance

evaluation of the test set.

Among the neural networks utilized in this study, CNN demonstrates a robust ability
to extract valuable feature information, while BIGRU, with its memory units, proves advan-
tageous for time-series data prediction. These two networks exhibit excellent prediction
performance even when operating with a limited dataset. It is important to note that
employing a large dataset significantly increases the computational burden of the model in
this study. Therefore, for the purpose of short-term prediction, a smaller dataset spanning
two months is employed. However, it is acknowledged that using a small dataset may
lead to issues such as overfitting or poor generalization. To address these challenges, the
L2-regularization technique is employed. In comparison to other regularization methods,
L2 regularization effectively mitigates overfitting without sacrificing valuable feature in-
formation. By incorporating regular terms into the objective function, L2 regularization
penalizes model complexity and facilitates the development of a simpler model with fewer
parameters. The calculation formula for L2 regularization is as follows:

J(w, x, y) = L(w, x, y) +
λ

2
wTw (17)

where L(w, x, y) is the objective function before regularization and J(w, x, y) is the objective
function after regularization. λ

2 wTw is the L2 regular term, which mainly changes the size
of the weights w through the regularization coefficient λ to achieve the anti-fitting effect.
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3. Result and Discussion
3.1. Evaluation Index

In this paper, the determination coefficient R2, mean absolute error (MAE), mean
absolute percentage error (MAPE), mean bias error (MBE), mean square error (MSE), and
root mean square error (RMSE) were used as the evaluation indexes of model performance.
The formula is as follows:

R2 = 1−
∑N

i=1

(
W f orecasting −Wtrue

)2

∑N
i=1

(
Wtrue −Wtrue

)2 (18)

MAE =
1
N ∑N

i=1

∣∣∣W f orecasting −Wtrue

∣∣∣ (19)

MAPE =
1
N ∑N

i=1

∣∣∣∣W f orecasting −Wtrue

Wtrue

∣∣∣∣× 100% (20)

MBE =
1
N ∑N

i=1

(
W f orecasting −Wtrue

)
(21)

MSE =
1
N ∑N

i=1

(
W f orecasting −Wtrue

)2
(22)
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RMSE =

√
1
N

(
∑N

i=1

(
W f orecasting −Wtrue

)2
)

(23)

where N is the number of samples; Wtrue is the actual power-generation value; W f orecasting

is the predicted value; and Wtrue is the average of all actual values.

3.2. Prediction Results and Analysis
3.2.1. Prediction of Three Typical Days

To effectively evaluate the performance of the proposed prediction model, this study
randomly selects three representative days (sunny, cloudy, and rainy) as the test set, with a
prediction time window of one day. The remaining data were utilized as the training set.
Table 1 presents the detailed structural parameters of the prediction model, encompassing
the population size for the heuristic optimization algorithm, the maximum number of
iterations for POA, the maximum training iterations for the deep learning model, and other
relevant parameters. These parameters need to be set prior to initiating the training process,
followed by training and validation, and ultimately testing. The workstation configuration
on which the experiment was run was Windows 10 Professional Workstation Edition, RAM
256GB, Intel(R) Xeon(R) Gold 6252 CPU@2.1GHz 2.10GHz (two processors), and NVIDIA
Quadro RTX 6000.

Table 1. Model structural parameters.

Structural Parameter Parameter
Value Structural Parameter Parameter

Value

Number of pelican populations 20 Number of convolution kernels in the first layer 16
The maximum number of iterations of POA 50 Convolution layer activation function ReLU

Single-batch processing samples 128 The second-layer convolution kernel size and step size 4.1
Maximum training iterations 300 Number of convolution kernels in the second layer 32

Optimizer Adam Pooling size and step size 2.1
The first-layer convolution kernel size and step size 3.1 BIGRU activation function Tanh

Figure 11 illustrates the evolutionary convergence of the optimal fitness for both the
ICMIC-POA and POA algorithms in predicting three representative days. The fitness func-
tion employed in this analysis was MSE. The results demonstrated that the convergence
speed and fitness values varied across different weather types. However, it was noteworthy
that the pelican population, initialized using the ICMIC chaotic mapping technique, exhib-
ited faster convergence speed and lower fitness values compared to the population without
optimization. This indicated that the ICMIC chaotic mapping effectively enhanced the
randomness, distribution uniformity, and ergodicity of the pelican population’s position.
As a result, the optimization speed of POA was significantly accelerated, and its global
search ability was strengthened.
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The loss function plays a pivotal role in training the deep learning model. It aims to
minimize the discrepancy between the predicted values and the actual values by reducing
the loss on the training set. This iterative process leads to continuous improvement in the
performance of the prediction model and enhances its generalization ability on the test
set. In this study, the MSE was employed as the loss function. Figure 12 compares the loss
values before and after incorporating L2-regularization technology for three representative
days, using 150 training iterations as an example. Specifically, Figure 12a,c,e depict the
loss curves without L2-regularization technology. As the number of training iterations
increases, the loss value exhibits a slow decrease, and the loss value of the validation
set surpasses that of the training set, indicating the presence of overfitting. Moreover,
the loss curve displays a wide range of fluctuations. Consequently, the generalization
ability of the model trained under these circumstances cannot be guaranteed. In contrast,
Figure 12b,d,f illustrate the loss curves obtained when employing the L2-regularization
technique. Notably, as the training progresses, the loss value rapidly decreases, and the loss
value of the verification part is not higher than that of the training part. Additionally, the
loss curve converges quickly within a narrow range of volatility, significantly enhancing
the model’s stability. These findings strongly supported the notion that incorporating L2-
regularization technology effectively counteracted overfitting and improved the model’s
generalization ability.
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To comprehensively assess the prediction performance of the proposed model, a
comparative analysis is conducted with several other models, namely Sine-SSA-Elman
(where Sine represents a chaotic mapping, SSA refers to the sparrow-search algorithm,
and Elman represents a neural network algorithm), GRU, BIGRU, CNN-BIGRU, and POA-
CNN-BIGRU. A total of 20 experiments were performed, utilizing six evaluation metrics for
performance assessment. Figures 13–15 show the prediction effects of different prediction
models on sunny, cloudy, and rainy days, respectively. The size of the box in the box-and-
line plot indicates the distribution of the assessment metrics, and a colored dot indicates
the assessment value corresponding to one experiment. The horizontal line inside the
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box indicates the average value of 20 experiments for each model and is displayed on the
right side of the box. The larger the value of the regression fit coefficient R2, the better the
prediction. The closer the MBE value is to 0, the better the prediction. The smaller the value
of the other four assessments, the better the prediction. The findings reveal that among the
three typical day forecasts, the model proposed in this paper has the best six evaluation
indexes and the smallest error fluctuation range, indicating that the prediction effect is
better than the other five models, and it is able to make effective PV power prediction
for different weather with the best robustness and generalization ability. Specifically, the
proposed model achieved the average value of R2 of 0.98372 for a sunny day, 0.97589 for
a cloudy day, and 0.98735 for a rainy day. In contrast, the best R2 mean for the Sine-SSA-
Elman model was 0.9192 on a sunny day and 0.86063 in cloudy weather, with a wide range
of fluctuations. It was worth noting that the model proposed in this paper could reduce
the mean value of MSE to 0.06398 MW and the mean value of MAE to 0.19368 MW during
rainy weather prediction. In cloudy weather prediction, which has the most fluctuating
power of PV, the mean value of RMSE could be reduced to 3.73881 MW and the mean
value of MAE could be reduced to 2.99258 MW. This indicated that the model had strong
generalization ability and high accuracy performance. In order to observe the prediction
effect of different weather more intuitively, Figure 16 shows the prediction effect of the six
prediction models on three typical days.
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Table 2 provides a comprehensive overview of the ICMIC-POA experiments, showcas-
ing the automatic iteration process to identify the three optimal initial parameter values
for CNN-BIGRU during the prediction of power generation in cloudy weather. Notably,
this study maintains uniformity by setting the number of nodes in the two hidden layers of
BIGRU to be equal.

Table 2. ICMIC-POA search for optimal values of 3 parameters.

Number of Experiments Optimal number of Hidden
Layer Nodes for BIGRU Optimal Initial Learning Rate Optimal L2-Regularization Factor

Range [10,135] Range [0.001,0.01] Range [0.0001,0.1]
1 85 0.0028 0.0014
2 90 0.0051 0.0056
3 23 0.0078 0.0067
4 118 0.0071 0.0060
5 21 0.0021 0.0052
6 116 0.0039 0.0024
7 121 0.0038 0.0089
8 116 0.0051 0.0122
9 37 0.0070 0.0019
10 30 0.0045 0.0054
11 19 0.0020 0.0039
12 98 0.0043 0.0212
13 23 0.0089 0.0077
14 91 0.0081 0.0267
15 95 0.0076 0.0256
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Table 2. Cont.

Number of Experiments Optimal number of Hidden
Layer Nodes for BIGRU Optimal Initial Learning Rate Optimal L2-Regularization Factor

16 75 0.0036 0.0081
17 45 0.0021 0.0068
18 52 0.0095 0.0165
19 96 0.0061 0.0136
20 95 0.0067 0.0076
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3.2.2. K-Fold Cross-Validation

The prediction time window for the three representative days was set to one day, with
consistent training and test data across the 20 experiments. While this approach reduces
the variability in evaluating the model’s prediction performance on the same dataset, it
does not assess the model’s ability to predict different datasets. To address this limitation
and comprehensively assess the robustness and generalization ability of the prediction
model, this study employs K-fold cross-validation, which effectively mitigates this concern.
It is important to highlight that this method is particularly useful for small-sample datasets
and can also help mitigate overfitting. After data processing, the effective data group from
the original dataset consisted of a total of 56 days. This study employed a K value of 17,
resulting in the division of the 51-day dataset into 17 sub-datasets for cross-validation.
Each sub-dataset served as an individual test set, with a prediction time window of 3 days.
Consequently, a total of 17 cross-validations were conducted. Furthermore, when extending
the prediction time window to 5 days, a K value of 10 was selected, dividing the 50-day
dataset into 10 sub-datasets for 10 cross-validations. The evaluation index chosen in this
study was the RMSE, which facilitated a comparison of the prediction performance among
three hybrid models: ICMIC-POA-CNN-BIGRU, POA-CNN-BIGRU, and CNN-BIGRU.
The results, presented in Tables 3 and 4, indicate that the ICMIC-POA-CNN-BIGRU model
proposed in this paper outperformed the other two hybrid models, exhibiting the smallest
fluctuation range in RMSE.

Table 3. RMSE values of different models for 3 consecutive days were predicted.

Prediction Intervals Assessment Indicators
Forecasting Models

ICMIC-POA-CNN-BIGRU POA-CNN-BIGRU CNN-BIGRU

3 Days RMSE/MW

2.8949 4.8083 5.1422
1.3377 3.3137 4.3971
2.8195 4.4362 5.5421
2.3524 5.0615 4.9599
1.2879 3.3776 3.6108
2.0072 5.3213 6.1252
0.9581 2.9286 3.1163
1.2262 3.7977 5.4232
1.6176 3.6883 4.2821
1.4799 3.9245 5.6274
0.8723 2.1958 4.9951
3.8364 5.6568 5.8586
3.3353 5.8328 6.1136
1.3593 3.1487 5.5886
1.6912 3.8669 5.3778
2.8984 4.4009 5.9135
2.8831 4.5222 6.4113

Mean value 2.0504 4.1342 5.2050

Table 4. RMSE values of different models for 5 consecutive days were predicted.

Prediction Intervals Assessment Indicators
Forecasting Models

ICMIC-POA-CNN-BIGRU POA-CNN-BIGRU CNN-BIGRU

5 Days RMSE/MW

2.9281 3.5113 4.0149
3.4851 5.0503 5.6674
2.2264 4.3259 5.3498
2.7534 3.7559 4.9186
5.0063 6.2719 7.1561
3.3317 4.8321 5.0249
3.6894 4.9451 5.4569
4.1103 5.4777 6.2314
5.4194 6.6264 5.4731
3.3508 4.7218 5.7427

Mean value 3.6301 4.9518 5.5036
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To provide a detailed comparison of the prediction effects across different prediction
time windows (1 day, 3 days, and 5 days), we have compiled the average value of the RMSE
evaluation index from our previous experiments, as illustrated in Figure 17. The results
demonstrate that the model proposed in this study consistently achieved the lowest RMSE
value in predicting various weather conditions and different prediction time windows,
indicating its superior prediction performance. Especially on rainy days, the RMSE value
could be reduced to 0.2517 MW, which was 57.59% lower than the RMSE value of the
CNN-BIGRU model. On sunny and cloudy days, the RMSE values of the proposed model
were 64.08% and 46.14% lower than those of the CNN-BIGRU model, respectively. In the
prediction time window of 3 days and 5 days, the RMSE values of the model proposed
in this paper were reduced by 60.61% and 34.04%, respectively, compared with the CNN-
BIGRU model. It was worth noting that, in the ICMIC-POA-CNN-BIGRU and CNN-BIGRU
models, the RMSE value of the predicted 5 days was larger than that of the predicted 3
days and the predicted sunny and rainy days but was smaller than the predicted cloudy
days. In the POA-CNN-BIGRU model, the RMSE value of the predicted 5 days was the
largest. This shows that, when the same model predicts different prediction time windows,
the longer the prediction time window, the prediction performance is not necessarily worse.
Figure 18a,b visually show the prediction of the above model in the prediction time window
of 3 days and 5 days, respectively. The results show that the prediction effect of the model
proposed in this paper was better than the other two prediction models at the peak and
trough. This is conducive to the stable operation of the PV power-generation system and
reduces the impact on the power grid, bringing good economic benefits to the PV station.
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4. Conclusions

This paper introduced a high-performing hybrid model designed to address the
challenge of short-term power-output prediction in new island PV stations operating under
high humidity conditions. The proposed model holds significant potential in facilitating the
efficient utilization of abundant coastal PV resources and promoting the rapid development
of this emerging category of island PV stations. Additionally, it offers cost-saving benefits
by reducing the maintenance expenses associated with PV stations, while also generating
substantial economic gains. This is conducive to the sustainability of new energy generation
and power systems. The main conclusions drawn from this research are summarized below.

• The latest heuristic algorithm (POA) was used for the first time to search and auto-
matically debug the optimal hyperparameters of CNN-BIGRU and the optimal value
of the L2-regularization coefficient, which greatly saved the computational cost and
improved the prediction performance of the model;

• ICMIC chaotic mapping optimized the initial population position of the POA, in-
creased the randomness of the population distribution, and greatly improved the
ergodicity and global search ability of the POA;

• Adding L2-regularization technology could quickly reduce the loss value of the loss
function in the deep learning model (CNN-BIGRU), and the convergence was stable
in a very small range. It solved the over-fitting problem that easily occurred in the
training process;

• The model in this paper had the best prediction performance compared with the five
prediction models. In the prediction time window of 1 day (sunny, cloudy, and rainy
days), 3 days, and 5 days, six evaluation indicators were used to comprehensively
evaluate the prediction performance.
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