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Abstract: As multiple wind and solar photovoltaic farms are integrated into power systems, precise
scenario generation becomes challenging due to the interdependence of power generation and future
climate change. Future climate data derived from obsolete climate models, featuring diminished
accuracy, less-refined spatial resolution, and a limited range of climate scenarios compared to more
recent models, are still in use. In this paper, a morphing-based approach is proposed for generating
future scenarios, incorporating the interdependence of power generation among multiple wind and
photovoltaic farms using copula theory. The K-means method was employed for scenario generation.
The results of our study indicate that the average annual variations in dry-bulb temperature (DBT),
global horizontal irradiance (GHI), and wind speed (WS) are projected to increase by approximately
0.4 to 1.9 ◦C, 7.5 to 20.4 W/m2, and 0.3 to 1.7 m/s, respectively, in the forthcoming scenarios of the
four considered Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). It
seems that accumulated maximum wind electricity output (WEO) and solar electricity output (SEO)
will increase from 0.9% to 7.3% and 1.1% to 6.8%, respectively, in 2050.

Keywords: future scenario; weather morphing; climate change; cluster analysis; uncertainties

1. Introduction

The last few years have witnessed a swift expansion in renewable energy, with wind
and photovoltaic (PV) power emerging as highly promising sources and undergoing rapid
development [1–4]. Nevertheless, as the integration of renewable power grows, especially
with the escalating impact of global climate change, the inherent randomness of power
systems is on the rise. This scenario endangers the stability and dependability of power
grids that integrate wind and PV farms. Hence, performing stochastic power system
analysis is of great importance to ensure the safety and reliability of power systems.

Employing mathematical transformations, the morphing technique modifies exist-
ing weather conditions so that they conform to the anticipated parameters of a climate
variability context, as indicated by a general circulation model representing atmospheric,
oceanic, cryospheric, and land-surface physical processes [5]. Presupposing the perpetuity
of prevailing weather patterns in forthcoming periods, the morphing process preserves
indigenous climatic attributes through the metamorphosis of contemporary records. To
safeguard the precision of this methodology, it is imperative to synchronize the temporal
extent encompassed by contemporary records with the reference period for the envisaged
alterations [6]. Significantly, the morphing method minimizes the risk of developing poorly
designed power systems for specific locations, thus safeguarding a nation’s ability to
achieve its carbon neutrality targets [7].

In the face of uncertainties inherent in model predictions, worldwide and localized
climate simulations can furnish the requisite meteorological parameters for computations
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related to electricity generation in current as well as prospective scenarios [8]. This proven
methodology is optimal for assessing renewable energy resources and studying projections
of renewable energy in future scenarios. Nevertheless, only a limited number of studies
have examined the impact of climate change on renewable electricity production, with
even fewer utilizing the new CMIP6 data. Based on a pertinent evaluation conducted
by [9] within the context of the SSP5-8.5 framework, a 4% fluctuation in the mean annual
wind speed was observed. This alteration resulted in a diminished wind power capacity in
Northern China, accompanied by a corresponding augmentation of approximately 2% in
the southern region. An investigation into the ramifications of these emerging scenarios
for the interplay between wind power and solar photovoltaics (PV) in North America
revealed that SSP2-4.5 exhibits a marginal advantage in both wind and PV potential when
juxtaposed with SSP5-8.5 [10]. Delving into the realm of solar energy, we anticipate a
discernible shift in global solar PV potential, with fluctuations expected to fall within the
±10% spectrum. This forecast hinges on specific scenarios outlined in the SSP framework,
taking into account diverse regional influences. An exhaustive analysis has unequivocally
determined that the foreseen rise in cloud coverage is poised to curtail the availability of
solar radiation across the landscapes of Asia and Africa [11]. This aligns seamlessly with
empirical observations of diminishing solar exposure. Conversely, a surge in maximum
temperatures is poised to catalyze an amplification in solar PV output across the territories
of Europe and the eastern seaboard of America [12].

Furthermore, stochastic programming is emerging as a potentially powerful technique
for addressing uncertainties related to wind power. However, a key challenge in its
implementation lies in the selection of a well-weighted set of scenarios to effectively
represent the space of uncertainty. Typically, these methodologies involve fitting forecasted
wind power or forecast errors to specific distributions, and scenarios are subsequently
generated through the sampling of these derived distributions [13]. The forecast errors,
characterized using empirical distributions, are subjected to the inverse transformation
method to derive a comprehensive set of scenarios [14]. To enhance accuracy, a generalized
Gaussian mixture model was devised to fit forecast errors originating from a multitude
of wind farms, and the resulting distribution was then utilized to sample scenarios for
probabilistic wind ramp forecasting [15].

Extensively applied and recognized for its efficacy, the scenario generation method
plays a pivotal role in optimizing the operation of power systems involving stochastic
variables. By scrutinizing historical data linked to these unpredictable factors, this method
extrapolates archetypal scenarios. These representative scenarios form the basis for con-
ducting research on the optimal operation of a power system. Integral to this methodology
is the extraction of a discrete probability distribution closely mirroring the probability
distribution of the primary stochastic variable. This method’s effectiveness hinges on the
disparity level between the archetypal scenario and the original dataset.

An increasing number of studies have highlighted the importance of spatio-temporal
correlation in scenario generation. Typically, this correlation is represented through the use
of multivariate joint distributions. In numerous recent studies, the Multivariate Gaussian
distribution has been employed to capture correlations among wind power forecasts
made at different lead times [16]. However, modeling high-dimensional multivariate non-
Gaussian distributions can be challenging, and a commonly adopted approach involves the
use of copulas [17]. By applying marginal cumulative distribution functions to stochastic
variables, the original variables are transferred from their original space to a common
uniform domain. In this domain, correlations among the original variables can be further
characterized using copulas. The modeling of spatio-temporal correlations among clustered
wind farms using a copula approach has been used to develop a scenario generation
method [18].

Multiple renewable power plants are typically integrated, yet the potential impact
of climate change on future renewable electricity production is often underestimated in
contemporary power systems. Therefore, this paper puts forth an innovative method for
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generating future scenarios, taking into account the spatio-temporal correlations among
multiple renewable farms. Employing weather morphing, copula, and cluster analysis,
the innovative approach delineated herein begins by morphing the monthly alterations in
EC-Earth3 utilized within the CMIP6 project [19]. Subsequently, the generation of future
weather scenarios for each farm is carried out using C-vine copula methods. A k-means
method is then employed to cluster hourly profiles of weather data into reduced-number
clusters, and renewable power predictions are based on the most similar cluster using a
power generation model.

The remainder of this manuscript is structured as follows: Section 2 provides a com-
prehensive explanation of the newly developed morphing-based future scenario generation
method, encompassing cluster analysis and the copula method, elucidating the procedural
intricacies of the envisaged methodology for generating future scenarios. In Section 3, the
clustered scenario results detailing variations in wind speed, temperature, and incident
solar irradiance are presented, and then prognostications for the forthcoming power out-
put from wind and solar photovoltaic sources are delineated. In Section 4, it is revealed
that both morphing and scenario generation modeling approaches, along with K-means
clustering analysis of multiple scenarios, are deemed necessary to quantify the projected
range in the future. Lastly, Section 5 delves into the implications of the primary findings
and offers a summary of this study’s conclusions.

2. Materials and Methods
2.1. Weahter Morphing

Utilizing the EC-Earth3 general circulation models (GCMs), this methodology involves
the use of environmental variables to transform current local weather data into future
scenarios and timeframes. Notably, EC-Earth3 distinguishes itself from CMIP6 GCMs
by offering comprehensive data for all variables across the four shared socioeconomic
pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) as compared to alternative models.
Distinguished by heightened spatial precision, this model features an increased abundance
of spatial elements. It exhibits persistent alignment and minimal deviation in daily air
temperatures, encompassing both the extremes and averages.

The morphing procedure follows the general approach outlined in reference [20],
which is, in essence, based on the principles presented in Ref. [5]. Utilizing various GCM
variables, this process involves the ‘shifting’ and ‘stretching’ of multiple fields, such as
dry-bulb temperature, global horizontal irradiance, and wind speed. The morphing of
future dry-bulb temperature begins with the calculation of a scaling factor for each month,
determined through the following equations:

αtm =
∆Tmax

m − ∆Tmin
m

.
t
max
m −

.
t
min
m

(1)

t =
.
t + ∆Tm + αtm

( .
t −

.
tm

)
(2)

where ∆Tmax
m is the GCM change in the average daily maximum dry-bulb temperature,

∆Tmin
m is the GCM change in the average daily minimum dry-bulb temperature,

.
t
max
m is

the average daily maximum dry-bulb temperature,
.
t
min
m is the average daily minimum

dry-bulb temperature,
.
t is the present dry-bulb temperature, ∆Tm is the GCM change in

the mean dry-bulb temperature,
.
tm is the mean of the present dry-bulb temperature, and

αtm is the scaling factor for month m.
The morphing process for future global horizontal irradiance begins with the determi-

nation of the scaling factor for downward surface shortwave flux. This scaling factor can
be calculated using the provided equations:

αIm = 1 +
∆Rm

.
Im

(3)
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I = αIm ·
.
I (4)

where ∆Rm is the GCM change in the mean downward surface shortwave flux,
.
Im is the

average of present global horizontal irradiance, I is the future global horizontal irradiance,
and αIm is the scaling factor for downward surface shortwave flux for month m.

To generate future wind speed scenarios, the current wind speed is multiplied by the
relative mean change in wind speed from the Global Climate Model (GCM) for a specific
month. This relationship can be expressed using the following equation:

ws = αwm · .
ws (5)

where αwm is the GCM relative mean change in wind speed,
.

ws is the present wind speed,
and ws is the future wind speed for month m.

The morphing procedure draws on three primary statistical transformations: ‘shift’,
‘stretch’, and a combination derived from insights in the literature [5]. In the ‘shift’ operation,
the monthly projected change is added to the current variable, while the ‘stretch’ operation
involves scaling the present-day variable by multiplying it by the fraction of the monthly
projected change. Combining ‘shift’ and ‘stretch’ allows for adjustments to the mean and
variance of the present-day variable or exclusively to the variance. Specifically, the dry-bulb
temperature undergoes both ‘stretch’ and ‘shift’, global horizontal irradiance undergoes
‘shift’, and wind speed undergoes ‘stretch’.

Employing insights from the literature, the morphing methodology utilizes three
fundamental statistical transformations: ‘shift’, ‘stretch’, and a hybrid approach [5]. Within
the ‘shift’ procedure, the current variable assimilates the monthly predicted adjustment.
Conversely, the ‘stretch’ process entails adjusting the contemporary factor by multiplying
it by a fraction of the anticipated monthly shift. The amalgamation of ‘shift’ and ‘stretch’
enables adjustments to either the mean and variance of the present-day variable or exclu-
sively to the variance. Specifically, modifications include both ‘stretch’ and ‘shift’ for the
dry-bulb temperature, ‘shift’ for global horizontal irradiance, and ‘stretch’ for wind speed.

2.2. Copula Approach

Copulas function as connectors, establishing links between univariate marginal distri-
butions within multivariate distribution functions. This fundamental statistical principle,
elucidating interdependence and detailed in [21], establishes a critical connection between
copulas and the joint distribution of multiple random variables. As delineated in Sklar’s
theorem, assume X = [x1, x2, . . ., xn] denotes the random variables with margins F1 (x1), F2
(x2), . . ., Fn (xn). The joint distribution F(x1, x2, . . ., xn) can be articulated through a suitable
n-dimensional C-copula function, as follows:

F(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (6)

If F1 (x1), F2 (x2), . . ., Fn (xn) are continuous, then the C-copula function is unique.
The practical utility of Sklar’s theorem lies in its ability to conveniently disentangle

the dependence modeling of a set of random variables by individually considering their
marginal distributions and the copula. In the extensive body of work [22], various families
of copulas are explored, with prominent examples including the Normal Gaussian copula,
the Frank copula, and the Student-t copula.

In the realm of bivariate scenarios, numerous precise copula functions are at our dis-
posal. However, when extending to arbitrary dimensions, the options for suitable copula
families become significantly more limited. Traditional multivariate copulas such as the
multivariate Gaussian or Student-t, along with interchangeable Archimedean copulas, lack
the adaptability necessary for precisely modeling dependence among a larger set of vari-
ables. The vine, serving as a versatile graphical model for depicting multivariate copulas
through a series of bivariate copulas, emerges as a distinctive alternative. Its resilience to
the aforementioned constraints positions it as a potent instrument for capturing multivari-
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ate dependence. This article provides a concise examination of the C-vine, exemplifying a
prevalent form of regular vines.

In the structure of the C-vine tree, the relationships linked to a particular factor,
denoted as the primary root node, are represented through bivariate copulas for each pair.
Extending this to another variable, known as the secondary root node, pairwise associations
are also modeled. Typically, a root node is designated in each tree, and all pairwise
connections concerning this node are modeled, considering all preceding root nodes. This
structural characteristic results in C-vine trees exhibiting a star configuration [23]. Building
upon the C-vine framework, the decomposition of a multivariate density f (x1, · · · , xn) can
be expressed as follows:

f (x1, · · · , xn) = c( f (x1), f (x2), · · · , f (xn))×
n

∏
i=1

fi(xi) (7)

where fi(xi) is the density function of the marginal distribution of variables, and c( f (x1), f (x2),
· · · , f (xn)) is the copula density function, which can be calculated as follows:

c( f (x1), f (x2), · · · , f (xn)) =
∂nC(F(x1), F(x2), · · · , F(xn))

∂F((x1)∂F(x2) · · · ∂F(xn))
(8)

2.3. K-Means Clustering

K-means is as an extensively employed method for general clustering [24]. Within the
framework of K-means, clusters find representation through the centers of mass of their
constituent members. The clustering process entails iteratively assigning cluster affiliations
to each data vector based on proximity to the cluster center. Simultaneously, each cluster’s
center is computed as the centroid of its constituent data vectors. Despite the extensive
use of K-means clustering, a significant drawback lies in the requirement to anticipate the
cluster count based on previous experience. In overcoming this hurdle and determining the
best parameter for K-means across different scenarios, this study presents a density-centric
metric outlined in [25].

Assume that there is a data matrix P = {x1, x2, . . ., xn}, in which each data vector is
p-dimensional. ci is the center of cluster Ki. N(Ki) is the quantity of cluster Ki, and d(xi, xj)
is the Euclidean distance between xi and xj. The optimal parameter can be determined
as follows:

d(xi, xj) =

√
n

∑
k=1

(xk
i − xk

j )
2 (9)

ri =
1

N(Ki)
∑

x∈Ki

d(x, ci) (10)

cij =
ci + cj × ri/rj

1 + ri/rj
(11)

C(i) = N
(
K′

i = { x|d(x, ci) ≤ ri}
)

(12)

B(i) =
1

K − 1

K

∑
j=1,j ̸=i

N
(

K′
j =

{
x
∣∣d(x, cij

)
≤

[(
ri + rj

)
/2

]})
(13)

DBI(i) =
K

∑
i=1

C(i)/
K

∑
i=1

B(i) (14)

Kb = Max{DBI(i)} (15)

where ri is the cluster radius, Ki is the element, N(Ki) is the quantity of cluster Ki, d(x, ci) is
the Euclidean distance from datum x to the cluster center, ci is the center of cluster Ki, cij is
the midpoint between clusters, C(i) is the cluster center density, B(i) is the cluster margins
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density, DBI is the ratio of cluster center density to cluster margin density, and Kb is the
optimal number of clusters.

Imagine an ideal clustering scenario where data vectors within a cluster are closely
grouped, while the space between two clusters exhibits significant dispersion. In other
words, the optimal clustering scheme in K-means aligns with maximizing the Davies–
Bouldin Index (DBI). Consequently, determining the optimal parameter within specified
parameter ranges involves a comparison of DBI values.

2.4. Energy Potential Calculations

In determining the electrical generation from each sustainable energy source, we
performed computations utilizing the latest technological advancements, securing pre-
cise assessments of power generation potential for each renewable source. This approach
emerges as the optimal method for scrutinizing the impact of varying climate change scenar-
ios on the potential for electricity generation, offering heightened precision in forecasting
electrical output. Furthermore, it is noteworthy that renewable wind farms typically oper-
ate for 20 to 25 years, while solar farms typically have lifespans exceeding 25 years. This
implies that newly installed renewable energy systems will remain operational through
2050. Concerning wind energy generation, onshore wind turbines typically have an av-
erage installed capacity of approximately 3.5 MW [26]. Utilizing a realistic power curve
representative of onshore turbines, such as Vestas V126-3.45 [MW] shown in Figure 1,
ensures accuracy in estimating power output. Wind speed data were obtained from the
model at a standard hub height of 100 m, a widely accepted parameter in wind resource
assessments [27–31].
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Solar PV panels exhibit a complex reaction to diverse environmental factors, including
DB, GHI, and WS. Their performance is notably impacted by distinct panel specifications,
where heightened incident irradiance does not uniformly result in amplified power output.
This discrepancy is attributed to factors such as temperature response coefficient, capacity
factor, and cell temperature. Precise determination of achievable maximum photovoltaic
power output (PVO) requires meticulous attention to specific attributes. Calculating cell
temperature involves considering parameters and coefficients reflecting the thermal re-
sponse, derived from an advanced monocrystalline silicon solar panel. Subsequent PVO
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calculation incorporates the prevailing market standard for average efficiency, which is
approximately 17% [32]. The values for solar irradiance, ambient temperature, and surface
wind speed are provided as follows:

Tcell = c1 + c2Ta + c3G + c4ws (16)

Ppv = Gηp[1 + µ(Tcell − Tr)] (17)

where Tcell is PV cell temperature; Ta is the ambient temperature; G is solar irradiance; c1,
c2, c3, and c4 are the distinctive attributes inherent to a monocrystalline silicon solar panel,
i.e., 4.3 ◦C, 0.943, 0.028 ◦C m2/W, and −1.528 ◦C s/m, respectively; ηp is monocrystalline
silicon solar panel efficiency; µ is the thermal efficiency factor associated with temperature
changes; Tr is the reference temperature; and Ppv is the solar PV power output.

2.5. Scenario Generation

The fundamental stages in the suggested methodology for scenario generation can be
described as follows.

Firstly, accurately project future changes in climate data. Subsequently, apply the
morphing method to three future weather elements—dry-bulb temperature (DBT), global
horizontal irradiance (GHI), and wind speed (WS)—for SSP1, SSP2, SSP3, and SSP5 in the
GCM EC-Earth3, using the ‘shift’ and ‘stretch’ approaches to align with the median year of
the 2050 timeframe.

Secondly, leverage the maximum likelihood estimate technique [33] to pinpoint the
most advantageous category and configurations for each pair-copula, progressing through
the following steps:

1. Transform the arbitrary continuous random variable into a uniform distribution
using a cumulative distribution function (CDF) transformation, resulting in a uniform
distribution in the interval [0, 1].

2. Identify the optimal pair-copula function by selecting the potential copula associated
with the minimum Euclidean distance. Quantify the Euclidean gap between the CDF of the
observed copula and each potential copula through the following calculation:

De =
n

∑
i=1

∣∣Cn(ui, υi)− Cp(ui, υi)
∣∣2 (18)

where De is the Euclidean distance, Cn is the CDF of the observed copula, and Cp is the
CDF of potential copula.

Thirdly, generate future weather scenarios for DBT, GHI, and WS to calculate re-
newable energy in terms of electricity power output. Apply the C-vine copula technique
employing the most effective pair-copula for generating simulated data. Assume w1, . . ., wn
are independent and uniform in the interval [0, 1]; the sample of x1, . . ., xn can be expressed
as follows: 

x1 = w1
x2 = F−1(w2|x1)
x3 = F−1(w3|x1, x2)
...
xn = F−1(wn|x1, · · · , xn−1)

(19)

where F(wn|x1, · · · , xn−1) is the distribution function under specified conditions, calculable
through Equation (6).

In the fourth step, determine the optimal parameter for clustering data vectors by
comparing the DBI values across various parameters. Following this, classify data vectors
using K-means clustering with the identified optimal parameter.

Finally, compute the electricity production output for renewable energy under future
weather scenarios.
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3. Results

To exemplify this methodology’s applications, a simulation was executed for three
adjacent wind and solar PV facilities located in Guangdong, China. Among the three
renewable energy power plants, the first one is a wind and solar power generation site
with a rated wind power generation capacity of 50 MW and a rated solar power generation
capacity of 70 MW. The second one is also a wind and solar power generation site, with
a rated wind power generation capacity of 60 MW and a rated solar power generation
capacity of 40 MW. The third one is a photovoltaic power generation site with a rated
solar power generation capacity of 40 MW. The simulation spans the current scenario and
envisions the future conditions in 2050, taking into account the approximate lifespan of
wind turbines and solar PV panels, ranging from 20 to 25 years. The objective was to
comprehend the variations in renewable energy electricity production output amidst future
climate changes in southern China. Conducted in alignment with the year 2050 for the
GCM EC-Earth3, the simulations encompass diverse scenarios, including SSP1, SSP2, SSP3,
and SSP5. Illustrated in Figure 2 is a visual representation that displays the average annual
values of chosen contemporary environmental factors and the corresponding fluctuations
during the 2050 timeframe, effectively highlighting the transformative output. Aligned
with global patterns, the outcomes of the morphing process for Guangdong province unveil
a progression in temperatures, wind speed, and solar irradiance in prospective scenarios,
surpassing the intensity observed in current climate conditions.
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In Figure 2, DBT1, DBT2, and DBT3 represent the respective dry-bulb temperatures of
three solar photovoltaic fields, while GHI1, GHI2, and GHI3 correspond to their individual
solar irradiance levels. Additionally, WS1, WS2, and WS3 represent the respective wind
speeds at each site. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 represent various Shared
Socioeconomic Pathways (SSPs) coupled with different radiative forcing levels, measured
in Watts per square meter (W/m2). These abbreviations correspond to scenarios used in the
Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report to depict
different trajectories of societal development and greenhouse gas emissions. SSP1-2.6
represents a sustainable development pathway with low greenhouse gas emissions (with
the radiative forcing being equal to 2.6 W/m2). It is an optimistic scenario indicating
significant global emission reduction measures. SSP2-4.5 illustrates a moderate greenhouse
gas emission pathway (with the radiative forcing being equal to 4.5 W/m2). This represents
a scenario with intermediate levels of greenhouse gas reduction. SSP3-7.0 depicts an
unsustainable development pathway with high greenhouse gas emissions (in which the
radiative forcing is 7.0 W/m2). This is a pessimistic scenario, suggesting a lack of effective
global emission reduction measures. SSP5-8.5 represents a high-emission pathway with
very high greenhouse gas emissions (with the radiative forcing equaling 8.5 W/m2). This
extreme scenario signifies a failure to mitigate greenhouse gas emissions effectively in the
coming decades. These scenarios are utilized for studying possible trajectories of climate
change and global warming, providing distinct future paths for societal and economic
development.

Figure 2 illustrates the distribution of three meteorological elements in different tem-
poral and spatial scenarios. In the forthcoming scenarios of the four considered Shared
Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the average annual
variations in dry-bulb temperature (DBT), global horizontal irradiance (GHI), and wind
speed (WS) are projected to increase by approximately 0.4 to 1.9 ◦C, 7.5 to 20.4 W/m2, and
0.3 to 1.7 m/s, respectively.

The variation in DBT is depicted in Figure 2a, and the results show the following: In
2023, the annual average is 23.3 ◦C, the summer average is 28.7 ◦C, the winter average is
15.9 ◦C, the maximum for the year is 38 ◦C, and the minimum is 3 ◦C. By 2050, the annual
average is projected to range between 23.7 and 25.2 ◦C, the summer average will range
between 29.2 and 31.1 ◦C, and the winter average will range between 15.6 and 19.2 ◦C,
with the maximum for the year reaching 39.1 ◦C and the minimum being 3.7 ◦C. Across
various scenarios, there is an approximate increase in the annual average temperature
of 0.4–1.9 ◦C, with growth rates ranging from approximately 1.5% to 8.3%. The summer
average temperature is expected to rise by about 0.9–2.3 ◦C, with growth rates of around
1.5–8.3%. The winter average temperature is projected to increase by about 0.1–3.1 ◦C,
with growth rates ranging from approximately 0.6% to 19.5%. In the SSP5 scenario, the
maximum increases in annual average and summer average temperatures are observed,
reaching 1.9 ◦C and 2.3 ◦C, respectively. The magnitude of winter temperature rise is
larger than that of summer, and the number of days with high temperatures in summer is
gradually increasing.

The GHI variation is illustrated in Figure 2b, and the results indicate the following: In
2023, the annual average is 234 W/m2, the summer average is 296.5 W/m2, and the winter
average is 212.7 W/m2, with the annual maximum reaching 1308 W/m2. By 2050, the
annual average is projected to range between 241.5 and 254.4 W/m2, the summer average
will range between 351.3 and 490.1 W/m2, and the winter average will range between
140.2 and 324.9 W/m2, with the annual maximum reaching 1380 W/m2 in the summer.
Across various scenarios, there is an approximate annual increase of 7.5–20.4 W/m2, with
an average growth rate of about 6%. The summer average increase is approximately
124.2 W/m2, with a growth rate of around 42%, while the winter average increase is about
20 W/m2, with a growth rate of approximately 9.4%. In the SSP1 scenario, the maximum
increase in the summer average occurs, reaching 124.2 W/m2, with a larger magnitude
of increase in the summer compared to that in the winter, and the peak value occurs in
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August. The maximum cumulative increase in the summer is approximately 11.2 kWh/m2,
with a maximum growth rate of about 48%, while the maximum cumulative increase in the
winter is approximately 3.5 kW/m2, with a maximum growth rate of about 19.7%.

The WS variation is shown in Figure 2c, and the results show the following: In 2023,
the annual average is 3.7 m/s, the summer average is 4.9 m/s, and the winter average
is 5.1 m/s, with the annual maximum reaching 15.2 m/s. By 2050, the annual average is
projected to range between 4 and 5.4 m/s, the summer average will range between 3.4
and 5.5 m/s, and the winter average will range between 4.4 and 7 m/s, with the annual
maximum reaching 29.8 m/s. Across various scenarios, there is an approximate annual
increase of 0.3–1.7 m/s, with an average growth rate exceeding 8%. The maximum increase
in the summer is approximately 0.6 m/s, with a maximum growth rate of about 13.1%,
while the maximum increase in the winter is approximately 2.7 m/s, with an average
growth rate of no less than 53%. In the SSP2 scenario, the maximum increases in the
annual average and winter average occur, reaching 1.7 m/s and 2.7 m/s, respectively. The
magnitude of the winter increase is larger than that of the summer, and the number of days
with strong winds in the summer is gradually increasing.

These climate data fluctuations will directly impact the efficiency of renewable energy
power generation in future scenarios and, consequently, their annual power generation
output.

The optimal copula parameters have been determined for each future scenario of
the three adjacent wind and solar PV farms, resulting in the generation of 600 clusters of
random scenarios under the four future climate scenarios, as depicted in Figure 3.

As shown in Figure 3, GHI_2050_AVG, DBT_2050_AVG, and WS_2050_AVG represent
the annual average hourly meteorological elements GHI, DBT, and WS under four SSP
scenarios in the year 2050. The light-blue area represents the annual average hourly
standard deviation of the three meteorological elements for 600 random scenario clusters
under each SSP scenario. The results indicate the following ranges: SSP1-2.6 scenario—
1.9–3.3 ◦C for DBT, 0–141.9 W/m2 for GHI, and 0.2–1.3 m/s for WS; SSP2-4.5 scenario—
1.0–3.3 ◦C for DBT, 0–144.2 W/m2 for GHI, and 0.2–1.1 m/s for WS; SSP3-7.0 scenario—
1.3–3.0 ◦C for DBT, 0–127.3 W/m2 for GHI, and 0.2–1.2 m/s for WS; and SSP5-8.5 scenario—
1.8–3.4 ◦C for DBT, 0–131.2 W/m2 for GHI, and 0.3–1.1 m/s for WS.
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The meteorological element scenario characteristic curves under the SSP1-2.6 scenario
are shown in Figure 3a. The results indicate that GHI ranges from 0 to 1337.4 W/m2,
with peaks in the range of 88.8–1337.4 W/m2, reached at around 1 p.m. DBT fluctuates
within the range of 4.8–39.0 ◦C, with a peak occurring at around 2 p.m. and the valley
occurring around midnight at 00:00. WS fluctuates between 0 and 29.3 m/s, with a peak
occurring around 10 p.m., consistent with the future meteorological prediction model’s
range and characteristics.

Under the SSP2-4.5 scenario, the meteorological element scenario characteristic curves,
presented in Figure 3b, indicate the following: GHI spans from 0 to 1261.2 W/m2, with
peaks within the range of 62.2–1261.2 W/m2, occurring at around noon; DBT fluctuates
between 5.1 and 38.8 ◦C, with peak moments at around 4 p.m. and troughs at around
5 a.m.; WS fluctuates between 0 and 30.3 m/s, with peak moments around 2 p.m. These
results align with the projected range and variation features of future meteorological
prediction models.

As for the SSP3-7.0 scenario, the meteorological element scenario characteristic curves,
depicted in Figure 3c, reveal the following: GHI ranges from 0 to 1316.8 W/m2, with peaks
within the range of 87–1316.8 W/m2, occurring between 2 and 3 p.m.; DBT fluctuates
between 5.2 and 3 8.9◦ C, with peak moments at around 4 p.m. and troughs at around
3 a.m.; WS fluctuates between 0 and 26.9 m/s, with peak moments at around 1 p.m.
These results align with the expected range and variation features of future meteorological
prediction models.

The meteorological element scenario characteristic curves under the SSP5-8.5 scenario,
as depicted in Figure 3d, reveal the following: GHI ranges from 0 to 1308 W/m2, with
peaks between 82.6 and 1308 W/m2, occurring at around 1 p.m.; DBT fluctuates between
5.9 and 38.9 ◦C, with peaks at around 4 p.m. and valleys at around 6 a.m.; WS fluctuates
between 0 and 28.1 m/s, with peaks at around 2 p.m. These results are in accordance with
the range and variation characteristics of future meteorological prediction models.

According to Equations (9)–(15), within the range of 2 to 10 for K clusters in K-means
clustering, the maximum DBI values for the corresponding number of K classifications at
24 typical daily time points were calculated. The maximum DBI values for each hourly
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interval are highlighted with grey boxes. The results, shown in Figure 4a, indicate that
the maximum K classification is 4 at 4 a.m. and 4 p.m.; in Figure 4b, it is 6 at 5 p.m.; in
Figure 4c, it is 8 at 10 a.m.; and in Figure 4d, it is 7 at 11 a.m. Thus, among the 24 sets of
hourly DBI values, the corresponding maximum K classification is 8.
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Figure 4. Correlation between the clustering parameter k and the scores derived from the DBI: (a) The
change in DBI at time points 0, 4, 8, 12, 16, and 20 with respect to K, (b) The change in DBI at time
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In the quest to pinpoint the optimal parameter for K-means clustering, the parameter
range for clustering was established within the interval of 2 to 10. The determination
of the optimal parameter was achieved through a thorough comparison of DBI values.
Presented in Figure 4 are the simulation results that elucidate the correlation between DBI
and clustering parameters. The graph in Figure 4 distinctly shows that the DBI attains its
peak value of 8 at 10 a.m., while the maximum DBI values of the remaining 23 hours are
between 2 and 7, indicating that the most effective parameter for this specific case study is
8 for each of the four hourly meteorological factors of DBT, GHI, and WS. Utilizing this
optimal parameter, the measured data should be condensed into eight clusters for each
renewable power plant, as shown in Figure 5.

As shown in Figure 5, the annual average hourly standard deviations of the three
elements GHI, DBT, and WS for 24 typical scenario clusters after being clustered under the
four SSP scenarios are as follows: SSP1-2.6 scenario—1.5–3.5 ◦C for DBT, 0–137.2 W/m2 for
GHI, and 1.9–3.9 m/s for WS; SSP2-4.5 scenario—1.0–3.5 ◦C for DBT, 0–138.3 W/m2 for
GHI, and 1.7–3.7 m/s for WS; SSP3-7.0 scenario—1.4–2.7 ◦C for DBT, 0–134.3 W/m2 for
GHI, and 1.7–4.1 m/s for WS; and SSP5-8.5 scenario—1.7–3.8 ◦C for DBT, 0–133.0 W/m2

for GHI, and 2.0–3.9 m/s for WS. The typical scenario clusters after clustering better reflect
the hourly random fluctuation characteristics of the GHI, DBT, and WS elements compared
to those before clustering.
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Under the SSP1-2.6 scenario, the typical feature curves of meteorological elements
after reduction are depicted in Figure 5a. The results indicate that GHI ranges from 0 to
1316.6 W/m2, with peaks occurring between 153.9 and 1316.6 W/m2, reaching a maximum
at around 1 p.m. DBT fluctuates within the range of 5.5–36.7 ◦C, with peaks at around
4:00 PM and valleys at around 1 a.m. WS fluctuates between 0 and 29.1 m/s, with peaks
at around 10 p.m. For the SSP2-4.5 scenario, the typical feature curves of meteorological
elements after reduction are shown in Figure 5b. GHI ranges from 0 to 1190.3 W/m2,
with peaks between 142 and 1190.3 W/m2, occurring between 1 p.m. and 2 p.m. DBT
fluctuates between 8.2 and 36.5 ◦C, with peaks at around 3–4 p.m. and valleys at around
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4 a.m. WS fluctuates between 0 and 30.3 m/s, with peaks at around 2 p.m. Under the
SSP3-7.0 scenario, the typical feature curves of meteorological elements after reduction
are illustrated in Figure 5c. GHI ranges from 0 to 1256.1 W/m2, with peaks between 144.6
and 1256.1 W/m2, occurring between 1 p.m. and 2 p.m. DBT fluctuates between 6.6 and
37.2 ◦C, with peaks at around 4 p.m. and valleys at around 3 a.m. WS fluctuates between
0 and 26.5 m/s, with peaks at around 1 p.m. In the SSP5-8.5 scenario, the typical feature
curves of meteorological elements after reduction are presented in Figure 5d. GHI ranges
from 0 to 1236.5 W/m2, with peaks between 143.1 and 1236.5 W/m2, occurring between
1 p.m. and 2 p.m. DBT fluctuates between 7 and 37.6 ◦C, with peaks at around 3–4 p.m.
and valleys at around 1 a.m. WS fluctuates between 0 and 26.9 m/s, with peaks at around
1 p.m.

GHI exhibits strong regularity, and the reduced typical scenes generally present an
“envelope” shape. There are some differences in peak values between typical scenes, but the
high peak periods are consistently between 1 and 2 p.m. DBT shows certain regularity, and
the overall reduced scenes also exhibit an “envelope” shape. There are some differences in
peak values between typical scenes, but the high peak periods are consistently between
3 and 4 p.m. WS demonstrates strong randomness, and the overall reduced scenes also
exhibit an “envelope” shape. There are some differences in peak values between typical
scenes, and the high peak periods may occur between 1 and 10 p.m.

Therefore, the daily cumulative maximum electricity energy output for renewable
energy was calculated across eight representative future scenarios, as detailed in Table 1. A
comparative analysis was conducted with the existing standard scenario in 2023.

Table 1. Differences in typical daily accumulated maximum wind electricity output (WEO) and solar
electricity output (SEO) between 2023 and the future climate change scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) for the three contiguous renewable energy farms, involving two wind and
solar PV farms along with one solar PV farm.

Farm Electricity Energy 2023 SSP1 SSP2 SSP3 SSP5

1
WEO1 [kWh] 46,1349.2 473,796.5 478,072.1 495,245.9 491,962.5
SEO1 [kWh] 556,597.8 578,999.0 594,298.1 550,116.4 562,506.8

2
WEO2 [kWh] 750,435.0 785,459.7 796,404.4 775,946.3 756,890.0
SEO2 [kWh] 421,665.7 436,951.8 440,305.0 423,951.9 432,780.3

3 SEO3 [kWh] 349,954.1 368,499.0 354,377.2 334,422.0 342,274.7

Sum [kWh] 2,540,001.9 2,643,706.1 2,663,456.8 2,579,682.5 2,586,414.3

The accumulated daily differences in WEO between current and future scenarios
follow a pattern akin to that depicted in Figure 2, with minor modifications in spatial
allocation attributed to the non-linear power curves inherent in wind turbines. Remarkably,
Wind and Solar PV Farm 1 witness the most substantial increases in WEO, particularly
in the SSP3-7.0 and SSP5-8.5 future scenarios, ranging from 7.3% for SSP3-7.0 to over
6.6% for SSP5-8.5. While Farm 2 experiences marginal increases in four of the future
scenarios, the most notable increment is 6.1% for SSP2-4.5, accompanied by minor upticks
of 0.9% for SSP5-8.5. Both scenarios exhibit variations in comparison to the current state,
showcasing significant alterations in their day-to-day variability, with a particular emphasis
on offshore locations.

The alterations in accumulated SEO are considerably lower compared to those for
WEO, a result primarily attributed to two factors.

In comparison to WEO, the levels of change in accumulated SEO are significantly
lower, primarily due to two main reasons. In the first place, GHI exhibits fluctuations of
approximately 5% to 10% across the entire domain, and the changes in GHI are not as
pronounced as those in WS. Secondly, wind turbines generally exhibit higher efficiency in
capturing available resources and converting them into electrical energy. Consequently,
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even in areas displaying similar percentage changes in incident solar irradiance and wind
speed, this variation will lead to a lower change in SEO compared to WEO.

Significant variations endure in the scrutinized scenarios regarding their daily fluctua-
tion and broader trends. SSP1-2.6 and SSP2-4.5 foresee upticks of 3.6% to 5.3% and 1.3%
to 6.8%, while SSP3-7.0 indicates a decline ranging from −1.2% to −4.4%. Conversely, in
SSP5-8.5, there is a positive prediction for SEO, presenting relatively modest values of 1.1%
to 2.6%. The alterations in cumulative SEO parallel the fluctuations in solar irradiance
across diverse climate scenarios. The anticipated augmentations in cloud coverage and
heightened wind speed notably influence solar PV panel output, leading to diminished
output in SSP5-8.5 or slight increases in more advantageous conditions under SSP2-4.5.

4. Discussion

Future climate change could have both positive and negative implications for the
electricity production sector. The envisaged rise in wind speed has the capacity to elevate
wind power generation, while increased solar irradiance may bolster solar PV power gener-
ation. Nevertheless, both encounter obstacles resulting in diminished electricity production.
Renewable power plants, notably, could experience deviations in their standard output
during peak periods due to anticipated fluctuations in intra-annual resource variability. In
the realm of stochastic power system analysis, the holistic assessment of these advantages
and drawbacks must align with energy demand. For example, a decline in winter electricity
production may not present an issue if energy demand diminishes owing to climate-change-
induced reductions in heating requirements or substantial shifts in energy consumption
patterns facilitated by diverse tariff systems or scheduling mechanisms. Lastly, significant
differences exist between the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, under-
scoring the uncertainty in future assessments of renewable power production. To quantify
the projected range in WEO and SEO, both morphing and scenario generation modeling
approaches, coupled with K-means clustering analysis of various scenarios, are essential.
While the SSP3-7.0 scenario favors wind power production, it concurrently reveals greater
declines in accumulated SEO. In contrast, the SSP2-4.5 scenario exhibits a less intense but
consistently increasing trend, suggesting a potentially safer pathway.

5. Conclusions

This paper introduces a future scenario generation approach utilizing the morphing
method and analysis in conjunction with copula and K-means clustering techniques. The
future weather elements, including DBT, GHI, and WS, were morphed for the SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios in the 2050 timeframe using the GCM EC-Earth3.
Existing copula techniques based on the C-vine method were then applied to generate
600 scenarios for the three future weather elements. Subsequently, based on K-means
clustering with optimal parameters, future scenarios were condensed into eight typical
daily clusters. Finally, the renewable energy electricity production output in future weather
scenarios was calculated. The collective outcomes suggest the feasibility of crafting a future
scenario that is both intricate and comprehensive, accounting for the interdependence
among various wind and solar PVOs. The results of our study indicate that the average
annual variations in DBT, GHI, and WS are projected to increase by approximately 0.4 to
1.9 ◦C, 7.5 to 20.4 W/m2, and 0.3 to 1.7 m/s, respectively, in the four future scenarios, i.e.,
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Climate data fluctuations will directly impact
the efficiency of renewable energy power generation in future scenarios and, consequently,
their annual power generation output. It seems that accumulated maximum WEO and SEO
will increase 0.9% to 7.3% and 1.1% to 6.8%, respectively, in 2050.

An inclusive approach to future electricity production under varying climate scenarios
can yield a spectrum of potential electricity production options, aiding in the selection
of the optimal renewable mix for stochastic power system analysis. This not only fosters
confidence in climate change scenario analyses but also ensures a well-considered and
effective strategy for sustainable development. Subsequent research should encompass all
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primary sources of renewable energy production alongside detailed energy consumption
projections at a high hourly temporal resolution. This methodology allows for more
accurate estimates of supply and demand patterns in climate change scenarios, providing
valuable insights with which to mitigate uncertainty in renewable electricity production
assessments. Moreover, applying this methodology to multiple climate change scenarios
can generate a range of typical future clusters.
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Nomenclature
DBT Dry-bulb temperature CDF Cumulative distribution function
GHI Global horizontal irradiance SSPs Shared socioeconomic pathways
WS Wind speed GCM General circulation model
PV Photovoltaic PVO Photovoltaic power output
DBI Davies–Bouldin Index WEO Wind electricity output

SEO Solar electricity output
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