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Abstract: Predicting and assessing the vitality of public urban spaces is crucial for effective urban
design, aiming to prevent issues such as “ghost streets” and minimize resource wastage. However,
existing assessment methods often lack temporal dynamics or heavily rely on historical big data,
limiting their ability to accurately predict outcomes for unbuilt projects. To address these challenges,
this study integrates previous methodologies with observations of crowd characteristics in public
spaces. It introduces the crowd-frequency hypothesis and develops an algorithm to establish a
time-dimensional urban vitality dynamic prediction model. Through a case study of the Rundle
Mall neighborhood in Adelaide, Australia, the effectiveness of the prediction model was validated
using on-site observation sampling and comparative verification. The prediction model framework
allows for the determination of urban vitality within specific time ranges by directly inputting basic
information, providing valuable support to urban planners and government officials during the
design and decision-making processes. It offers a cost-effective approach to achieve sustainable urban
vitality construction. Furthermore, machine learning techniques, specifically the decision tree model,
were applied to case data to develop a set of preliminary algorithm tools, which enable output of
reference urban vitality levels (high-medium-low).

Keywords: urban vitality; prediction model; algorithm; crowd-frequency

1. Research Background and Introduction

In recent decades, the emergence of “ghost streets” in various new towns, such as
Forest City in Malaysia [1] and Lingang New Town in Shanghai, China [2], has raised
concerns. These areas exhibit significantly lower usage rates than anticipated, leading
to resource wastage [2,3]. Improving the vitality of such zones often necessitates costly
redevelopment efforts, which may not always yield successful outcomes. Moreover, several
well-established large cities worldwide, including those in the United States, China, Europe,
and Japan, have experienced urban shrinkage issues over the past thirty years [4,5] and
require revitalization efforts. Consequently, there is a pressing need to develop algorithms
capable of accurately predicting and evaluating urban vitality based on design plans,
thereby mitigating risks prior to actual construction and fostering sustainable development.

Defined as the “intensity of people’s concentration” [6], urban vitality is widely
regarded as a key objective in urban public space design [7]. It is commonly assessed by
evaluating the built environment’s capacity to facilitate activity or the density of people
in a given space [8], with some adopting composite approaches [9]. However, at the
meso-micro level of general research, urban vitality is predominantly defined by the
presence of active individuals in public urban spaces [10]. Previous studies by Chen
et al. [11], Lv et al. [12] and Guo et al. [13] have demonstrated that urban vitality exhibits
periodic variations throughout different times of the day and varies between weekdays and
weekends. Li and Zhao (2023) further argued that the vitality of public spaces on weekdays
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and weekends respectively correlates with the built environment of urban spaces [14].
Given the heterogeneity of urban vitality across temporal and spatial dimensions, there is
a need for a method capable of accurately assessing and predicting urban vitality across
different time periods and spaces.

Existing methods for quantitatively assessing urban vitality (Figure 1) exhibit both
strengths and weaknesses. On-site observational statistics methods [10,15] directly collect
data but are cumbersome to implement and only evaluate temporal urban vitality at specific
points. Conversely, methods based on statistical analysis of urban big data, such as mobile
phone signal data [11], Tencent location information [16], and online map POI data [17],
offer rich statistical results and accurately assess urban vitality in specific regions at partic-
ular times. However, these methods often suffer from lag, fragmentation, imbalance, and
limitations due to factors such as privacy and ethics. Additionally, most big data-based
evaluation methods fail to differentiate between individuals in urban public spaces and
those indoors. For example, while streets in a residential area may appear deserted at night,
many residents may still be indoors, resulting in ambiguity if such situations are classified
as active. Moreover, these methods heavily rely on historical statistical data and lack the
ability to predict future urban plans. Even when analyzing data from urban areas inhabited
for less than five years, the results often fall short of reflecting the stable state [2].
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Methods assessing urban public space vitality based on urban physical built environ-
ment information remain unaffected by project completion status and offer good predictive
capabilities. For instance, Ye and Nes [18] proposed a method to calculate urban vitality
based on urban morphology using Space Syntax and Space Matrix tools, and the Mixed-
Use Index. Similarly, Guo et al. [19] developed a method to calculate urban vitality based
on urban public space information, immediate buildings, and interaction ball (a tool for
quantifying social interaction levels). However, these methods overlook the laws of human
subjective behavior, resulting in oversights regarding behavioral differences caused by user
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characteristics and variations in human behaviors across different time dimensions. Conse-
quently, these methods only provide static and general vitality predictions for a specific set
of physical urban built environments, failing to deliver accurate spatial-temporal vitality
results across different time periods [10].

Algorithmic methods, generated through machine learning from results of actual
measurement methods using urban information, offer the advantage of simplicity. However,
their usage requires inputting urban physical built environment information and POIs from
online maps, which does not completely eliminate dependence on big data.

Therefore, there is a critical need to explore new research pathways for more accurate
evaluation and prediction of urban spatial vitality across various time periods. This study
draws upon the aforementioned research methods and introduces time variables to establish
a new index system for evaluating urban vitality. By analyzing the behavioral characteristics
and typical schedules of various user groups in urban spaces, the study comprehensively
considers users’ impact on urban vitality and establishes an analysis framework for crowd-
frequency over time. The efficacy of the new method was validated using the Rundle Mall
neighborhood in Adelaide, Australia, as a case study. This prediction model framework
only requires input of physical built environment, characteristic of resident, and accessible
situation to estimate the vitality situation of a specific urban public space at a given period.
Additionally, to enhance the usability and facilitate better understanding of evaluation
results, machine learning was conducted on case data using a decision tree model, resulting
in an algorithm capable of predicting the reference vitality levels (high-medium-low),
by inputting time and urban information.

2. Theory of Time Dimension Dynamic Based on Crowd-Frequency

The existing methods for predicting spatial vitality are predominantly static and
demonstrate limited accuracy in the temporal dimension. Although machine learning
techniques can enhance accuracy by identifying patterns between real-time data and static
prediction values across numerous cases, the threshold for data collection remains high.
The relationship between time and vitality, as well as the underlying principles governing
changes in urban vitality over time, remain unclear.

Thus, this study aims to elucidate the temporal dynamics of urban vitality. Previous
research has highlighted significant disparities in the vitality of urban public spaces between
day and night, as well as weekdays and weekends [11,13]. These spatiotemporal changes
exhibit cyclical and periodic patterns and are closely linked to human activities [14,17].
Through observations of urban life, hypotheses regarding the relationship between urban
temporal vitality and crowd activity were formulated. Building upon a review of past
methodologies and a framework of hypotheses, the parameters and algorithms for dynamic
vitality assessment were developed. Finally, the hypotheses were validated by comparing
predicted values of public space vitality in case urban areas with measured values.

2.1. Hypothesis

The following hypothesis investigates the influence of crowd preferences and sched-
ules on the utilization of urban spaces during specific time periods. It suggests that crowd
behaviors and routines play a substantial role in shaping the usage patterns of various
spaces.

• H01: The usage of a space during a particular period is influenced by crowd prefer-
ences.

Different functional spaces typically attract distinct user demographics. For instance,
children are commonly found in children’s park, while rarely seen in nightclubs. Moreover,
the primary users of the same space can vary across different times. For example, a café
may primarily cater to office workers purchasing breakfast during early weekday mornings,
whereas on weekend afternoons, it may be frequented by families gathering for leisure.
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• H02: Specific crowds tend to adhere to predetermined schedules when utilizing urban
spaces.

Demographic groups with similar age ranges and employment statuses typically
maintain consistent routines. Although individual behavior may vary at the micro level,
the population of a city block generally adheres to crowd patterns. For instance, full-time
employees in Adelaide typically commence work between 8 and 10 am, take a lunch break
between 12 noon and 2 pm, and conclude work between 4 and 6 pm. Consequently, it
is unlikely for them to visit a restaurant at 3 pm on a weekday. Similarly, high school
students, while fond of playing basketball, are unlikely to be present at the neighborhood
basketball court during school hours. Hence, the likelihood of a specific crowd appearing
in a particular location during a specific period can be inferred based on crowd preferences
and schedules.

2.2. Specific Parameters

The next two parameters, Crowd and Frequency, stem from the aforementioned
hypotheses. They outline the method of categorizing urban residents into crowd groups
and predicting their activity frequencies in urban space.

• Crowds

Age and occupational characteristics significantly influence people’s social interaction
behavior patterns in urban spaces over time. For instance, during weekday working hours,
full-time employees typically remain in their office positions, while individuals engaging
in outdoor activities are often those not currently employed. Similarly, young children are
rarely seen on the streets at night as they tend to sleep early.

Regarding crowd grouping methods, individuals in urban public spaces can be cat-
egorized based on age and employment status, and group rates can be calculated using
local data statistics. Seven representative demographic profiles can be identified: young
children, teenage students, unemployed individuals (including stay-at-home parents),
full-time/part-time workers, people employed but not at work, and retired individuals
(refer to Table 1). This classification can be further adjusted and refined as needed based on
specific circumstances. For instance, if residents of a certain city commonly own dogs and
the studied urban area includes a dog park, then an indicator for dog ownership should be
included to refine the crowd classification.

Table 1. Common list of crowds’ categories for urban public space.

Crowd Normal Age Range Available Time in Public Spaces

Retirees >local retirement age Any time, but limited by energy
Employed but away from work legal working age~retirement age Available any time

Employed full-time legal working age~retirement age Available except standard working hours.
Employed part-time legal working age~retirement age Available outside working hours

Unemployed legal working age~retirement age Available any time
Teenager students 5~legal working age Available except during school hours

Young children 0~4 Near noon to afternoon

• Frequency

The frequency of use is the most significant characteristic of functional spaces uti-
lized by different groups of people, which can be deduced from the typical schedule of
specific crowds. For instance, considering the average full-time employee in Adelaide,
they typically work from 9 am to 6 pm on weekdays, with meal breaks and rest periods at
noon, commuting time to and from work, weekends off, and a willingness to engage in
activities in public spaces. Building upon this assumption, a 24-h space appearance map
was developed and delineated for both weekdays and weekends (refer to Table 2).
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Table 2. Diagram of how often a typical space is used during the week of full-time workers in
Adelaide. Blue means stay at home, green means stay in office and yellow means can appear in public
urban space.

Public Appearance 00~08 08~10 10~12 12~14 14~16 16~18 18~20 20~22 22~24
weekdays House Traffic Work Lunch Work Work Traffic House House
weekends House Leisure Leisure Leisure Leisure Leisure Leisure Leisure House

For a specific public space, an activity frequency map for a particular type of crowd
can be generated based on their schedule of appearance. If a specific crowd is expected
to be active in the space at a given time, their probability of occurrence is designated as
“1”; otherwise, it is marked as “0”. Subsequently, the frequency of this particular crowd
appearing in the space during that period can be quantitatively documented. By assigning
weights to the frequencies of all crowds based on population proportions, the overall
frequency of urban residents appearing in the space can be estimated.

3. Algorithm Construction
3.1. Indicators

The physical built environment, accessibility of the surroundings, and residents’
characteristics influence the urban vitality of a place at a given time (Figure 2). In light of
previous indicator systems and the crowd-frequency framework, a new indicator system
for the dynamic time algorithm of urban public space vitality has been proposed.
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3.1.1. Indicator System of Past Studies

Table 3 reviews five urban vitality studies’ indicator systems. There is a lot of du-
plication and overlap between different indicator systems. In terms of physical built
environment, these methods generally include information on space use, openness, land-
scape (greening) level, urban form, surrounding building functions and openness, etc. In
terms of accessible situation, vehicle accessibility, bus accessibility, and walking accessibil-
ity are generally concerned. In terms of the characteristics of surrounding residents, they
basically only focus on the population situation.
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Table 3. Review of Indicator system of past research.

Name and Date Indicators Tools

Ye and Nes, 2014
[18]

Street-network configuration Space syntax

Building density and types Space matrix

Functional mixture Mixed use index (mxi)

Other features

Li, et al, 2022 [15]

Street width GIS analysis of road data

Greenery and openness
and transparency Semantic segmentation of SVI

Commercial density GIS analysis of POI

Li et al, 2022 [20]

Neighborhood attributes
Population density Official statistics

Community age Kriging method
Housing price Kriging method

Urban form Floor-area ration
Open space
Intersection

Road density
Sidewalk percentage

Streetlights

Facilities and land use

Food POI data
Life service POI data
Shopping POI data

Lodging (HOT) POI data
Transit stops (Bus) POI data

Leisure POI data
Tourist Attraction POI data

Workplace POI data
Land use mix residential proportion

Location

Distance to river GIS
Distance to commercial GIS

Distance to park GIS
Distance to bus-stop GIS
Distance to subway GIS
Distance to leisure GIS
Distance to plaza GIS

Landscape NDVI Landsat images

Accessibility Integration SPACE SYNTAX

Guo et al, 2022 [19]

Indoor space next to the place

Spatial Social interaction
coefficient (depends on function) interaction ball

Area of indoor space
Openness of buildings

Accessibility Public Traffic GIS
Walkability GIS

Outdoor public space
Spatial Social Interaction

coefficient (depends on function) interaction ball

Outdoor attraction points

Negative factors Trashcan
Others
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Table 3. Cont.

Name and Date Indicators Tools

Lu et al, 2019 [21]

Social-economic data
Population
House price

Compactness Area
Richardson compactness index

POI mixed use Entropy

Accessibility Density of bus stations

Density
Floor area ratio

Building density index
Road density index

Landscape Green Coverage Index

3.1.2. New Indicator System

The new indicator system (Table 4) was designed by considering reviews and hy-
potheses about crowds and frequency. In selecting indicators, efforts were made to avoid
redundancy and to prioritize simplicity and low acquisition cost. This involved screening
out overlapping parameters and opting for indicators that exhibit similar characteristics but
are simpler to acquire. Alongside the incorporation and utilization of common indicators
from previous iterations, new factors such as crowds, frequency, and space for access were
also integrated into the system.

Table 4. The indicator system of dynamic prediction algorithm of urban public space vitality.

Factor Type Indicators

Physical built environment

Urban public space
Spatial social interaction coefficient (depends on function)

Attractiveness of outdoor landscape and facility

Building next to the public
urban space

Area of ground floor indoor space open to public

Spatial social interaction coefficient (depends on function)

Openness of buildings

Negative factors

Trashcan

Homeless

Others

Accessible situation

Vehicle accessibility
Reachable by car

Distance to parking lot

Public transport system accessibility

Walking accessibility

Access factor, conditions for the urban space entry

Characteristics of residents
Crowds

Age

Occupation and employment status

Frequency schedule of residents

3.2. Algorithm and Formula

This algorithm model first calculates each parameter of the three types of factors
separately.

Physical built environment factors:
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FB = lg(∑a
a=1(lgAREAin−a × INTERACTin−a × eOPENNESS) + ∑b

b=1 (e
ATTRACTION × INTERACTout−b)− NEG) (1)

in the formula, FB—the factor of physical built environment at a certain time.
Areain—area of indoor space.
INTERACTin—interaction coefficient of building space next to the place, depends on mean
function and measured according to the interaction ball.
OPENNESS—openness coefficient for different functions in indoor buildings, values 0, 0.5,
and 1 correspond to closed, semi-open, and fully open respectively.
INTERACTout—outdoor interaction coefficient, depends on mean function and measured
according to the interaction ball.
ATTRACTION—comprehensive attraction level of greening and public activity facilities in
outdoor spaces takes an integer from 0 to 2.
NEG—internal and external negative factors.

Accessible situation factors:

FA = Accessibilityauto × Accessibilitywalk × Access f actor (2)

in the formula, FA—the factor of accessible situation at a certain time.
Accessibilityauto—accessibility factor of the vehicle of the place.
Accessibilitywalk—walking accessibility factor of the place.
Accessfactor—space access factor, whether there are conditions for space entry (such as mem-
bership or consumption); completely free is 4, quasi-free is 3, has potential consumption
requirement is 2, fully charged / membership is 1.

Residents’ characteristics factors:

FC = lg(
∞

∑
m=1

GroupRatem × Frequencym) (3)

in the formula, FC—the factor of residents’ characteristics at a certain time.
GroupRatem—the proportion of crowd m in the regional population, calculated based on
the local population age structure and employment situation.
Frequencym—the frequency of space usage of crowd m at a certain time, determined by the
schedule of the typical image of crowd m. If crowd m can be active, the frequency value is
“1”, if not, the frequency value is “0”.

Finally, the factors related to the physical built environment, accessibility, and residents’
characteristics are multiplied to derive the prediction results of the urban vitality dynamic
model, denoted as λ. Following the multiplication of all numerical products, the calculation
result is logarithmically transformed to yield a more concise outcome.

λ = lg(FC × FA × FB) (4)

in the formula, λ—the predicted value of social spatial interaction of a space at a certain
time.

The sorted algorithm formula of dynamic prediction of urban public space vitality is
as follows:

λ = lg(∑∞
m=1 GroupRatem × Frequencym)× (Accessibilityauto × Accessibilitywalk × Access f actor)

× lg(∑a
a=1(lgAREAin−a × INTERACTin−a × eOPENNESS) + ∑b

b=1 (e
ATTRACTION × INTERACTout−b)− NEG))

(5)

Among the parameters, GroupRate, Frequency, Accessibilityauto, Accessfactor, OPEN-
NESS, and NEG will vary over time. Different λ values will be generated according to the
calculation formula of the urban vitality dynamic prediction model at different times. The
granularity of prediction in the time dimension is enhanced compared to previous research
methods.
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To handle variations in dimensions among model elements, streamline data processing,
and mitigate the impact of outliers, the Z-Score normalization method is used [22,23]. This
method ensures accuracy while retaining pertinent information and reducing sensitivity to
outliers [24]. The processed data conforms to a standard normal distribution with a mean
of 0 and a standard deviation of 1. To simplify comprehension and ensure positive values,
data are collectively incremented by ‘k’. The calculation formula for data standardization is
as follows:

xnew =
x − µ

σ
+ k (6)

in the formula, xnew—Standardized results.
x—original values in different dimensions.
µ—the mean of the original data.
σ—the standard deviation (std) of the original data.
k—a positive integer, contingent upon data structure.

This normalization procedure will solely target parameters exhibiting significant mean
and variance, such as area. Given that “0” and “1” in “frequency” signify whether an
activity is occurring, standardizing the “frequency” element is unnecessary. Moreover, the
values allotted to the factors of openness and influence are integers within the range of 4,
rendering standardization unnecessary for these factors.

4. Prediction Framework Verification and Further Development through a Case Study
4.1. Verification Flow

The process of verification through a case study involves several steps (Figure 3).
Initially, an urban zone is selected and divided into small blocks. The new dynamic model
is then utilized to predict the results for each period of these blocks on weekdays and
weekends. Subsequently, suitable dates are selected to gather street view data (short video
and photo) for the selected blocks, and cross-sectional flow counting of spatial vitality [25]
for each period on the sampled dates. The two sets of predicted and observed data are
then processed into comparable indicators [24,26]. Finally, the reliability of the algorithm
prediction model can be verified by evaluating and comparing these two sets of data.
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4.2. Selection of Case Area for Experimental Verification
4.2.1. Adelaide Roundel Mall Block

For selecting urban zones for case studies, an area that is generally more active, with
noticeable variations in activity levels across different time periods is suitable. Previous studies
mostly chose bustling commercial districts or residential areas in city centers [19,25,27,28].
This ensures the collection of a sizable amount of data with significant variations, which is
more conducive to validation.

Adelaide, the capital of South Australia, stands as the fourth largest city in Australia
and has earned the title of “the most livable city in Australia” numerous times [29]. The cen-
tral urban area of Adelaide encompasses Adelaide CBD, Green Ring, and North Adelaide.
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Rundle Mall Block, situated in the northeast of Adelaide CBD, serves as a quintessential
example of an Australian urban block (Figure 4a). Rundle Mall finds itself adjacent to
Adelaide University to the north, the headquarters business block to the south, a red-light
district to the west, and Hindmarsh Square to the southeast, solidifying its status as one of
South Australia’s most beloved destinations (Figure 4b). Rundle Mall spans approximately
255,300 square meters and primarily functions as a hub for commercial retail, dining, and
small-scale offices.
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and night and between different spaces, though not entirely synchronized (Table 5). Fewer
individuals are present in the early morning and at night, while more are seen during
noon and afternoon. Leisure hours see more foot traffic on inner pedestrian pathways,
whereas traffic times witness more activity on outer walking paths. Weekends and holidays
maintain high spatial vitality, with variations depending on location. From lunchtime
until evening, the pedestrian street is bustling, while surroundings remain relatively quiet.
Overall, the block’s conditions are conducive to verifying dynamic algorithm models.

Table 5. Uneven spatial and temporal distribution of spatial vitality in Adelaide Roundel Mall.
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4.2.2. Suite Division and Numbering

The public urban space within the Rundle Mall Block was subdivided into 98 small
blocks (Figure 5), delineated by both physical environmental boundaries and the functional
characteristics of adjacent buildings. To enhance verification efficiency and reduce the costs
associated with field data collection, this study meticulously assessed spatial attributes and
distribution locations. Consequently, 10 blocks, as depicted in Figure 6 and Table 6, were
selected for on-site data collection.
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X Pedestrian Street Entrance Retail



Sustainability 2024, 16, 2846 12 of 20

4.3. Obtaining and Calculating Each Parameter in the Prediction Model
4.3.1. Crowds and Frequency Analysis

According to the framework of the new dynamic model, the initial step involves
analyzing and determining the proportion of representative crowds expected to frequent
the area. As this area constitutes the core of the entire city, its users are not limited to
residents of Adelaide CBD but encompass individuals from the broader Great Adelaide
region. Population data utilized in this study were sourced from the 2021 Census All
persons Quick Stats for Great Adelaide, released by the Australian Bureau of Statistics
(Figure 7) [30]. Through an examination of factors such as age and employment status
(refer to Figure 6), the final statistical outcome regarding the ratio of crowds is derived
(refer to Table 7). By combining population data with the fundamental functional planning
of the area, the following conclusions can be drawn: (1) The age demographic of primary
area users is highly diverse. (2) On weekdays, the area is expected to primarily attract office
workers and nearby students, while weekends are anticipated to draw families, individuals
seeking leisure activities, gatherings with friends, and shoppers.

Using functional attributes, crowd behavioral characteristics, and the proportion of
each urban space, the frequency of each block during different time periods is estimated.
The table below provides an example using Block II to illustrate specific frequency estima-
tion results based on crowd proportions and “0” and “1” probability methods.
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Table 7. Crowds’ data and Block II Frequency Estimation Results.

Frequency of Block II

Days Weekdays

Crowds Proportion 8~10 10~12 12~14 14~16 16~18 18~20

Retirees 16% 0 0 1 1 1 0
Employed but away

from work 4% 1 1 1 1 1 0

Employed full-time 40% 0 0 1 0 1 0
Employed part-time 27% 1 0 1 1 1 0

Unemployed 7% 0 0 1 1 1 1
Teenager students 4% 0 0 1 1 1 0

Young children 2% 0 0 1 1 1 0
Overall 100% 0.036 0.036 0.998 0.328 0.998 0.073

Days Weekends

Crowds Proportion 8~10 10~12 12~14 14~16 16~18 18~20

Retirees 16% 0 0 1 1 0 0
Employed but away

from work 4% 1 1 1 1 1 0

Employed full-time 40% 0 0 1 1 0 0
Employed part-time 27% 0 0 1 1 0 0

Unemployed 7% 0 0 1 1 1 1
Teenager students 4% 0 1 1 1 1 0

Young children 2% 0 0 1 1 0 0
Overall 100% 0.036 0.074 0.998 0.998 0.147 0.007

4.3.2. Collection of Other Parameters in the Prediction Model

Values are obtained in the following ways:

• Area—functional area. The results are obtained by counting the building area and site
area in each spatial unit.

• Space access coefficient—assigned based on the openness of each functional space
inside and outside the space unit. Completely free is 4, quasi-free opening requirement
is 3, potential consumption requirement is 2, fully charged is 1.

• Interaction coefficient—mainly determined based on the land use properties of the
space unit, combined with the functional characteristics of indoor and outdoor spaces
to assist judgment, and finally determined based on the interactive sphere model.

• Attraction coefficient—determined by the type and level of landscape/activities in the
space. According to the location and scale of the attraction point, assign values from 0
to 3, respectively. The higher the value, the greater the influence.

• Auto accessibility—comprehensive calculation based on the distance to public trans-
portation stops. There are nine bus stations, and three train stations around the
research plot.

• Walking accessibility—comprehensive calculation of walkable area.
• NEG—spatial external negative factors. First, conduct on-site research to determine

the number of negative impact points in the site and make statistics. A large trash can
is worth 1, a small trash can is worth 0.5, and a homeless person is worth 1. Then the
negative records of each spatial unit are accumulated and obtained.

4.4. Field Observation Data Collection and Processing

The researchers began their investigation by observing the behavior of individuals and
crowds in Rundle Mall over the course of one month, aiming to understand the patterns of
crowd behavior. In previous studies concerning the collection of human behavior data in
public spaces, researchers conducted on-site street view image collection for each study area,
ranging from 1 to 6 days, distinguishing between weekdays and weekends [25,28,31,32].
These studies meticulously controlled factors such as weather and temperature, deliberately
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selecting days with mild weather conditions. Hence, to mitigate the influence of severe
weather and natural calamities like rain, hail, heatwaves, wildfires, high solar radiation,
low temperatures, and strong winds on urban activities, the researchers deliberately chose
Adelaide’s autumn, characterized by more pleasant and stable weather conditions (with an
average temperature of 12~22 ◦C), for on-side data collection. Specifically, they collected
street view data spanning from 27 April to 30 (2 weekdays and 2 weekends) in 2023.
Additionally, holidays and public vacations were intentionally avoided to ensure that the
observed behavior was representative of typical urban dynamics on normal days. Data
were collected every two hours during 8:00~20:00, using both short videos and photographs
to track the presence of individuals within the designated area. Then, according to the
cross-sectional flow counting method [25], urban vitality was calculated, and the averages
were taken based on weekdays and weekends. Subsequently, these calculated averages
were transformed using natural logarithms and standardized [24,26]. This processed data
served as an indicator of urban vitality for the specified time and location.

4.5. Data Analysis and Comparison Verification

Given the potential presence of outliers in the statistical data collected during this
study, a Z-Score normalization method was employed for preprocessing. This approach
aims to retain characteristic information within the outliers while reducing sensitivity
to their impact. The calculation formula for data normalization is consistent with the
previously mentioned Formula 6 and will not be reiterated here.

4.5.1. Static Model Results Validation

Firstly, the dynamic parameters introduced by the crowd-frequency hypothesis, asso-
ciated with the temporal dimension, are disabled. The predicted results are then compared
with the average on-site observations throughout the day. Refer to Figure 8, the relative
magnitudes of predicted values at each site closely correspond to the trends observed in
the overall daily cumulative data. However, it is notable that the predicted values for the
VII block show a significant deviation from the actual values, overestimating them. This
block serves as a pedestrian street node where food gatherings are frequently held, but its
opening hours are much shorter than those of regular commercial areas. Consequently, the
static prediction of the overall vitality level for this block tends to be much higher than
the actual level throughout the day. This further highlights the necessity of developing a
dynamic prediction model. Despite this discrepancy, the validation process demonstrates
robust consistency, confirming the successful establishment of the static part of methods
and indicators of the model.
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4.5.2. Dynamic Model Results Validation

Building upon the certified static model, further validation of the crowd-frequency
hypothesis is conducted. To ensure comparability of two sets of values with different
units, both sets of values have undergone standardization [26] and are presented as
unitless indicators for comparison. Firstly, through linear regression (Table 8), we an-
alyzed the correlation between the predicted results of 10 sites during six time periods
on weekdays and weekends, and the on-site observation results. The calculated result of
R2 = 0.847572 > 0.8 [33–35], with a p-value = 0.080326 < 0.1 [36,37], indicates significant
correlation, demonstrating successful overall model fitting.

Table 8. Linear regression analysis.

Regression Statistics Parameters Multiple R R2 p-Value

Result 0.920637 0.847572 0.080326
Trusted range ---- >0.8 [33–35] <0.1 [36,37]

Next, the data variation for specific blocks is verified. This step aims to confirm that
the data aligns with common science and prevents the linear regression calculation from
being based on erroneous results. The following Table 9 presents the comparison between the
dynamic model’s predictions and on-site observations for three types of blocks. Each type of
block shows an example, with weekdays on the left and weekends on the right. In Table 9,
solid lines represent the observed value indicators obtained from on-site data collection, while
dashed lines represent the predicted value (λ) indicators calculated based on the dynamic
algorithm. The results illustrate the fluctuations in urban vitality levels for each of the three
block types during weekdays and weekends from 8:00 to 20:00, in two-hour intervals. The
trends align well, accurately corresponding to peaks and troughs. In the overall urban vitality
ranking, the Pedestrian Street displays first, followed by the Street Side, while the Lane
exhibits the last. Additionally, there is a noticeable increase in vitality starting from noon in
each day and block. These findings are aligned with common knowledge [n]. The validation
of the dynamic model for specific blocks has also been successful.

Table 9. Examples of comparison of urban vitality dynamic predictions and on-site observations of 3
types of blocks.

Weekdays Urban Vitality Comparison Weekends Urban Vitality Comparison

Street Side
(Block I)
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Table 9. Cont.
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4.6. A Preliminary Vitality Level Prediction Program Based on Decision Tree Model

Section 4.5 has demonstrated the effectiveness of the dynamic urban vitality prediction
framework. However, since the primary goal of predicting urban vitality is to assess the
level rather than the exact values, the numerical indicators output by the current model
might confuse users regarding the interpretation of the high-low levels of public space
vitality. Although Table 9 illustrates that the prediction model accurately captures the trend
of vitality changes in urban public spaces, it also indicates that there are differences in the
specific predicted values, with variations in magnitude.

To tackle this issue, this study utilized a decision tree model [38,39] for machine
learning on the aforementioned data outcomes. An algorithmic program was created to
predict urban vitality levels based on inputted basic information and temporal conditions
of specific spaces. The program combines parameters of dynamic algorithmic formulas into
three sets of independent variables (FA × FB, FC, and period × weekdays/weekends) and
establishes natural breakpoints [40] for the target values (c = 3). Employing a simulation
with test_size = 0.34, the algorithm achieves an F1_micro score of 0.93878, surpassing the
reliability threshold [41]. The output of this algorithm assigns integer values of 1, 2, and
3, corresponding to low, moderate, and high levels of urban vitality, respectively. This
approach aims to improve user understanding and utilization of the predictive model.

However, it should be noted that the concept of vitality levels is inherently relative.
The method used to label vitality levels is based on on-site observed indicator data, cate-
gorized using a natural breakpoint approach according to numerical values (c = 3). The
current training dataset is derived from four ordinary dates in Adelaide CBD, providing
a preliminary reference for urban vitality level predictions based on them. However, it is
acknowledged that different regions and cultural backgrounds may interpret vitality levels
differently. For instance, what might be considered “very busy” in Adelaide might appear
only “moderately busy” in a densely populated cities like Hong Kong. Nevertheless, there
is generally a consensus on the definition of low activity. Considering the fundamental
aim of developing this prediction framework and algorithm is to mitigate the occurrence
of “ghost streets” during the design phase, it remains valuable. In future, researchers
will gather more data from cities with diverse geographical and cultural backgrounds to
enhance the predictive model’s reference value.

5. Discussion

Firstly, the Dynamic Prediction Framework for Urban Public Space Vitality has been
successfully validated in Adelaide CBD (Table 8), confirming the hypothesis regarding
the time-dependent influences of crowd-frequency in urban public spaces. During the
actual computations, it was found that among the six dynamic parameters in the algorithm
formula proposed in Section 3.2, the two parameters of crowd-frequency, GroupRate, and
Frequency, exhibit the greatest variability, followed by OPENNESS, which reflects the
operational status of adjacent buildings. Accessibilityauto and Accessfactor show minimal
changes between 8 a.m. and 8 p.m., while NEG experiences a slight increase in the evening.
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Although the operational status of buildings is an objective condition for urban public
spaces, it is ultimately influenced by the behavior of people within the buildings. Therefore,
in terms of the time dimension, the changes in urban public space vitality are fundamentally
based on the variations in resident behavior. Despite the complex nature of individual
behaviors, the frequency of space usage by different crowds and the overall space usage
frequency are predictable. Moreover, because frequency predictions can be adjusted based
on local cultural customs and lifestyle patterns in different countries and regions, this
forecasting method possesses universality.

Secondly, the outcomes of the new predictive model based on crowd frequency and
temporal dimensions exhibit a high degree of consistency with the overall trends of real-
world observations. Nevertheless, disparities persist in the level of alignment across
different locations, likely due to biased utilization of population data. The validation
process of the model used population data from the greater Adelaide area (2021) to estimate
pedestrian flow in the block of Rundle Mall (2023), essentially providing an average value
for the broader region while approximating specific values for smaller areas. Further
refinement and revision of population data may be necessary to address these disparities.

However, the Dynamic Prediction Framework Model developed in this study also has
limitations. Firstly, the analysis, discussion, and validation in this research only focused
on regular weekdays and weekends, overlooking significant holidays. Events such as
large-scale tourist groups, parades, and strikes were not taken into account. Additionally,
the algorithmic model is only applicable under ideal weather conditions (clear skies, mild
winds, and pleasant temperatures), while the impacts of extreme weather conditions such
as thunderstorms, hurricanes, and heatwaves on people in urban public spaces were not
considered. Furthermore, Adelaide, used for analysis, discussion, and validation, is not a
tourist city, and short-term travelers other than holiday travelers are rare on non-festival
holidays. For tourist destination cities, the active population body is no longer the local
permanent population but tourists. This leads to significant differences in crowd grouping,
requiring more refined dynamic data on population. The applicability of this dynamic
prediction model to predict urban vitality in public spaces in such tourist cities awaits
further validation.

Furthermore, a preliminary predictive algorithm generated by decision-tree model
offers designers predictions of urban vitality reference levels for design schemes. The
fundamental parameters required for inputting into the urban public space vitality dy-
namic prediction framework are crowd frequency (FC), physical environment (FB), arrival
situations (FA), and time conditions (period, weekdays/weekends). These input data
are straightforward and readily obtainable, offering a cost-effective and efficient means
to optimize design vitality and urban planning solutions, thereby reducing waste and
achieving sustainable high-vitality development. Although the current output results
serve as reference values and the definition of vitality levels is based on four days on-site
observations in Adelaide, in the future, as more data is collected from different areas and
dates, the algorithm can become more refined.

6. Conclusions

Firstly, this study demonstrates that the theory of the dynamic model is supported
by practical evidence. The vitality of urban public spaces is influenced by a combination
of physical environment, traffic conditions, and residents’ behavioral characteristics. The
hypotheses proposed regarding crowd-frequency have been validated. Among these
factors, the opening status of buildings adjacent to public spaces and the changing activity
frequency of different groups of people over time have the greatest impact on dynamic
vitality in the temporal dimension, exhibiting predictable patterns.

Secondly, the new predictive method and framework model, is entirely independent of
whether the projects have been completed or not. Additionally, the dynamic model shows
higher accuracy in its results than traditional static models. It can help prevent phenomena
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such as “ghost streets” during specific periods and promotes sustainable development in
urban areas.

Additionally, a preliminary prediction program, proposed based on a decision tree
model, can utilize foundational parameters set by the predictive model to predict high-
medium-low reference levels of urban vitality. When applied in other countries and regions,
critical interpretations of high-medium-low vitality levels should be made based on the
differences in local culture and lifestyle compared to Australia.

In future research, authors will further explore classifying crowds in different types of
urban areas to investigate the applicability of the dynamic prediction framework model.
This may involve examining various urban environments, such as suburban housing neigh-
borhoods and tourist towns, as well as other areas with unique functions or characteristics.
Additionally, more social behavioral studies may be conducted to gain deeper insights into
how people interact with urban environments and contribute to research on urban vitality.
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