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Abstract: Land subsidence is a major issue in the Beijing Plain in China, caused by the construction
of new buildings and infrastructure combined with groundwater extraction. This study employs a
multi-level two-dimensional wavelet decomposition to decompose land subsidence into high- and
low-frequency components, and Moran’s I index to analyze the spatial distribution of land subsidence
and its main influencing factors. By comparing the spatial distributions of the high- and low-frequency
components, we estimate the correlation between land subsidence and influencing factors at different
scales. Utilizing a combination of wavelet decomposition and Moran’s I analysis, our study establishes
a clear spatial correlation between continuously varying factors such as groundwater and clay layer
thickness, and the low-frequency components of land subsidence, allowing for a focused analysis
of the relationship between surface building density and the high-frequency components of land
subsidence. Quantitatively, the study identifies a significant correlation at specific granularities,
particularly at 480 m and 960 m, underscoring the nuanced interaction between urban development
and land subsidence patterns. These insights into the spatial distribution of land subsidence and its
contributing factors can inform the development of effective strategies to address this issue.

Keywords: land subsidence; wavelet transform; spatial autocorrelation; surface building density;
groundwater

1. Introduction

Land subsidence is a geologic process that occurs when the ground surface gradually
lowers due to natural or man-made causes [1]. As the process is complex and nonlinear, the
results are unpredictable and can vary greatly from one location to another [2]. The effects of
subsidence can be far-reaching and include changes in the landscape, disruption of surface
water drainage, and destruction of buildings and infrastructure. It can be caused by natural
factors such as soil compaction, tectonic movements, dissolution processes, and subsurface
water removal, or by human activities such as mining and construction [3–8]. The impacts
and extents of the various contributing elements can vary significantly from one geological
setting to the next and can have a significant impact on the overall scale of the process. It is
an intricate and gradual process that must be understood thoroughly to accurately assess
its potential consequences. With the acceleration of urbanization, surface building load
has become an important factor that can induce land subsidence [9,10]. To ascertain the
connection between the surface construction burden and land subsidence, it is necessary to
examine their spatial distributions and evaluate their correlation at varying scales.

Scale involves spatial scale and temporal scale. Spatial scale refers to the unit of space
used in the study of an object or phenomenon and the spatial scope of a phenomenon or
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process [11]. Spatial scales in geography can be represented by granularity and magnitude.
Granularity is the smallest distinguishable element in a geospatial environment. Magnitude
refers to the range of objects in space [12]. Because of the strong spatial heterogeneity in
the spatial distribution of both the surface building load and the land subsidence rate, the
spatial characteristics of these two, as well as their correlation, exist in different scales. As
urbanization intensifies, the influence of surface buildings on land subsidence becomes
increasingly prominent, making it imperative to assess their impact through varied spatial
lenses. This approach is essential for comprehending the full scope and impact of land
subsidence in diverse geological and urban environments.

Wavelet analysis is a multi-scale analytical method known as a mathematical micro-
scope [13]. Wavelet analysis is mainly used in signal denoising and information feature
extraction. In recent years, wavelet analysis has been widely applied in the fields of pho-
togrammetry and remote sensing, deformation observation data analysis, and seismic
signal analysis, and satisfactory results have been obtained [14]. It is necessary to under-
stand the spatial distribution characteristics of surface building load and land subsidence
when using wavelet multistage decomposition. Moran’s I index measures the correlation
of elements between adjacent positions in space, known as spatial autocorrelation [15,16].

The Beijing Plain area is currently grappling with a critical issue of land subsidence,
posing a significant risk to the stability and safety of buildings and infrastructure in the
region. Recognizing this threat, the Chinese government has initiated actions to curb
groundwater extraction, a key factor contributing to this problem. However, to mitigate
further subsidence effectively, additional strategies are required. In the context of Beijing, it
has been identified that the primary factors influencing land subsidence are the thickness of
compressible deposits and groundwater levels, highlighting the critical need for integrated
management of geological conditions and water resources [17]. The rapid urbanization of
Beijing, marked by extensive construction of new buildings, especially in the Tongzhou
District where land subsidence is notably severe, has greatly exacerbated this environmental
challenge [18]. This has caused the ground to become compressed and has led to land
subsidence. The increase in building construction in Beijing’s central region has led to a
high building density, while the eastern regions of Chaoyang and Tongzhou experience a
high rate of land subsidence. Building density is becoming a significant factor contributing
to land subsidence.

1.1. Studies Analyzing Characteristics of Land Subsidence

Currently, point-based geodetic methods, such as geoid surveys and global navigation
satellite systems, are commonly used for monitoring urban surface deformation, but these
methods suffer from low spatial resolution and high cost. In contrast, the Persistent Scat-
terers Interferometric Synthetic Aperture Radar (PSInSAR) technique has been developed
to attenuate incoherence due to long spacetime baselines and mitigate atmospheric and
topographic effects on the difference, thereby improving the accuracy of InSAR monitor-
ing [19]. Many studies have demonstrated the applicability and reliability of PSInSAR
techniques in vegetation cover areas and urban surface deformation monitoring. Nearly
300 high-resolution COSMO-SkyMed StripMap HIMAGE scenes were utilized to monitor
the long-term subsidence process in Wuhan, proving the benefits of nonlinear PSInSAR in
analyzing the temporal evolution of land subsidence in dynamic and expanding cities like
Wuhan [20]. Gonnuru et al. used advanced the PSInSAR technique to estimate land subsi-
dence due to oil extraction in the Burgan oil field in Kuwait, and found a total subsidence
of 10 mm/year and an average of 25–30 mm per 3 years, demonstrating the potential of
PSInSAR for subsidence mapping in oil extraction areas [21]. As we can conclude, PSInSAR
has emerged as a primary method for monitoring large-scale land subsidence, demon-
strating its effectiveness in various contexts, from urban surface deformation to vegetation
cover areas and oil extraction fields, and overcoming the limitations of traditional geodetic
methods in terms of spatial resolution and cost.
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Existing research has primarily focused on the impact of urban expansion on land sub-
sidence, with a particular emphasis on factors such as groundwater extraction and surface
load conditions. This work includes global studies conducted in regions like China, Mexico,
Spain, and the United States, revealing the significant role of these factors in inducing land
subsidence. Numerous studies have shown that over-extraction of groundwater and the
geological conditions are important driving factors for land subsidence in many parts of
the world [22]. In parts of China, Mexico, and the United States, extensive groundwater
pumping for agriculture, industry, and urban water supplies has caused widespread land
subsidence. Budihardjo et al. extended the knowledge of footing subsidence causing by
groundwater pumping by considering various well and load conditions [23]. Zhou et al.
investigated the land subsidence in the Beijing Plain over the period of 2003–2015 and
discussed the relation between groundwater pumping and land subsidence [17]. Yu et al.
proposed a relationship for the physics and mechanics constants of porous media related
to water storage rate and ground settlement under a surface load variation condition [24].
Chen et al. investigated the spatial and temporal dynamics of land subsidence in the
Beijing Plain and revealed the relationship between subsidence and the groundwater level
drops in the main exploration aquifer layers were relatively high [25]. The evolutionary
characteristics of land subsidence and rebound in Xi’an from 2007 to 2019 was investigated,
and their cause and the correlation with groundwater level changes and the underground
space utilization were discussed [26].

Studies have investigated various factors, both at the macro and micro scales, leading
to land subsidence in rapidly urbanizing areas. These factors include urban expansion
and the construction of large buildings, as well as smaller-scale factors such as changes in
ground building volume. By identifying the causes of land subsidence, researchers can
better understand the mechanisms driving this phenomenon and develop strategies to
mitigate its impact. Wu et al. showed that the land deformation suffered two periods (from
2015 to 2017 and from 2017 to 2019) and expanded from urban centers to surrounding
resettlement areas, which are highly relevant with the urban earthwork process [27]. Based
on the principle of a strategic environmental assessment (SEA) for sustainable urban devel-
opment, Xu et al. presented a discussion and analysis of the factors which can influence the
development of land subsidence during continued urbanization in Shanghai [28]. However,
the impact of building volume on land subsidence remained stable once the volume of
buildings became larger than 3.00 × 105 m3. Jiao et al. used advanced technologies like
PSInSAR and SAR tomography for monitoring land subsidence and building height esti-
mation in rapidly urbanizing areas, showing that the correlation between building volumes
and land subsidence increased as the volume of buildings increased [9].

In conclusion, while PSInSAR has emerged as a key tool in the broad-scale detection of
land subsidence, it has also facilitated the understanding of its main causes, including the
often-overlooked yet significant role of surface construction. The growing body of research
underscores the need to integrate the effects of urban development and building density
into the assessment and mitigation strategies for land subsidence, recognizing them as
integral factors in the urban geologic dynamic.

1.2. Studies on the Relationship between Surface Buildings and Land Subsidence

Building on the insights from the previous sections, it becomes evident that surface
buildings are an influential factor in land subsidence that cannot be overlooked. Recent
studies on the relationship between surface buildings and land subsidence offer diverse
perspectives. Wang et al. (2018) explored the impact of building load in Beijing, using
Floor Area Ratio to reflect this load, and found a notable correlation with land subsidence,
particularly in areas with high building concentration [10]. Cui et al. focused on land
subsidence due to high-rise buildings in soft soil areas like Shanghai and Tianjin and
highlighted the significant effects of building load [29]. Xu et al. reviewed the effects of
urbanization on land subsidence in Shanghai, addressing factors including construction
activities and groundwater level changes that relate to building density [30]. Li et al.
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proposed a model integrating the effects of high-rise building load and groundwater
withdrawal, recognizing the complex and nonlinear nature of their interaction on land
subsidence [31].

The cumulative research on surface buildings and their impact on land subsidence
establishes that building load indeed influences ground subsidence. Previous studies have
primarily analyzed this relationship from the perspective of building load, focusing on the
weight and structural impact of buildings. However, building density offers a different yet
equally important angle. It reflects the concentration or clustering of buildings in an area
which can create an equivalent load effect. This concentration can influence subsidence
patterns, possibly in ways distinct from the impact of individual building loads.

1.3. Studies on Multi-Scale Geoprocessing Analyses Using Wavelet Transform

Wavelet transform allows for the decomposition of a signal or image into multiple
scales or frequency bands, which enables the extraction of both low-frequency and high-
frequency information. This makes it particularly useful for analyzing complex geospatial
data that may contain information at different spatial or temporal scales. Based on the
characteristics of geoprocessing, the two components can be considered as noise and
eliminated to enhance the image or improve the geoprocessing analysis.

Haze is distributed in the lower frequency layer of wavelet transform, which is a noise
to be eliminated [32]. He et al. applied wavelet denoising to remove the high-frequency
component in forest resource management and monitoring to improve the accuracy of forest
classification [33]. Mirghasemi et al. introduced a Particle Swarm Optimization (PSO)-based
feature enhancement approach in the wavelet domain for noisy image segmentation [34].
Wavelet transform is used to abstract the information from both the high- and low-frequency
components in remote sensing image fusion [35].

Wavelet transform has been successfully used in various fields, including forest re-
source management, image segmentation, and remote sensing image fusion, by removing
noise and enhancing features in different frequency layers. This capability of wavelet
transform can also be applied to land subsidence analysis for abstracting information
from both high- and low-frequency components. Miller et al. employed multitemporal
synthetic aperture radar data sets acquired by European Remote-Sensing Satellites (ERSs)
and Envisat satellites to investigate ground deformation and used continuous wavelet
transform to decompose time-series land subsidence, proving the capability of wavelet
transform in comparing the short-term signal components of hydraulic head and vertical
land subsidence [36]. Ikuemonisan et al. studied Sentinel-1-derived land subsidence using
wavelet tools and a triple exponential smoothing algorithm in Lagos, Nigeria [37].

In summary, there is a predominant focus on groundwater extraction and geological
changes, with a notable oversight of the impacts of urban construction and building density.
This gap is addressed in our study through a comprehensive analysis of the spatial distribu-
tion and interrelation between surface building load and land subsidence. Furthermore, we
extend the scope beyond traditional macro-scale analyses by employing wavelet analysis,
allowing for a nuanced examination of land subsidence impacts across varied spatial scales.
In addition, our research integrates the critical aspects of rapid urbanization and extensive
construction, factors that have been previously underrepresented in land subsidence as-
sessments. Through this approach, our study offers a more holistic understanding of urban
geological dynamics, addressing these identified gaps and contributing to a more effective
and comprehensive approach to land subsidence evaluation and management.

To address this gap, our method introduces a novel approach. We first use PSInSAR
technology to collect comprehensive land subsidence data. Then, through wavelet decom-
position, we separate the high- and low-frequency components of these data, identifying
the high-frequency component as noise and focusing on the more relevant low-frequency
component for in-depth analysis.

Subsequently, we apply Moran’s I analysis to explore the spatial distribution charac-
teristics of the high- and low-frequency components of land subsidence, as well as those
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of groundwater, clay layers, and surface building density. This enables us to discern and
differentiate the impacts of each factor. Specifically, our method allows us to isolate the
influences of groundwater and clay layer thickness, thereby clarifying the relationship
between surface building density and land subsidence.

By implementing this approach, we provide a more nuanced understanding of the
various factors contributing to land subsidence, especially highlighting the role of urban
construction. This comprehensive analysis offers valuable insights for urban planning and
environmental management, particularly in densely built-up areas.

2. Materials and Methods

In this study, the Beijing Plain was identified as the primary area of focus, with its geo-
graphical, hydrogeological, and urban characteristics comprehensively outlined to provide
a robust basis for analysis. PSInSAR technology was utilized to acquire InSAR imagery
from various temporal periods, selected to effectively capture the dynamic progression
of land subsidence over time. The resolution of these images was meticulously chosen to
ensure both the precision and depth of the subsidence analysis. The Moran’s I index was
applied to examine the spatial distribution of critical factors affecting land subsidence, such
as groundwater levels, clay layer thickness, and urban infrastructure density. This step
was succeeded by the acquisition of SAR data to integrate the extensive hydrogeological
conditions of the Beijing Plain. Through wavelet decomposition, the land subsidence
data were segmented into high-frequency and low-frequency components, facilitating
a nuanced exploration of their correlations with groundwater, clay layer thickness, and
building density. This methodological approach not only segregated the impacts of these
variables but also enabled a comprehensive evaluation of urban infrastructure’s effect on
land subsidence, as depicted in the main flow chart (Figure 1).

Figure 1. Main flow chart of proposed method.

2.1. Description of the Beijing Plain

Beijing is a huge metropolitan area as the political and cultural center of China, the
population of which has been up to 20 million [38]. Most people live in southeast of Beijing
in the Beijing Plain. Beijing’s plain area is composed of water-bearing alluvial–pluvial and
river channel deposits overlying bedrock. Tertiary and older sedimentary and volcanic
rock units underlie quaternary sediments and form the lateral and basal boundaries of the
aquifer system.
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The shortage of water supply is a key issue for the city as groundwater extraction
accounts for 2/3 of the total supply. The water consumption has been increasing to
satisfy the requirement of the urban development, resulting in the overexploitation of
groundwater. Since 1990, the relatively stable groundwater pumping rate has been about
2.5 × 109 m3/year [9]. The study by Chen et al. revealed a correlation between land subsi-
dence and groundwater levels, noting that the geographic distribution of land subsidence
often corresponds with areas of decreased groundwater, although not exclusively [18].

In recent decades, following the process of urbanization, the Chaoyang District has
become the economic center of Beijing and the Tongzhou District has become a sleep city
where there are residences. However, there is increasing land subsidence in this area,
especially at the jointure of the Chaoyang and Tongzhou Districts, which is a high risk for
urban security and will affect the common life of residences there. As shown in Figure 2,
the study site was located in a rectangular range of the Beijing Plain, including the entirety
of Xicheng and Dongcheng, and parts of Changping, Chaoyang, Shunyi, Tongzhou, Daxing.

Figure 2. Overview of the study area within the Beijing Plain. In the top left corner (a), a map of The
People’s Republic of China is provided for context, with the Beijing municipality highlighted (b).
The central, larger map zooms into the Beijing municipality, within which the Beijing Plain area is
delineated by an orange line. Within the Beijing Plain, the specific study area is further demarcated
by a pink square, indicating the precise location of our research focus.

2.2. SAR Data Sets

The InSAR data used in this paper include Envisat ASAR data (2003.06.18~2010.09.19),
Radarsat-2 data (2010.11.22~2016.10.21), and Radarsat-2 data (2017.01.25~2020.01.10), de-
tailed in Table 1. Among them, the Envisat satellite, launched by the European Space
Agency on 1 March 2002, carries the synthetic aperture radar system ASAR, which sup-
ports around-the-clock operations and is widely used in the oceans, on the ground, and
elsewhere. The SAR commercial satellite Radarsat-2 was launched on 14 December 2007
and can meet monitoring needs in the areas of oceans, the environment, disasters, sea ice,
and others.
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Table 1. Acquisition parameters of SAR data sets.

SAR Sensor Envisat ASAR Radarsat-2 Radarsat-2

Band C C C
Wavelength (cm) 5.6 5.6 5.6

Polarization VV VV VV
Orbit direction Descending Descending Descending

Spatial resolution (m) 30 30 30
Incidence angle (◦) 22.8 33.9 22.5
Number of images 55 37 43
Temporal coverage 2003.06.18–2010.09.19 2010.11.22–2016.10.21 2017.01.25–2020.01.10

2.3. Hydrogeological Data

To investigate the primary factors influencing land subsidence, this study compiled
key data elements. These included the water table elevations of the second confined aquifer
for the years 2007 and 2013, as presented in Figure 3a,b, and the water table elevations of
the third confined aquifer for the same years, illustrated in Figure 3c,d. Additionally, data
on the thickness of compressible clay from the year 2005, sourced from earlier research, are
shown in Figure 3e. By integrating these data sets, our study aims to offer a comprehensive
analysis of the spatial distribution of key factors contributing to land subsidence. This
multidisciplinary approach allows us to not only identify the primary drivers of subsidence,
but also to understand their spatial heterogeneity across the study area. Furthermore, to
estimate the impact of land subsidence considering the impact of building density, we
collected the building footprint of the Beijing Plain to calculate the density of buildings.
All potential factors of hazard indicators were drawn and interpolated to raster format in
ArcMAP (Figure 3f).

The Beijing Plain is traversed by multiple active high-angle faults (Figure 4). Among
them, the Nankou–Sunhe Fault is the largest northwest-oriented fault in Beijing, exhibiting
both stick-slip and creep characteristics. The Huangzhuang–Gaoliying Fault, Liangxiang–
Shunyi Fault, and Nanyuan–Tongxian Fault are southwest–northeast-oriented faults. The
Huangzhuang–Gaoliying Fault is the largest northeast-oriented fault in Beijing and is
characterized by significant segmented activity. Moreover, the Beijing Plain’s stratigraphy
exhibits a clear division in terms of the quaternary sedimentary characteristics, crucial for
understanding its hydrogeological and soil properties shown in Figure 5 [39]. The first
stratigraphic division comprises the Holocene (Q4) and Upper Pleistocene (Q3) layers. The
aquifer within this division includes an unconfined and a shallow confined aquifer, with
depths of approximately 25 m for Holocene deposits and 80 to 120 m for Upper Pleistocene
deposits. The corresponding soil layer, prevalent across the Beijing Plain, is composed of
Upper Pleistocene alluvial facies, alluvial silt, and cohesive soil, with depths not exceeding
100 m. In the second division, characterized by the Middle Pleistocene (Q2) strata, the
aquifer displays a multi-layered structure, primarily consisting of medium-coarse sand and
gravel and extending to a depth of about 300 m. The associated soil layer, predominantly
located in the middle and lower parts of the Plain, includes Middle Pleistocene alluvial and
lacustrine facies, silt, silty clay, and clay, with a maximum depth of 300 m. The third division
aligns with the Lower Pleistocene (Q1) epoch, featuring a deep aquifer system primarily
composed of medium-coarse sand and gravel situated above the basement rocks. The soil
layer in this division, primarily found in central major sedimentary depressions, consists of
Lower Pleistocene alluvial and lacustrine facies, silty clay, and clay, with a depth exceeding
300 m. This delineation of aquifers and soil profiles in the Beijing Plain provides a detailed
framework for geological and hydrological analyses, highlighting the complex relationship
between different sedimentary epochs and the subsurface hydrodynamic processes.
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Figure 3. Overview of land subsidence-influencing factors: (a–e) sequentially display the significant
factors contributing to land subsidence before highlighting urban infrastructure in (f). Specifically,
(a) maps the thickness of compressible clay layers, illustrating temporal thickness variations.
(b,c) focus on the second confined aquifer’s characteristics for 2007 and 2013, depicting alterations in
aquifer dynamics. (d,e) address the state of the third confined aquifer in the same years, offering an
analysis of groundwater influence on subsidence. To conclude, (f) delineates the building footprint,
indicating urban infrastructure’s spatial distribution. The arrangement and captioning of these figures
aim to clarify the multifaceted causes of land subsidence, enhancing the reader’s ability to observe
and comprehend the underlying factors.
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Figure 4. Location of hydrogeologic cross-section of Beijing alluvial–proluvial fan and faults.

Figure 5. Hydrogeologic cross-section of Beijing alluvial–proluvial fan along the north to south A–A1
(the location is shown in Figure 4 and is adapted from [39]).
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2.4. Persistent Scatterers Interferometry (PSI)

For long-term land subsidence monitoring we used two different image subsets,
Envisat ASAR and Radarsat-2, by applying PSInSAR technology.

PSInSAR is proposed to effectively reduce the impact of spatial–temporal decoherence
and the atmosphere delay on land subsidence monitoring. In the single master PSInSAR
process, a master image should be selected as the first step and all the other images (K
images) are coregistered to the master image. After the interference process, K interfero-
grams are created. According to the coherence of each pixel of interferograms, permanent
scatterers are selected for further analysis. Settlement can be estimated by the differential
interference mode [40]. The equation is shown below (Equation (1))

ϕx,i = ϕde f ,x,i + ϕa,x,i + ϕorb,x,i + ϕε,x,i + nx,i (1)

where ϕx,i denotes the phase of x pixel in the i interferogram, ϕde f ,x,i denotes the deforma-
tion phase along the sight of the radar, ϕa,x,i denotes the phase caused by the atmosphere
effect, ϕorb,x,i denotes the phase caused by the orbit error, ϕε,x,i denotes the phase caused by
the Digital Elevation Model (DEM) error, and nx,i denotes the random noise.

In this paper, a PSInSAR-based method was used to process Envisat ASAR and
Radarsat-2 data by GAMMA software (GAMMA 2017) to obtain line-of-sight land subsi-
dence. Using ArcGIS software (ArcGIS Pro 3.0), the line-of-sight rate was converted to a
vertical rate. Finally, the continuous surface deformation information of the Beijing Plain
from 2003 to 2020 was obtained by a time series fusion method, which mainly includes
subsidence rates and cumulative subsidence.

2.5. Space Heterogeneity, Space Autocorrelation, and Moran’s I

Spatial heterogeneity refers to spatial data distribution characteristics due to spatial
location. The positive correlation above space means that the closer the spatial distribution
position (distance) is, the more obvious the correlation between spatial data becomes.
Negative correlation in space means that the more discrete the spatial distribution location,
the more significant the spatial data correlation becomes. To analyze the correlation between
building density and land subsidence, the distribution characteristics of building density
space should be explored. The spatial autocorrelation is the main measure of spatial
distribution characteristics of geographical elements. The spatial autocorrelation is divided
into global spatial autocorrelation and local spatial autocorrelation.

The global autocorrelation analysis is usually used to study the spatial autocorrelation
of building density throughout the region. The common measure is global Moran’s I
(Equation (2)), which is calculated as follows:

I =
N
W

∑ i∑ jwij(xi − x)
(
xj − x

)
∑ i(xi − x)2 (2)

where N is the number of space units, x is the sentient variable, x is the mean of x, wij is
the spatial weight matrix, and W is the sum of all wij.

Common weight matrices are adjacency weight matrices, distance weight matrices,
and K-nearest weight matrices. In this paper, the local spatial characteristics of the building
density of each basic unit were analyzed by taking the street office of the smallest adminis-
trative unit in Beijing as the basic unit. Distance weight matrix or adjacency weight matrix
is often used to calculate the local Moran’s I index of surface data. Because the area of
Beijing administrative units is different, the adoption of a distance weighting matrix would
lead to the phenomenon of an “isolated island” or the number of neighbors, so this paper
adopts the adjacency weighting matrix method.

2.6. Wavelet Transform Principles

Wavelet transform has unique advantages in processing non-stationary sequence data.
Wavelet variation is a new time–frequency analysis method based on the Fourier transform
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proposed by Morlet et al. Since 1990, wavelet transform has been widely used in denoising
and signal reconstruction.

The basic idea of wavelet transform is to approach a signal or function using a wavelet
function. The multiresolution of wavelet transform can be used to effectively separate the
components of different frequencies in the signal, and then reconstruct the signal with the
wavelet coefficients [41] to obtain valuable information. The wavelet function (Equation (3))
is defined as:

hab(t) = |a|1/2h
(

t − b
a

)
(3)

Wavelet multiresolution analysis decomposes the processed signal at different resolu-
tion levels with positive cross transform. Signals that exist at the higher level and disappear
at the lower level are called detailed signals [42], that is, the high-frequency part of the
signal. Multiresolution analysis can be expressed as follows:

For any function, V0 can be broken down into the detail part W1 and the stable change
part V1. V1 can be further decomposed using the Mallat algorithm (Equations (4) and (5))
to break down signals into different frequency components:

Ad
j f = ∑kh(k − 2n)Ad

j+1 f (4)

AJ2 f (t) = ∑k∈zCJ2KhJ2K f (t) (5)

These wavelet decompositions can be written as:

Cj+1 = HCj (6)

Dj+1 = GCj (7)

When decomposed according to the Mallat algorithm, global and local information
of the signal can be distinguished [43]. Equations (6) and (7) are the Mallat Tower decom-
position algorithms, as shown in Figure 6. Starting with the initial signal C0, the process
iteratively bifurcates the signal into two distinct components at each level: a detail signal
D1 and an approximation signal C1. At each decomposition level, the detail signal Dj,
containing the local (high-frequency) information of the signal, is extracted by applying a
high-pass filter. Concurrently, the approximation signal Cj, representing the global (low-
frequency) information, is obtained through a low-pass filter. In the context of the Mallat
algorithm, these filtering processes are symbolized by the operations ‘G’ for smoothing and
‘D’ for detailing.

Figure 6. Wavelet multi-scale decomposition tower decomposition diagram.

According to the Mallat algorithm, signals can be broken down into low-frequency
and high-frequency segments.

To obtain the land subsidence information under different spatial granularities, the
land subsidence rate grid image was obtained by Kriging interpolation of the land sub-
sidence rate obtained by PSInSAR with the same spatial resolution as the ASAR image.
The low-frequency coefficient of land subsidence information, which is the macroscopic
area of Beijing land subsidence information, was obtained by decomposing the image
into a four-level two-dimensional wavelet. And the high-frequency coefficient of land
subsidence, which is the local detail characteristic of Beijing land subsidence, had low
spatial autocorrelation, that is, random spatial distribution.
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3. Results
3.1. Land Subsidence Rate

Based on 55 Scenario Envisat ASAR, 37 Scenario Radarsat-2 (2011–2016), and 43 Scenario
Radarsat-2 (2017–2020), as shown in Table 1, this paper used PSInSAR technology to
obtain information on vertical surface deformation (mean settlement rate, chronological
settlement) in the Beijing Plain in the 2003–2020 senior time series.

As shown in Figure 7, the spatial distribution of land subsidence rates in the Beijing
Plain is quite different and not uniform. Land subsidence centers are in Chaoyang and
Tongzhou in the east, and Changping and Shunyi in the northeast and north of the Beijing
Plain. The Dongbalizhuang–Dajiaoting subsidence center (DD) and the Chaoyang Jinzhan
subsidence center (CJ) are notable for their extensive history of subsidence, whereas the
Changping subsidence center (CP) and the Shunyi subsidence center (SY) have seen a
more gradual emergence of subsidence phenomena in recent years. Analyzing subsidence
rates across different intervals, the maximum annual average subsidence rates recorded
were 137 mm/year for 2003–2010, 161 mm/year for the shorter interval of 2010–2016, and
135 mm/year for 2017–2020 (Figure 7a–c). The apparent peak in subsidence rates during
the 2010–2016 period must be interpreted with caution, given the shorter duration of this
interval compared to the others. Notwithstanding, a notable trend of subsidence severity
is observed during this time, with an indication of subsidence reduction from 2017 to
2020. Integrating these observations over the extended timeline from 2003 to 2020 through
time series fusion reveals a long-term subsidence rate, with the highest annual average of
139 mm/year identified at the Dongbalizhuang–Dajiaoting subsidence center (DD) in the
Chaoyang District (Figure 7d).

Figure 7. Land subsidence rates monitored by PSInSAR. (a) Average deformation rates for the period
2003–2010; (b) average deformation rates for the period 2010–2016; (c) average deformation rates for
the period 2017–2020; (d) average deformation rates for the period 2003–2020.
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3.2. Time Series Fusion of Land Subsidence from Envisat ASAR and Radarsat-2

In this paper, 931,543 PS points were identified by a recent neighborhood method as
eponymous sites for Envisat ASAR and Radarsat-2. The mean annual subsidence rates
of InSAR monitoring in the Beijing Plain from 2003 to 2010, 2010 to 2016, and 2017 to
2020 were compared (Figure 8). As shown in the graph, the average annual deformation
rate over different time periods has a high correlation. Envisat ASAR and Radarsat-2 had
an R2 of 0.82, and Radarsat-2 (2011–2015) and Radarsat-2 (2017–2020) had an R2 of 0.74,
respectively. It is worth noting that compared to 2003–2010, about 92.2% of PS points
settled in 2010–2016 (in Figure 8a below x = y line), and about 86.1% of PS points settled in
2017–2020 compared to 2011–2016 (in Figure 8b above x = y line). This indicates that the
land subsidence increased significantly in 2010–2016 and decreased markedly in 2017–2020
during the three monitoring periods.

Figure 8. Comparison of average land subsidence rate monitoring between the 2003–2010, 2010–2016,
and 2017–2020 time frames. (a) Comparison results between the 2003–2010 and 2010–2016 time
frames; (b) comparison of monitoring results between the 2010–2016 and 2017–2020 time frames.

3.3. Land Subsidence Accuracy Verification

To validate the accuracy of PSInSAR and time series fusion processing results, we
selected 6 leveling points from 2005 to 2013 and 11 leveling points from 2015 to 2016 to
validate the accuracy of PSInSAR monitoring and time series fusion results. We compared
the results of all PS points within 100 m of the level points with the mean values of all
PS points within 100 m of the level points. The results showed a margin of error of 0.23
to 14.20 mm/year for both types of monitoring results for 2005–2013. In 2015–2016, the
margin of error for both monitoring results was 0.89 to 12.39 mm/year. By correlation
analysis, the linear regression correlation coefficients R2 were 0.94 and 0.95, respectively,
and the root mean square errors (RMSEs) were 7.9 mm/year and 7.3 mm/year, respectively
(Figure 9). The result of PSInSAR monitoring is more accurate and the accuracy meets
the requirement. From the time trend, the amount of land subsidence obtained by the
two monitoring methods had the same trend and indicated that the cumulative amount
of land subsidence is increasing. However, the metamorphosis sequences monitored by
PSInSAR have distinct nonlinear characteristics and more detailed information than those
monitored at lower levels of the time spectrum (Figure 9b,c). The difference between the
two monitoring results is mainly due to temporal and spatial differences in monitoring
data and errors in level monitoring and PSInSAR monitoring.
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Figure 9. Comparison of PSInSAR monitoring results with leveling measurements: (a) mean settle-
ment rates; (b,c) time series sedimentation comparisons.

3.4. Wavelet Decomposition of Land Subsidence

In this study, we employed the Kriging interpolation method to estimate land subsi-
dence values at unmeasured locations. Kriging is a geostatistical interpolation technique
that takes into account the spatial correlation between measured data points to generate
a continuous surface representation. Figure 10 shows the interpolated map of land subsi-
dence across the study area. The color gradient represents the magnitude of subsidence,
with warmer colors indicating higher subsidence rates. The interpolated results provide
a visual representation of the spatial patterns and variations in land subsidence, helping
identify areas of interest. To evaluate the accuracy of the interpolation, a cross-validation
analysis was performed. The mean error and root mean square error (RMSE) were calcu-
lated to assess the performance of the interpolation model [44]. The results indicate that
the interpolation method provides reasonably accurate estimates of land subsidence, with
low mean errors and RMSE values.

Figure 10. Land subsidence rate interpolation (warmer colors indicating higher subsidence rates).
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The interpolated land subsidence data served as the input for the subsequent wavelet
decomposition analysis, enabling a multi-level analysis of subsidence patterns at different
scales. This integration allowed for a more detailed examination of localized subsidence
features and their relationship with other factors of interest.

Wavelet decomposition was performed on the land subsidence data to analyze the
variations and patterns at different scales. This technique allows for a detailed examination
of localized features and provides valuable insights into the underlying dynamics of
land subsidence. The land subsidence data were decomposed using the discrete wavelet
transform (DWT) technique. The DWT breaks down the 2D signal into different frequency
components, capturing variations at different scales. Figure 11 illustrates the wavelet
decomposition results, showing the subsidence coefficients. The decomposition coefficients
represent the magnitude and spatial distribution of subsidence patterns. High-frequency
coefficients correspond to localized subsidence features, while low-frequency coefficients
capture broader-scale trends. The wavelet decomposition results were further integrated
with other factors, such as building density, groundwater levels, and clay thickness. This
integration helps identify potential correlations and interactions between land subsidence
and these influencing factors.

Figure 11. Wavelet decomposition of land subsidence. (a) Low-frequency land subsidence rate;
(b) horizonal high-frequency land subsidence rate; (c) vertical high-frequency land subsidence rate;
(d) diagonal high-frequency land subsidence rate.

3.5. Spatial Distribution of Groundwater, Compressible Clay, and Ground Building Density of
Different Scales

To analyze the spatial distribution characteristics of the main factors affecting land
subsidence, the spatial autocorrelation of the main factors influencing the spatial stability
of the second and third confined aquifers and the thickness of the compressible clay was
adopted in this paper to reflect the spatial distribution characteristics of each element [45].

As shown in Figure 12a,b, both the second and third confined aquifers showed stable
spatial variability within the study area, and Moran’s I values in both the second and third
confined aquifers were greater than 0.9, showing a high spatial autocorrelation, indicating
a more moderate spatial variability in the confined aquifers.

The spatial distribution of the compressible clay is shown in Figure 12c. The spatial
variation of the thickness of the clay was stable in the study area. The Moran’s I value of
the thickness of the clay was 0.98 and showed a higher spatial autocorrelation, indicating
that the thickness of the compressible clay also changed more smoothly in space.
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Figure 12. Distribution of confined aquifers and compressible clay. (a) The spatial distribution of the
secondary confined aquifer; (b) the spatial distribution of the third confined aquifer; (c) thickness of
compressible clay.

Fishnet grids of 30 × 30 m2, 60 × 60 m2, 120 × 120 m2, 240 × 240 m2, 480 × 480 m2,
and 960 × 960 m2 were generated to calculate the floor area within the grid and calculate
the building density. The global Moran’s I index, which calculates building density at
different granularities, decreased with increasing granularity, as shown in Table 2, and
fell below 0.1 when the cell size was 240 m and 960 m. It shows that the spatial autocor-
relation of building density decreases gradually, and its distribution is more and more
close to random distribution. The high-frequency part of the land subsidence and the
low-frequency part are obtained by multistage wavelet decomposition. The low-frequency
part of the land subsidence is a continuous change in space, showing a high degree of
spatial autocorrelation. The Moran’s I value is close to 1, while the high-frequency part
reflects the detailed features of the land subsidence, showing a degree of random distri-
bution in space, showing a low degree of spatial autocorrelation, and the Moran’s I value
is close to 0. Therefore, when the density of surface buildings is 240 m and 960 m, the
spatial distribution characteristic is the same as that of the high-frequency part of the land
subsidence. Therefore, in the analysis of the correlation between building density and
land subsidence, the high-frequency distribution characteristics of the spatial random land
subsidence and the building density were selected for the correlation analysis.
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Table 2. Moran’s I values for different granularity building densities.

Cell Size 30 m 60 m 120 m 240 m 480 m 960 m

Moran’s I 0.38 0.23 0.18 0.04 0.02 0.07

Figure 13 shows that the spatial distribution of building density did not show a clear
global spatial cluster pattern, but there was a more significant clustering phenomenon in
the small area, indicating that the spatial relationship between building density and factors
in the small area is stronger and more likely to influence land subsidence.

Figure 13. Spatial distribution of density concentration of surface buildings.

3.6. Relationship between Ground Building Density and Land Subsidence at Different Scales

Because the building density is insensitive to the variation of the amplitude, the spatial
distribution characteristic of the building density was selected as the calculation range
of the regional amplitude and includes five settlement centers in the northern part of the
Beijing Plain.

Generated fishnet grids of 30 × 30 m2, 60 × 60 m2, 120 × 120 m2, 240 × 240 m2,
480 × 480 m2, and 960 × 960 m2 were used to calculate the floor area within the grid
and calculate the building density. The global Moran’s I index, which calculates building
density at different granularities, decreases with increasing granularity, as shown in Table 2,
and falls below 0.1 when the granularity is 240 m and 960 m. It shows that the spatial
autocorrelation of the building density decreases gradually, and its distribution is more
and more close to random distribution. The high-frequency part of the land subsidence
and the low-frequency part are obtained by multistage wavelet decomposition. The low-
frequency part of the land subsidence is a continuous change in space, showing a high
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degree of spatial autocorrelation. The Moran’s I value is close to 1, while the high-frequency
part reflects the detailed features of the land subsidence, showing a degree of random
distribution in space, showing a low degree of spatial autocorrelation, and the Moran’s I
value is close to 0. Therefore, when the density of surface buildings is 240 m and 960 m,
the spatial distribution characteristic is the same as that of the high-frequency part of the
land subsidence. Therefore, in the analysis of the correlation between building density and
land subsidence, the high-frequency distribution characteristics of the spatial random land
subsidence and the building density were selected for the correlation analysis.

Considering the local clustering of surface building density, the correlation between
the high-frequency coefficient of land subsidence and building density was analyzed in the
range of > 0.5 degrees of surface building density clustering, and the correlation coefficient
was 0.29076 as shown in the table. With the increase in granularity, a more significant
correlation occurred at the fourth stage of decomposition (Table 3). It was shown that the
density of buildings is more likely to influence the land subsidence at this scale.

Table 3. Construction densities and subsidence correlation coefficients at different scales.

Cell Size 60 m 120 m 240 m 480 m 960 m

Correlation Coefficient 0.01359 0.01429 0.01231 0.29076 0.27125

The relationship between the main influencing factors and land subsidence is nonlinear.
Previous studies have mainly selected typical research objects in small areas for analysis,
and it has been revealed that there is a certain correlation between the surface building load
and land subsidence in a particular area. In the area of the Beijing Plain, there is a significant
correlation between the water level of the second confined aquifer and the thickness of the
compressible clay and the land subsidence. In the analysis of the relationship between the
surface building load and the land subsidence, the expression of the correlation is easily
masked by the main influencing factors such as the thickness of the groundwater and the
compressible clay layer.

As can be seen from the results of the spatial distribution of groundwater and com-
pressible clay, Moran’s I values of the groundwater and compressible clay layers are both
greater than 0.9 at different granularities, and the spatial distribution shows a significant
spatial autocorrelation, with spatial distribution characteristics like those of low-frequency
parts of the land subsidence rate wavelet decomposition. According to the spatial distribu-
tion of the factors influencing the quality of the area, the correlation between the water level
of the second and third confined aquifers and the low-frequency part of the land subsidence
was 0.77 and 0.74. The correlation between the thickness of the compressible clay and the
land subsidence under different granularity was 0.71 and the fluctuation was not more
than 0.01, indicating that the correlation between the thickness of the compressible clay
and the high land subsidence was consistent with the results of previous studies in Beijing.
According to the Moran’s I values of the thickness of groundwater and compressible clay
and their high correlation with the low-frequency part of the land subsidence, the relation
between the thickness of groundwater and compressible clay and the low-frequency part
of the land subsidence is separated by wavelet decomposition.

Spatial Self-Correlation (SCOR), which shows the SCOR of buildings with low SCOR,
is usually stochastic in nature, such as in residential neighborhoods and commercial street
areas. The boundary size, combined with the SCOR of buildings with low SCOR, shows
that the SCOR of buildings with low SCOR is not consistent with SCOR.

4. Discussion

According to the analysis of the distribution of the main factors influencing land sub-
sidence, there is a strong correlation between key geological factors like groundwater and
compressible clay layer thickness, and the low-frequency components of land subsidence.
This relationship is further emphasized by the high spatial autocorrelation observed with
these geological features.
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The results of the study are supported by a robust spatial autocorrelation analysis
which used Moran’s I to demonstrate a significant correlation between the geological factors
and the low-frequency components of land subsidence. Specifically, both the second and
third confined aquifers exhibited high spatial autocorrelation, as indicated by Moran’s I
values greater than 0.9, suggesting a moderate spatial variability within these geological
features. Similarly, the compressible clay layer showed a stable spatial variation, with a
Moran’s I value of 0.98, indicating a smooth spatial change. This high degree of spatial
autocorrelation in the geological factors aligns closely with the low-frequency components
of land subsidence, highlighting their significant influence on the overall subsidence process.
Furthermore, it was found that the relationship between the main influencing factors and
land subsidence is nonlinear. The correlation between the water level of the second and
third confined aquifers and the low-frequency component of land subsidence was notably
strong, as was the correlation between the thickness of the compressible clay and land
subsidence. These findings are consistent with previous studies conducted in Beijing,
underscoring the importance of considering these geological factors in the analysis of
land subsidence.

In explaining the relationship between surface building density and land subsidence at
different scales, fishnet grids of varying sizes were utilized to calculate the building density.
The results showed a gradual decrease in spatial autocorrelation with increasing granularity,
indicating a shift towards a more random distribution. Notably, the high-frequency compo-
nents of land subsidence, which were obtained through multistage wavelet decomposition,
correlated well with the spatial randomness of building density, particularly at grid sizes of
240 m and 960 m. This suggests that in the context of building density and land subsidence,
it is the high-frequency distribution characteristics that are more relevant for correlation
analysis. These findings also revealed a unique trend at these scales. Particularly, at 480 m
granularity, the Moran’s I value for building density was 0.02, indicating an almost random
distribution of building density. Furthermore, the correlation coefficient between building
density and the high-frequency component of land subsidence at this scale was 0.29076,
which was the highest among all the granularities examined. This significant correlation
persisted with little variation at the 960 m granularity, suggesting a consistent relationship
between building density and land subsidence within the 480 m to 960 m granularity range.
For Beijing, a granularity range of 480 m to 960 m typically encompasses the area of a
residential community. This implies that within such neighborhoods, there is a notable
correlation between building density and land subsidence.

While some studies suggest that building density does not significantly influence land
subsidence, such as the research conducted by Yang and Ke [46], our analysis presents
a different perspective. Yang and Ke’s work, which concludes that land subsidence in
Beijing is primarily governed by hydrogeological factors rather than urban construction
aspects, contrasts with these findings. This research, which employed a multi-scale ap-
proach, revealed a nuanced correlation between building density and the high-frequency
components of land subsidence at specific scales, particularly noticeable in the 480 m to
960 m granularity range. This distinction in these results highlights the complexity and
scale-dependency of land subsidence, indicating that urban construction factors, including
building density, can have varying impacts depending on the scale of analysis. Therefore,
this study provides a new dimension in understanding land subsidence, emphasizing the
significance of analyzing urban development impacts at different spatial scales.

However, this analysis also encountered several uncertainties. Firstly, due to the
limited spatial scope of the data, wavelet decomposition was only feasible up to 960 m.
An attempt to extend the decomposition to 1920 m resulted in insufficient data quantity,
rendering the results of further analysis unreliable. Moreover, the trend of correlation be-
tween building density and land subsidence increased slightly from 30 m to 480 m and then
showed a minimal decrease at 960 m. Due to the inability to analyze further decomposition
stages, there is some uncertainty regarding the continuous trend of this correlation at ex-
tended stages. Additionally, it is crucial to acknowledge that land subsidence is a complex,
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nonlinear process influenced by multiple factors beyond just surface building construction.
Therefore, while the current analysis provides significant insights into the correlation be-
tween building density and the high-frequency components of land subsidence, a more
comprehensive investigation encompassing larger areas, such as the entire North China
Plain, is required. This region is known for its pronounced subsidence issues, making it
ideal for further study in this field of research. By extending this research to such a broader
geographical scope, further analysis can be conducted to study the influencing factors
in detail at even more granular levels, uncovering additional spatial characteristics. By
conducting such an expanded analysis, it would further define or determine the correlation
between land subsidence and surface building density, enhancing the understanding of the
dynamics and scale of this complex phenomenon.

5. Conclusions

This study employed a multi-level two-dimensional wavelet decomposition to ana-
lyze land subsidence’s spatial characteristics at various scales while providing a nuanced
understanding of its distribution across the study area. This method is instrumental as it
can be used for the identification of specific areas affected by subsidence, facilitate informed
decision making, and support mitigation efforts.

With the use of the global Moran’s I index analysis tool, spatial characteristics of
potential contributors like building density, groundwater, and clay thickness were examined
as they were integrated with land subsidence data, and key results were determined.
This comprehensive approach can aid in formulating effective strategies for subsidence
prevention and mitigation. The main findings include the following:

1. The utilization of two-dimensional wavelet decomposition offers localized insights
into land subsidence across different scales. When coupled with Moran’s I statistical
analysis, it provides a precise assessment of the discrete subsidence distribution in
the study area. This method provides a detailed and comprehensive evaluation of
local subsidence patterns.

2. Acknowledging the complexity of land subsidence, where influencing factors exhibit
nonlinear effects, the study investigated the correlation between surface building den-
sity and land subsidence in the northern Beijing Plain at different granularities. This
investigation revealed significant insights into the interactions between these factors.

3. An increasing correlation between building density and land subsidence was observed
with rising granularity, particularly at 480 m and 960 m particle sizes. This discovery
underscores the importance of granularity in understanding the dynamics between
surface building density and land subsidence.

In conclusion, this study illustrates the intricate nature of land subsidence and the
critical role of granularity in assessing the relationship between surface building density and
land subsidence. These insights offer valuable guidance for policymakers, engineers, and
researchers in developing strategies to mitigate the effects of land subsidence, ultimately
protecting communities and the environment from its impacts.
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