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Abstract: As consumers and governments prioritize cost-effectiveness and ecological sustainability, 
the limitations of traditional manufacturing paradigms become apparent in the context of con-
strained resources. The adverse effects of these paradigms on the environment and society hinder 
the achievement of a sustainable product life cycle. Intelligent manufacturing processes offer a so-
lution by efficiently gathering meaningful data, such as usage and product recycling information, 
from previous product generations to enhance product design and subsequent sustainable manu-
facturing processes (SMPs). Modular product family architecture (PFA) design holds promise in 
promoting product sustainability and addressing diverse consumer needs. PFA design and SMPs 
are inherently interconnected within intelligent manufacturing frameworks. This paper aims to in-
tegrate the decision-making processes underlying PFA with SMPs. We model integrated PFA and 
SMP decisions as a Stackelberg game, which involves hierarchical joint optimization (HJO) for as-
sessing product modularity and sustainable manufacturing fulfillment. We develop a bilevel 0–1 
integer nonlinear programming model to represent the HJO decision-making process and propose 
a nested genetic algorithm (NGA) to solve the HJO problem. A case study with a laptop is conducted 
to validate the feasibility and potential of the proposed HJO model for joint optimization problems 
in PFA design and SMPs. 

Keywords: bilevel programming; hierarchical joint optimization; product family architecture;  
sustainable 
 

1. Introduction 
The government is increasingly prioritizing environmental concerns and has enacted 

a series of pertinent laws aimed at holding original equipment manufacturers (OEMs) 
accountable for the sustainability of products throughout their lifecycle. This requires en-
terprises to continually adapt for their own development and to uphold a positive societal 
image. They must not only produce products that meet consumer demands but also con-
sider the sustainability of these products [1]. For designers and manufacturers, it is essen-
tial to consider the sustainability of the product throughout its lifecycle [2]. Product lifecy-
cles involve several stages, from pre-manufacturing (material selection and processing) 
through manufacturing (component manufacture and assembly) to use and post-use (re-
cycling and reuse of products) [3]. In the context of the current availability of limited re-
sources, the negative impact of traditional manufacturing paradigms on the environment 
and society is not conducive to achieving a sustainable product lifecycle [4]. 

Intelligent manufacturing has the potential to significantly enhance sustainable man-
ufacturing competitiveness. By efficiently capturing relevant data, such as usage and re-
cycling information from previous product generations, it can improve product design 

Citation: Ma, Y.; Chen, X.; Ma, S. 

Optimal Sustainable Manufacturing 

for Product Family Architecture in 

Intelligent Manufacturing: A  

Hierarchical Joint Optimization  

Approach. Sustainability 2024, 16, 

2727. https://doi.org/10.3390/ 

su16072727 

Academic Editors: Diego Castro  

Fettermann and Marcia Elisa Soares 

Echeveste 

Received: 20 February 2024 

Revised: 16 March 2024 

Accepted: 22 March 2024 

Published: 26 March 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sustainability 2024, 16, 2727 2 of 28 
 

and subsequent sustainable manufacturing processes (SMPs) [5]. Intelligent manufactur-
ing is often categorized into two main types: base and front-end technologies [6]. The base 
technologies, including cloud computing, internet of things (IoT), and big data analytics, 
provide connectivity and intelligence for the front-end technologies. The front-end tech-
nologies involve the restructuring of manufacturing activities using the intelligent tech-
nologies derived from the base technologies. The reconfiguration of manufacturing activ-
ities is largely influenced by product design. Therefore, it is essential to consider product 
design in conjunction with sustainable manufacturing activities. 

Modular product family architecture (PFA) offers several advantages in achieving 
product sustainability and meeting the diverse needs of consumers [7]. PFA relies on 
product platforms organized in family formats, where a variety of modules are selected 
to create product variations tailored to different market segments [8]. This approach not 
only reduces development time and costs but also facilitates product dismantling and 
module reuse [9]. 

In the realm of intelligent manufacturing, this paper explores the interrelation and 
optimization of modular PFA with SMPs in response to customer needs and product us-
age data. The solutions for each stage of PFA and SMPs are inherently interconnected. The 
inclusion of various module types within the product family—such as common, differen-
tiated, and unique modules—significantly influences the selection of sustainable solutions 
[10]. When designing PFAs, it is essential to consider the rationality of product architec-
ture and the selection of module types based on functional, technical, and structural cou-
pling, while also meeting the sustainability requirements of consumers and government 
regulators. For SMP activities, product sustainability should align with the company’s 
overall development objectives. Therefore, sustainable solutions must strike a balance be-
tween production costs, enterprise profitability, and environmental sustainability, rather 
than solely prioritizing the latter. 

Limited articles currently address the design of joint optimization for PFA and SMPs 
[11]. These articles often employ multi-objective programming methods [12–14]. How-
ever, adopting this method faces limitations. Firstly, it often overlooks the coupling rela-
tionship between PFA and SMP scheme selection. Secondly, it fails to address conflicting 
objectives among different decision-makers [15]. Specifically, technical challenges encom-
pass the following facets. 

Hierarchical joint optimization. The complexity lies in establishing the hierarchical 
joint optimization (HJO) decision-making framework. The PFA design and SMP selection 
involve distinct decision-makers: the PFA designers and the sustainable manufacturers of 
the product family, respectively. Enterprises may have different decision variables and 
goals, which can sometimes conflict [15]. On one hand, PFA designers aim to maximize 
both customer-perceived utility and sustainable utility per unit cost. They can influence 
the choice of SMP scheme through modular architecture and configuration scheme de-
sign. On the other hand, sustainable manufacturers strive to make sustainable manufac-
turing solutions based on comprehensive evaluation indicators, which in turn feed back 
to the PFA designers and impact PFA decisions. The choice of PFA design and SMP selec-
tion constitutes an HJO problem, with the designer acting as the leader and the sustainable 
manufacturer as the follower. This necessitates an HJO decision-making framework that 
seeks a balanced solution through noncooperative games. Despite numerous studies on 
bilevel optimization, explicitly formulating an HJO decision-making framework to de-
scribe the PFA and SMP problems in engineering remains challenging [16]. 

Heterogeneous decision criteria. Another challenge addressed in this paper is the 
construction of a heterogeneous decision criterion. PFA decisions primarily involve mul-
tiple levels of modules, whereas SMP decisions focus more on sustainability considera-
tions. For instance, PFA design entails combining compound modules and configuring 
basic modules [17]. Sustainable solutions encompass the selection of raw materials, pro-
cessing methods, recycling methods, and end-of-life processing methods. Furthermore, 
these two types of decision problems entail diverse decision criteria, such as customer 
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utilities, purchase preferences, modularization, and comprehensive sustainable certifica-
tion standards, which encompass cost, quality, emissions, and energy consumption, 
among others [18]. Dealing with multi-dimensional and heterogeneous decision criteria 
in the optimization problem presents another challenge in this paper. 

The objective of this study is to establish an HJO model by which to address the hi-
erarchical optimization problem of PFA and SMPs. Firstly, we must delve into the decision 
mechanism and achieve a hierarchical joint optimization process for PFA and SMP deci-
sions based on a Stackelberg game. Secondly, a bilevel programming model implementing 
the joint optimization of PFA and SMPs must be designed, establishing heterogeneous 
decision criteria for different decision-makers. Thirdly, a nested genetic algorithm (NGA) 
that aligns with the HJO model solving mechanism must be developed, and its effective-
ness and reliability must be validated through comparative experiments. 

In light of these considerations, this paper employs the HJO method to analyze the 
PFA and SMP problems. Section 2 provides a summary of previous research on PFA, 
SMPs, and bilevel programming. Section 3 establishes a conceptual model for PFA and 
SMP solutions. Section 4 formulates the mathematical model of bilevel 0–1 integer nonlin-
ear programming. Section 5 develops a nested genetic algorithm (NGA) based on the es-
tablished HJO model. Section 6 presents a laptop case study, demonstrating the applica-
bility of the HJO model and NGA algorithm proposed in this paper. Finally, Section 7 
summarizes the research findings and outlines future research prospects. 

2. Literature Review 
2.1. Product Family Architecture 

A product family shares a common platform with specific features and functionalities 
to cater to different sets of customers [19]. Product Architecture refers to how the func-
tional elements of a product are organized into physical units that interact accordingly [8]. 
PFA design enables the creation of a diverse array of products tailored to individualized 
needs within a unified framework. This approach facilitates economies of scale, allowing 
the fulfillment of customer demands across various market segments [19]. 

In articles regarding PFA, different evaluation metrics are applied. Tyagi et al. [20] 
research product family design and multiple platform architecture by fuzzy goal pro-
gramming, with the objectives of maximizing the overall utility and minimizing the total 
production cost. Trentin and Alessio [21] aim to improve configuration capabilities to in-
crease consumers’ perceived benefits of the mass customization experiences. Yoo et al. [22] 
have considered increasing consumer-perceived benefits and consumer-perceived values. 
Ma et al. [23] have studied products’ family-driven module design, the objective function 
of which is to maximize the sum of modularity satisfaction. In recent years, scholars have 
gradually begun to investigate the integration of product family design within the sus-
tainable implications in Industry 4.0. Ceschin and Idil [24] have proposed an evolutionary 
framework of design for sustainability and mapped the reviewed design for sustainability 
approaches onto this framework. Xiao et al. [25] have increased carbon emissions to eval-
uate a low-carbon product family architecture. Tao et al. [26] have presented a digital twin-
driven product design framework. Lim et al. [27] have reviewed engineering product 
lifecycle management from the perspective of a digital twin. 

At present, research that considers PFA design and SMP solutions in the context of 
intelligent manufacturing has focused mainly on the theoretical level. Few scholars have 
considered establishing a joint decision-making framework that combines PFA design and 
SMPs. 

2.2. Sustainable Manufacturing Processes 
Sustainability encompasses economic, environmental, and social dimensions [28]. 

Many scholars have attempted to quantify sustainability criteria from these perspectives 
[29]. Jayal et al. [2] focused on societal aspects, such as worker health, safety, and 
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ergonomics. Kremer et al. [30] advocate for a consideration of sustainability throughout 
the entire lifecycle activity, aiming to minimize total costs and carbon footprint. Madani 
and Rasti-Barzoki [31] argue that sustainable management should take into account pric-
ing, greening efforts, and governmental roles, with governments playing a leadership role 
in these areas. Mangla et al. [32] have evaluated sustainability based on cost, energy effi-
ciency, and material utilization in production techniques. 

Some scholars assess sustainability across various stages of product manufacturing. 
However, the majority of analytical sustainable product modeling has, for many decades, 
relied on qualitative approaches [33]. Garbie [34] proposes to cut down the material, the 
energy consumption and the emission throughout the product lifecycle. Yan and Feng [35] 
have established a structure matrix considering materials, manufacturability, end-of-life 
stages and so on. Kim and Moon [36] have developed a modular product architecture 
while considering manufacturing and recovering processes at the product design stage. 
Kim and Moon [10] have developed a model involving materials production, transporta-
tion, use, and end-of-life stages. Guo et al. [37] believe that the green performance of a 
fashion product relates to the material(s) used in the manufacturing process. 

Currently, few researchers have developed a quantitative optimization framework 
for SMPs and integrated it with PFA design. This paper proposes a joint optimal decision-
making framework for PFA and SMPs. 

2.3. Bilevel Programming 
Bilevel programming involves two decision-makers and is well-suited for addressing 

leader–follower optimization decision-making problems [38]. It has garnered significant 
attention in academia and has been applied across various fields, including reconfigurable 
process planning [39], crowdsourcing service operations, product family design of per-
sonalized services [40], and the data-driven newsvendor problem [41]. Unlike ordinary 
mathematical programming, bilevel programming presents unique challenges. Because 
the upper-level model incorporates the optimal solution or optimal value function of the 
lower-level model, the problem becomes non-smooth [42]. Even linear bilevel program-
ming is NP-hard, and when the upper-level constraint includes decision variables from 
the lower-level model, the feasible region may become disconnected [43]. 

Many scholars are devoted to studying the solution method of bilevel programming. 
When the lower-level model encompasses convex programming with a continuous varia-
ble, the KKT condition can be used to replace the lower-level model, and the solution 
method of single-level mathematical programming can then be used to solve this model 
[44]. The K-degree best method involves obtaining the optimal solution of a problem by 
implicitly enumerating all poles of the constrained domain of a linear bilevel program-
ming problem [45]. In addition, models that do not meet the above types adopt approxi-
mation algorithms to solve bilevel programming models [38]. Condition types that are 
often used include the following: Firstly, the expression of y(x) is estimated and then sub-
stituted into the upper level to transform the model into common single-level mathemat-
ical programming, which can then be solved by the solution algorithms of single-level 
mathematical programming [46]. Secondly, one must develop a heuristic algorithm that 
conforms to the solution framework of the bilevel programming in order to perform iter-
ative calculations to obtain approximate solutions [43]. Currently, there is a lack of a solu-
tion algorithm for solving bilevel 0–1 integer nonlinear programming established in this 
paper. 

3. Consideration Sustainable Product Family Design 
3.1. Research Methodology 

Based on the methodology of management science, a research framework is pre-
sented to better explain the development steps of our study. 
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First and foremost, the identification of the research problem is crucial. Through em-
pirical research on manufacturing enterprises, it has been discovered that there is a mutual 
influence between PFA design and SMPs, and that a hierarchical relationship exists be-
tween product designers and sustainable manufacturers. Literature review reveals that 
the hierarchical relationship between the two agents has not been studied yet. Therefore, 
the problem is refined and formulated into key optimization decision issues, accompanied 
by an analysis and description of the problem. 

Subsequently, the establishment of the research model is essential. A bilevel optimi-
zation model based on Stackelberg games is developed to characterize the relationship 
between PFA design and SMPs. The upper-level PFA design solutions are modeled based 
on product design theory and methods. The MNL model is used to estimate the probabil-
ity of the product selection. SMPs are modeled based on the theory of the lifecycle manu-
facturing processes and the definition of sustainable development. 

Furthermore, in line with the established 0-1 nonlinear bi-level optimization model, 
we develop an NGA tailored to meet the requirements of the bilevel optimization solving 
mechanism. Through case studies that focus on laptop design and sustainable manufac-
turing processes, we validate the efficacy of our proposed model and algorithm. Employ-
ing a conjoint analysis method in the case study has enabled us to quantitatively ascertain 
consumer preferences. Comparative experiments with integrated optimization methods 
and two-stage optimization methods corroborated the superiority of our proposed HJO 
model. The reliability of our proposed algorithm is emphasized through experiments that 
assess optimality and stability. 

3.2. Problem Description 
When an enterprise possesses a significant volume of product usage data, mainte-

nance data, and customer demand information, it can intelligently optimize PFA and 
SMPs based on these data. This enables the development of the most optimal product 
family design and sustainable manufacturing plan in alignment with the current data 
landscape. In different markets, consumers exhibit distinct preferences for various prod-
uct attributes. Accordingly, the size of each market segment, denoted as 𝑄𝑄𝑖𝑖 , represents the 
number of consumers in the i-th segment. There are J product variants in the product fam-
ilies of each market segment, offering the possibility to meet consumers’ individualized 
product needs. At the same time, there are 𝑁𝑁𝑐𝑐 competitive products in the market. As 
shown in Figure 1, each product variant is composed of compound modules 
𝐶𝐶𝐶𝐶𝑟𝑟(𝑟𝑟 = 1, … ,𝑅𝑅), each compound module is composed of several basic modules 𝑆𝑆𝑆𝑆𝑘𝑘(𝑟𝑟 =
1, … ,𝐾𝐾 ). Some basic modules have some optional module instances 𝑝𝑝𝑘𝑘𝑘𝑘∗   (l = 1, … , 𝐿𝐿𝑘𝑘 ), 
which represent different product attributes. Some compound modules (𝑀𝑀1) and basic 
modules (𝑀𝑀2 and 𝑀𝑀𝑁𝑁) are standard parts that cannot be selected, and which are often the 
core part of the product. 

We analyze sustainability across the product lifecycle through three key aspects: cost, 
energy consumption, and emissions. This is divided into four stages. The first stage in-
volves selecting raw materials for the module instance, followed by the second stage, 
which encompasses the production methods of the compound modules. The third stage 
focuses on the selection of recycling methods for the product variant, while the final stage 
involves selecting end-of-life processing methods of the product family. 
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Figure 1. HJO decision making of PFA and SMPs. 

3.3. Hierachical Interactive Decisions for Dynamic Evalution 
Assuming both designers and manufacturers are rational decision-makers. Designers 

hold a dominant position as they investigate market demands and production costs, they 
formulate product variant combinations for segmented markets. Manufacturers are sub-
ordinate because they need to implement SMPs at different stages based on PFA designs. 
The decisions made by designers can influence the decision-making of manufacturers re-
garding SMPs, thereby altering the costs, energy consumption, and emissions associated 
with SMPs. Simultaneously, sustainable decision-making can impact the utility and costs 
of a product family. Thus, a Stackelberg game emerges between the designer and manu-
facturer. An HJO problem arises between PFA and SMP schemes. 

As shown in Figure 2, an HJO decision mechanism is presented. The left is the HJO 
model, and the right is the HJO evaluation mechanism. The leader of the model is the 
design of the PFA and configuration in each market segment (i). Its objective is to maxim-
ize unit cost (C) utilities (U + V). Costs include product design cost (𝑐𝑐𝐷𝐷𝐷𝐷) and sustainable 
costs (𝑐𝑐𝑆𝑆), which include raw material costs (𝑐𝑐𝕓𝕓), manufacturing costs (𝑐𝑐ℂ), recycling costs 
(𝑐𝑐ℙ), and processing costs (𝑐𝑐𝔼𝔼). Utilities cover customer-perceived utilities and sustainable 
manufacturing utilities which are determined by the combination of energy consumption 
(S) and emissions (D). The sustainable decision-making of the follower model has three 
aspects that need to be considered: costs, energy consumption and carbon emissions. The 
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lower objective function is to minimize the comprehensive evaluation indices of the SMPs. 
Both the upper and lower constraints of the model include two parts: the logical con-
straints and the functional constraints. The right-to-left arrows indicate that our model is 
based on a Stackelberg game. 

 
Figure 2. Hierarchical joint optimization decision mechanism. 

3.4. Illustrative Example 
Taking a brand laptop as a case for discussion and analysis. According to the research 

of the market segment and the functional constraints of the computer architecture, the 
product type and the number of compound modules for a certain market segment are 
pseudo-located as follows: J= {2, 3}; R= {2, 3, 4}. After the arrangement and combination, 
there are six cases, which are J = 2, R = 2; J = 2, R = 3; J = 2, R = 4; J = 3, R = 2; J = 3, R = 3; J = 
3, R = 4. Based on the calculations of the final model, the optimal combination of PFA is 
obtained. For the sake of simplicity and without loss of generality, this paper properly 
handles the structure and data of the laptop. The PFA is shown in Figure 3. Assume a 
laptop is divided into 12 basic modules: shell, display, speaker, motherboard, graphics 
card, CPU, RAM, keyboard, hard disk, battery, fan, and optical drive. Each basic module 
corresponds to several module instances, with each module instance representing an at-
tribute feature. For example, the shell’s three module instances are black, red and white. 
In addition to the optimal PFA solution, the upper-level model will calculate the optimal 
combination of product configurations. 

We provide an example to illustrate the lower-level model. If a market segment cor-
responds to a product family PF, there are three types of products: 𝑃𝑃𝑉𝑉1, 𝑃𝑃𝑉𝑉2,𝑃𝑃𝑉𝑉3. There 
are two compound modules, 𝐶𝐶𝐶𝐶1

2 and 𝐶𝐶𝐶𝐶2
2, in some product variants, three basic mod-

ules, 𝑀𝑀4 , 𝑀𝑀8 , and 𝑀𝑀10 , are in 𝐶𝐶𝐶𝐶1
2 , while 𝑀𝑀10  has three attributes, 𝑚𝑚101 , 𝑚𝑚102 , and 

𝑚𝑚103. As each module instance is composed of different materials, decisions need to be 
made regarding the types of raw materials at the module instance level. Assume that there 
are two materials to choose from for 𝑚𝑚101, each corresponding to different fixed costs, 
variable costs, energy consumption, and carbon emissions. A judgement must be made 
based on these data in order to provide a satisfactory materials selection for the module 
instance 𝑚𝑚101. Assume that for compound module 𝐶𝐶𝐶𝐶1

2, there are two production meth-
ods to choose, each of which corresponds to different production design costs, manufac-
turing costs, energy consumption and carbon emissions. In the same way, one must 
choose the most suitable production method. After the product variant PV is used from 
the consumer group, the corresponding recycling mechanism is formulated. At this stage, 
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each PV has several recycling methods. It is assumed that 𝑃𝑃𝑉𝑉1 has two recycling methods. 
A similar method is used to find the most reasonable recycling way. According to the 
characteristics of a product family, we give several treatments at a product’s end-of-life 
stage, such as incineration, reuse, landfill, etc. At this level, one or more processing meth-
ods are reasonably determined according to the characteristics of the product family. In 
conjunction with the other three levels of SMP choices, one must select the optimal ap-
proach for addressing sustainability. 

 
Figure 3. The laptop architecture. 

4. Hierarchical Joint Optimization 
We propose an HJO mechanism for PFA and SMPs based on Stackelberg game. The 

upper-level model decides the PFA scheme, and the lower-level model decides the SMPs 
of the product family. 

4.1. Parameters 
The parameters used in the HJO model are shown in Table 1. 

Table 1. Notations for model parameters. 

Parameters Parameter Description 
𝑈𝑈𝑖𝑖𝑖𝑖  Utility for the j-th product variant in the i-th market segment. 
𝑤𝑤𝑗𝑗𝑗𝑗  Weight for the k-th basic module of the j-th product variant. 
𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖  Utility for the l-th module instance of the k-th basic module in the i-th market. 
𝜋𝜋𝑖𝑖𝑖𝑖  Constant related to the comprehensive utility for the j-th product variant in i-th market segments. 
𝜀𝜀𝑖𝑖𝑖𝑖 Error term for the j-th product variant in the i-th market segment. 
𝐸𝐸𝑖𝑖𝑖𝑖  Sustainable utility for the j-th product variant in the i-th market segment. 
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 Sustainable utility for the l-th module instance of the k-th basic module in i-th market segments. 
𝑃𝑃𝑖𝑖𝑖𝑖 Probability for the j-th product variant in the i-th market segment. 
C Enterprise total cost. 
𝐶𝐶𝐷𝐷 Enterprise design cost. 
𝐶𝐶𝑆𝑆 Enterprise sustainable cost. 
𝑄𝑄𝑖𝑖  Number of customers in the i-th market segment. 
𝑐𝑐𝐷𝐷𝐷𝐷 Fixed design cost. 
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𝑐𝑐𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷  Sustainable design cost for selecting the m-th raw material of the l-th module instance of the k-th 
basic module of the r-th compound module of the j-th product variant. 

𝑐𝑐𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷  Sustainable design cost for selecting the p-th production method of the r-th compound module of 
the j-th product variant. 

𝑐𝑐𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷 Sustainable design cost for selecting the c-th recycling method of the j-th product variant. 
𝑐𝑐𝑒𝑒𝐷𝐷𝐷𝐷 Sustainable design cost for selecting the e-th end-of-life processing method of the product family. 
𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑀𝑀𝑀𝑀  Fixed cost for selecting the m-th raw material of the l-th module instance of the k-th basic module. 

𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑀𝑀𝑀𝑀  
Unit variable cost for selecting the m-th raw material of the l-th module instance of the k-th basic 
module. 

𝑐𝑐𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶  Fixed manufacturing cost for selecting the p-th production method of the r-th compound module.  

𝑐𝑐𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶  Unit variable manufacturing cost for selecting the p-th production method of the r-th compound 
module.  

𝑐𝑐𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃  Fixed recycling cost for selecting the c-th recycling method of the j-th product variant.  
𝑐𝑐𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃 Unit variable recycling cost for selecting the c-th recycling method of the j-th product variant.  
𝑐𝑐𝑒𝑒𝐸𝐸𝐸𝐸  Fixed process cost for selecting the e-th end-of-life processing method. 
𝑐𝑐𝑒𝑒𝐸𝐸𝐸𝐸 Unit variable process cost for selecting the e-th end-of-life processing method. 

𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 Emission for selecting the m-th raw material of the l-th module instance of the k-th basic module of 
the r-th compound module of the j-th product variant. 

𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗 Emission for selecting the p-th production method of the r-th compound module of the j-th prod-
uct variant. 

𝑑𝑑𝑗𝑗𝑗𝑗 Emission for selecting the c-th recycling method of the j-th product variant. 
𝑑𝑑𝑒𝑒 Emission for selecting the e-th end-of-life processing method of the product family. 

𝑠𝑠𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 Consumption for selecting the m-th raw material of the l-th module instance of the k-th basic mod-
ule of the r-th compound module of the j-th product variant. 

𝑠𝑠𝑗𝑗𝑗𝑗𝑗𝑗 Consumption for selecting the p-th production method of the r-th compound module of the j-th 
product variant. 

𝑠𝑠𝑗𝑗𝑗𝑗 Consumption for selecting the c-th recycling method of the j-th product variant. 
𝑠𝑠𝑒𝑒  Consumption for selecting the e-th end-of-life processing method of the product family. 
𝜏𝜏𝑗𝑗 Recovery probability of the j-th product variant. 
𝛽𝛽𝑒𝑒 Proportion of e-th end-of-life processing method of the product family. 
𝐽𝐽+ Maximal number of product variants. 

4.2. Decision Variables 
The decision variables used in the model are as follows: 
𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 : Binary integer = 1 or 0, depending on whether the k-th basic module of the r-th 

compound module of the j-th product selects the l-th module instance. 
𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗: Binary integer = 1 or 0, depending on whether the l-th module instance of the 

k-th basic module of the r-th compound module of the j-th product selects the m-th raw 
material. 

𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗: Binary integer = 1 or 0, depending on whether the r-th compound module of the 
j-th product selects the p-th production method. 

𝑦𝑦𝑗𝑗𝑗𝑗: Binary integer = 1 or 0, depending on whether the j-th product selects the c-th 
recycling method. 

𝑦𝑦𝑒𝑒: Binary integer = 1 or 0, depending on whether the product family selects the e-th 
end-of-life processing method of the product family. 

𝑥𝑥𝑗𝑗r𝑘𝑘𝑘𝑘   is the upper-level decision variable and 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗,𝑦𝑦𝑗𝑗𝑗𝑗 , and 𝑦𝑦𝑒𝑒  are the lower-
level decision variables. Figure 4 is a structural of the decision variables. The upper part 
describes the choice of PFA (x), and the lower part describes the choice of SMPs. The up-
per-level decision variable x is passed to the lower-level model by calculating the upper-
level objective function, and the lower-level decision variable y feeds back to the upper-
level model through the result of the lower-level objective function value, thus looping 
until the optimal solution satisfying the upper and lower-level constraints is obtained. 
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Figure 4. Decision variables’ structure. 

4.3. Upper-Level Optimization 
The definition of PFA stands as a pivotal undertaking in any industry’s product de-

velopment activity [47]. Given that this paper focuses on the modular architecture of prod-
ucts and collaborative decision-making design, the upper-level modular architecture is 
solely for configuring functional elements (choosing module instances) and aligning func-
tional elements with physical components (determining the quantity of product variants 
and compound modules). For the upper level of the model, the following assumptions are 
made: 
(1) A product family contains multiple types of products [8]; 
(2) In the same market segment, customers’ purchase preferences are basically the same 

[48]. 
The conjoint analysis method is widely used to measure customer demand prefer-

ences for different attribute levels based on stronger analytical capabilities [49]. The cus-
tomer’s combined utility for a single product equals the weighted sum of each basic mod-
ule instance utility that comprises the product. The utility is expressed as Equation (1). 

𝑈𝑈𝑖𝑖𝑖𝑖 = ����𝑤𝑤𝑗𝑗𝑗𝑗𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜋𝜋𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖

𝐿𝐿𝑘𝑘

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

𝑅𝑅

𝑟𝑟=1

. (1) 

Similarly, sustainable utility is expressed as follows: 

𝐸𝐸𝑖𝑖𝑖𝑖 = ����𝑤𝑤𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜋𝜋𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖

𝐿𝐿𝑘𝑘

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

𝑅𝑅

𝑟𝑟=1

, (2) 

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 includes two parts: energy consumption and emissions. Its specific expression 
is shown below: 

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 =
∑ 𝑧𝑧𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2
𝑛𝑛=1

∑ 𝑧𝑧𝑛𝑛2
𝑛𝑛=1

 𝑛𝑛 = 1,2, (3) 

where 𝑧𝑧𝑛𝑛 indicates the weight and 𝑎𝑎1𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 indicates the energy consumption index dur-
ing the product lifecycle for selecting the m-th raw material of the l-th module instance of 
the k-th basic module of the r-th compound module of the j-th product variant. The specific 
expression of 𝑎𝑎1𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is shown in Equation (4): 
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𝑎𝑎1𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜗𝜗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑒𝑒 + 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑔𝑔 𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑔𝑔 �

𝑁𝑁

𝑛𝑛=1

, (4) 

where n represents the type of consumption, for example lighting and heating, ventilation, 
or air conditioning;  𝜗𝜗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 describes consumption performance of the n-th type for se-
lecting the m-th raw material of the l-th module instance of the k-th basic module of the r-
th compound module of the j-th product variant;  𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒  indicates the power consump-
tion of group n for selecting the m-th raw material of the l-th module instance of the k-th 
basic module of the r-th compound module of the j-th product variant; and 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑔𝑔  is fuel 
(natural gas/coals) consumption for selecting the m-th raw material of the l-th module 
instance of the k-th basic module of the r-th compound module of the j-th product variant. 
 𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑒𝑒  is total annual power consumption for selecting the m-th raw material of the l-th 
module instance of the k-th basic module of the r-th compound module of the j-th product 
variant, 𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑔𝑔  is total annual fuel consumption for selecting the m-th raw material of the 
l-th module instance of the k-th basic module of the r-th compound module of the j-th 
product variant. 

Equation (5) represents the emission index. 

𝑎𝑎2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = �𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁

𝑛𝑛=1

, (5) 

where n represents the type of emission. 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  describes emission performance of the n-
th type for selecting the m-th raw material of the l-th module instance of the k-th basic 
module of the r-th compound module of the j-th product variant. 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is reuse percent-
age of the n-th type for selecting the m-th raw material of the l-th module instance of the 
k-th basic module of the r-th compound module of the j-th product variant.  𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is total 
disposal amount of the n-th type for selecting the m-th raw material of the l-th module 
instance of the k-th basic module of the r-th compound module of the j-th product variant, 
tons/yr. 

The multinomial logit (MNL) selection rules are known for providing a more realistic 
representation of consumer decision-making processes and are used to simulate customer 
selection probabilities for products in product design [50]. Specifically, they are expressed 
as in Equation (6). 

𝑃𝑃𝑖𝑖𝑖𝑖 =
exp �𝜇𝜇(𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖)�

∑ exp [𝜇𝜇(𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖)]𝐽𝐽
𝑗𝑗 +   ∑ exp [𝜇𝜇(𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖)]𝑁𝑁𝑐𝑐

𝑗𝑗

, (6) 

where µ represents a positive scaling parameter of the MNL model. As µ tends to infinity, 
the model approaches a deterministic selection rule. Conversely, as µ tends to 0, the model 
approximates a uniformly distributed selection rule. 

The total cost is composed of design cost and sustainable cost, which is as follows: 

𝐶𝐶 = 𝑐𝑐𝐷𝐷 + 𝑐𝑐𝑆𝑆. (7) 

The design cost includes the following components: fixed design cost, raw material 
design cost, production method design cost, recycling method design cost, and end-of-life 
processing method design cost. The design cost is specifically expressed as follows: 

𝑐𝑐𝐷𝐷 = 𝑐𝑐𝐷𝐷𝐷𝐷 + �𝑄𝑄𝑖𝑖 ��𝑃𝑃𝑖𝑖𝑖𝑖 �����𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝐿𝐿𝑘𝑘

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

� 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑀𝑀𝑙𝑙𝑙𝑙

𝑚𝑚=1

𝑐𝑐𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷 + �𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑐𝑐𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷
𝑃𝑃𝑟𝑟

𝑃𝑃=1

�
𝑅𝑅

𝑟𝑟

+ � 𝑦𝑦𝑗𝑗𝑗𝑗
𝐶𝐶

𝑐𝑐=1
𝑐𝑐𝑗𝑗𝑗𝑗𝐷𝐷𝐷𝐷�

𝐽𝐽

𝑗𝑗=1

+ �𝑦𝑦𝑒𝑒𝑐𝑐𝑒𝑒𝐷𝐷𝐷𝐷
𝐸𝐸

𝑒𝑒=1

� .
𝐼𝐼

𝑖𝑖=1

 (8) 
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4.4. Lower-Level Optimization 
The lower-level model selects the sustainable solution for the product. In accordance 

with the upper decision-making scheme, the lower-level decision schemes are optimized 
to minimize the sustainable comprehensive evaluation indices. 

For the lower level of the model, the following assumptions are made. 
(1) Product family cost is divided by direct and indirect cost; 
(2) The SMPs of the product family only consider the economic, environmental and con-

sumer demands. 
Equation (9) is the SMP cost for a product family. The sustainable cost of the product 

primarily encompasses the expenses associated with raw materials, production methods, 
recovery methods, and end-of-life processing methods. 

𝑐𝑐𝑆𝑆 = 𝑐𝑐𝕓𝕓 + 𝑐𝑐ℂ + 𝑐𝑐ℙ + 𝑐𝑐𝔼𝔼, (9) 

Equations (10)–(13) represent the engineering cost of the four stages of the product 
family. 

𝑐𝑐𝕓𝕓 = �����𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝐿𝐿

𝑙𝑙=1

� 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑀𝑀𝑀𝑀 + 𝑄𝑄𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑀𝑀𝑀𝑀  �
𝑀𝑀𝑙𝑙𝑙𝑙

𝑚𝑚=1

𝐾𝐾

𝑘𝑘=1

𝑅𝑅

𝑟𝑟=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

, (10) 

𝑐𝑐ℂ = ����𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗(𝑐𝑐𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶 + 𝑄𝑄𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑟𝑟𝑟𝑟𝑀𝑀𝑀𝑀)
𝑃𝑃𝑟𝑟

𝑃𝑃=1

𝑅𝑅

𝑟𝑟=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

, (11) 

𝑐𝑐ℙ = ���𝑦𝑦𝑗𝑗𝑗𝑗(𝑐𝑐𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃 + 𝑄𝑄𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃)
𝐶𝐶

𝑐𝑐=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝜏𝜏𝑗𝑗 , (12) 

𝑐𝑐𝔼𝔼 = ���𝑦𝑦𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝐽𝐽

𝑗𝑗=1

(𝑐𝑐𝑒𝑒𝐸𝐸𝐸𝐸 + 𝑄𝑄𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝐸𝐸𝐸𝐸)
𝐼𝐼

𝑖𝑖=1

𝛽𝛽𝑒𝑒 . (13) 

Equation (10) indicates that the module instances take both fixed and variable costs 
into account when selecting raw materials. Equation (11) represents the manufacturing 
cost of the compound modules, which is composed of fixed and variable costs. Equation 
(12) represents the recycling cost of product variants, including fixed and variable costs. 
Equation (13) represents the cost of different processing methods at the end-of-life stage 
of the product family, including fixed and variable costs. 

Equation (14) is emissions. 

𝐷𝐷 = ������� 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + �𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗

𝑃𝑃𝑟𝑟

𝑝𝑝=1

𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗

𝑀𝑀𝑙𝑙𝑙𝑙

𝑚𝑚=1

𝐿𝐿𝑘𝑘

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

�
𝑅𝑅

𝑟𝑟=1

+ �𝑦𝑦𝑗𝑗𝑗𝑗

𝐶𝐶

𝑐𝑐=1

𝑑𝑑𝑗𝑗𝑗𝑗𝜏𝜏𝑗𝑗� + �𝑦𝑦𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝑑𝑑𝑒𝑒𝛽𝛽𝑒𝑒 .
𝐽𝐽

𝑗𝑗=1

 (14) 

Equation (15) represents the energy consumption. 

𝑆𝑆 = ������� 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑀𝑀𝑙𝑙𝑙𝑙

𝑚𝑚=1

𝐿𝐿𝑘𝑘

𝑙𝑙=1

𝐾𝐾

𝑘𝑘=1

+�𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗

𝑃𝑃𝑟𝑟

𝑝𝑝=1

𝑠𝑠𝑗𝑗𝑗𝑗𝑗𝑗� + �𝑦𝑦𝑗𝑗𝑗𝑗

𝐶𝐶

𝑐𝑐=1

𝑠𝑠𝑗𝑗𝑗𝑗𝜏𝜏𝑗𝑗

𝑅𝑅

𝑟𝑟=1

�
𝐽𝐽

𝑗𝑗=1

+ �𝑦𝑦𝑒𝑒

𝐸𝐸

𝑒𝑒=1

𝑠𝑠𝑒𝑒𝛽𝛽𝑒𝑒 . (15) 

4.5. HJO Decision Making of PFA and SMPs 
The HJO model can be obtained as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹 =
𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖

𝐶𝐶
𝑃𝑃𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖  (16) 
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𝑠𝑠. 𝑡𝑡.���𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑥𝑥𝑗𝑗′𝑟𝑟𝑟𝑟𝑟𝑟� ≥ 0𝑗𝑗 ≠ 𝑗𝑗′
𝐿𝐿𝑘𝑘

l=1

K

k=1

 (17) 

�𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝐿𝐿𝑘𝑘

𝑙𝑙=1

= 1 (18) 

�𝑥𝑥𝑗𝑗 ≤ 𝐽𝐽+
𝐽𝐽

𝑗𝑗

 (19) 

𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∈{0,1} (20) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓= 1
𝐾𝐾�
��𝐾𝐾�𝑘𝑘1𝐶𝐶 + 1��𝐾𝐾�𝑘𝑘2𝐷𝐷 + 1��𝐾𝐾�𝑘𝑘3𝑆𝑆 + 1� − 1� (21) 

𝑠𝑠. 𝑡𝑡. 1 +  𝐾𝐾� = ��1 + 𝐾𝐾�𝑘𝑘𝑖𝑖�
3

𝑖𝑖=1

 (22) 

𝑥𝑥𝑗𝑗r𝑘𝑘𝑘𝑘 = � 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑀𝑀

𝑚𝑚=1

 (23) 

�𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗

𝑃𝑃

𝑝𝑝=1

= 1 (24) 

�𝑦𝑦𝑗𝑗𝑗𝑗

𝐶𝐶

𝑐𝑐=1

≥ 1 (25) 

�𝑦𝑦𝑒𝑒 ≥ 1
𝐸𝐸

𝑒𝑒=1

 (26) 

𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗,𝑦𝑦𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑒𝑒 ∈{0,1} (27) 

Equation (16) is the objective function of the PFA design problem. Equation (17) rep-
resents the unique constraint of the product variant. Equation (18) indicates that every 
basic module only selects one module instance. Equation (19) represents the product 
quantity constraint. Equation (20) represents the range constraint of the upper-level deci-
sion variable. 

Equation (21) is the objective function of the SMP problem. 𝑘𝑘𝑖𝑖(𝑖𝑖 = 1,2,3)  indicates a 
single attribute scaling constant and 𝐾𝐾� is a normalising constant range from 0 to 1. Equa-
tion (22) represents the relationship between 𝐾𝐾� and 𝑘𝑘𝑖𝑖. Equation (23) represents the rela-
tionship constraint for the instance selection variable and the raw material selection vari-
able. Equation (24) indicates that only one production method can be selected for each 
compound module. Equation (25) indicates at least one or more recycling methods are 
available for each product variant. Equation (26) indicates at least one or more end-of-life 
process methods are available for the product family. Equation (27) is the range con-
straints of the lower-level decision variables. 

In the HJO model, the upper-level PFA design determines the PFA and configuration 
scheme for a certain market segment. According to the decision results of the upper level, 
the lower level decides on the choice of raw materials 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 , the production method 
 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 , the recycling method 𝑦𝑦𝑗𝑗𝑗𝑗, and the end-of-life processing method 𝑦𝑦𝑒𝑒. The lower-level 
results determined according to the sustainable comprehensive evaluation indices are 



Sustainability 2024, 16, 2727 14 of 28 
 

passed to the upper-level model. According to the results of the lower-level feedback, the 
upper level will adjust the product architecture, and then reevaluate the decision variable 
𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  to maximize the upper-level objective function. The loop continues until it reaches 
the Stackelberg equilibrium. The optimal solution of the model is reached when neither 
decision-maker is willing to change their decisions further, and the upper- and lower-level 
objective function values are calculated based on this optimal solution. 

5. Solution of the Model 
5.1. Algorithm Construction and Evaluation 

The above bilevel 0–1 integer nonlinear programming model established, based on 
the actual engineering characteristics, is an NP-hard problem [43], which makes the model 
solution very difficult. The genetic algorithm is highly effective when efficiently discover-
ing a global near-optimal solution and has the capability to evade local optima while over-
coming the multimodality of the objective function [51]. Given the complexity of our 
model, we have developed a nested framework aligned with the bilevel programming 
solution mechanism and applying genetic algorithms to this framework, forming an 
NGA. Figure 5 illustrates the specific process of the NGA, with the detailed steps outlined 
as follows: 

Step 1: Set the parameters: Set the parameters of PFA optimization, contain the upper-
level and lower-level genetic algorithm population size N and M and the maximum num-
ber of iterations in upper and lower model GN and GM. 

Step 2: Upper-level population initialization: According to the different PFA design 
and the upper-level bounds of the product variant configuration, the coding strategy of 
the variables are determined and the upper-level product variant is encoded. 

Step 3: Determine that the upper-level constraints are satisfied: First, one must judge 
whether the individual population of the upper-level PFA design satisfies the upper-level 
constraint conditions. If it is satisfied, the individuals are passed to the lower-level and 
proceed to the next step. If not, set the upper-level fitness function to zero and jump to 
step 7. Secondly, the utility of unit cost of the whole product family is taken as the fitness 
function of the upper-level model. 

Step 4: Lower-level population initialization: According to the different SMP schemes 
and the bounds of the lower-level decision variants, the coding strategy of the variables 
are determined and the lower-level SMP variants are encoded. 

Step 5: Judgement of the lower-level constraints: Evaluate the parent populations of 
the lower-level model, setting their fitness values to zero if the populations do not satisfy 
the constraints. For populations that meet the constraints, utilize the lower-level sustain-
able comprehensive evaluation indices value as the fitness function values. 

Step 6: Lower-level termination checking: Check whether the current number of iter-
ations in the lower-level has reached the maximum limit set by GM. If the limit has been 
reached, record the optimal solutions along with their corresponding values. Then, feed 
back the decision variables for SMPs to the upper-level model. If the maximum iteration 
limit has not been reached, proceed with the selection, crossover, and mutation of the 
lower-level population individuals and move to step 5. 

Step 7: Termination checking: Check whether the upper-level genetic algorithm has 
reached the maximum number of iterations, denoted as GN. If the maximum number of 
iterations has been reached, record the upper-level optimal solutions and their corre-
sponding optimal value. If the maximum iteration limit has not been reached, continue 
with the selection, crossover, and mutation of individuals in the upper-level population 
and proceed to step 3. 
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Figure 5. NGA process of HJO. 

5.2. Encoding 
To facilitate the calculation, we encode the upper- and lower-level decision variables 

into two chromosomes of finite length. The upper chromosomes represent the PFA design, 
and its length is the sum of all modules and corresponding module instances in the prod-
uct variants. As shown in Figure 6a, the first layer represents the product family, and the 
different colors correspond with the products in the product family. Different PFAs result 
in different lengths of this layer. The second layer represents the product variants, and the 
product variant consists of several compound modules. As shown, the product variant 
𝑗𝑗 ∈ 𝐽𝐽  consists of 𝑟𝑟 ∈ 𝑅𝑅  compound modules. The third layer represents the compound 
modules, which consists of several basic modules. The fourth layer represents module 
instances, with each corresponding number representing the selection of a specific module 
instance by a basic module. The upper-level code length is 𝐽𝐽 ∗ 𝑅𝑅 ∗ 𝐿𝐿. The lower-level chro-
mosomes represent the choice of product family, product variants, compound modules 
and basic modules for the corresponding SMP solutions. The coding of the lower-level 
decision variables selects the 0–1 coding mode, 0 when a certain method is not selected 
and 1 when a certain method is selected. The specific coding method is shown in Figure 
6b. 
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Figure 6. NGA encoding. (a) Upper-level GA encoding for PFA. (b) Lower-level GA encoding for 
SMPs. 

5.3. Crossover and Mutation 
The selection process involves the use of an operator to choose individuals with ro-

bust vitality from the population, thus generating new populations. This can be under-
taken in order to obtain the best child chromosomes for survival in the evolution [52]. In 
this study, the operator is generated by roulette. This means that the probability of each 
chromosome being selected for the next generation is determined by the ratio of its fitness 
value to the total fitness value of all individuals in the population. Consequently, individ-
uals with higher fitness values are more likely to be selected for the next generation. 

Crossover is the primary method for generating new chromosomes. Illustrated in 
Figure 7, crossover involves two parent chromosomes exchanging part of their genes at a 
certain position to produce two new offspring chromosomes. Mutation, on the other hand, 
involves altering a portion of the chromosome’s gene with a small probability after the 
crossover operation. Through the mutation operation, the corresponding module selec-
tions, recycling methods, etc., can be randomly altered. 

 
Figure 7. Crossover operations. 

6. Case Study 
6.1. Background Description 

To verify the effectiveness of the proposed HJO model and NGA, it was applied to 
the design of a brand of a laptop computer product family. The laptop is a typical modular 
product. Its PFA is shown in Figure 8. To ensure the company’s benign development while 
meeting the requirements of consumers, the company must determine the optimal PFA 
and corresponding configuration. 
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Figure 8. Structure of laptop. 

The modules information for the laptop family is presented in Table 2. With a total of 
12 modules, the number of potential options amounts to 46,656 (4 × 36 × 24 × 1). Given 
the considerable number of selected product variants, conducting individual market re-
search for each one is impractical. Consequently, to gauge consumer preferences across 
product segments, orthogonal analysis is employed on the alternatives, yielding 32 or-
thogonal product profiles (detailed in Table 3). Subsequently, a group of 50 consumers 
was selected to assess and rank the 32 product variants. Through conjoint analysis, the 
utility values of different modules within the product variants were determined for the 
market segment, as illustrated in Table 4. The estimated sizes of these market segments 
were 5000, 6000 and 8000. The population size for both upper and lower levels was fixed 
at 40 generations, with crossover and mutation probabilities set to 0.8 and 0.05, respec-
tively. Parameters 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 in the multi-attribute utility function are assigned values 
of 0.3, 0.35 and 0.35, respectively. The parameter µ can be set to 0.6. 

Table 2. Modules in the laptop family. 

ID Name  𝒎𝒎𝒌𝒌𝒌𝒌 Attribute 
𝑀𝑀1 Shell 𝑚𝑚11 Black  

  m12 White 
  𝑚𝑚13 Red 

𝑀𝑀2 Display 𝑚𝑚21 LCD 
  𝑚𝑚22 LED 

𝑀𝑀3 Speaker  𝑚𝑚31 Mono 
  𝑚𝑚32 Stereo 

𝑀𝑀4 Motherboard 𝑚𝑚41 ATX 
  𝑚𝑚42 M-ATX 

𝑀𝑀5 Graphics card 𝑚𝑚51 Standalone graphics 
  𝑚𝑚52 Integrated graphics 

𝑀𝑀6 CPU 𝑚𝑚61 Intel 
𝑀𝑀7 RAM 𝑚𝑚71 4G 

  𝑚𝑚72 8G 
  𝑚𝑚73 16G 

𝑀𝑀8 Keyboard  𝑚𝑚81 Mechanical  
  𝑚𝑚82 Plastic film  
  𝑚𝑚83 Conductive rubber  
  𝑚𝑚84 Capacitive  
𝑀𝑀9 Hard disk 𝑚𝑚91 1TB 

  𝑚𝑚92 500GB 
  𝑚𝑚93 256GB 

𝑀𝑀10 Battery  𝑚𝑚101 Nickel-cadmium 
  𝑚𝑚102 NiMH 
  𝑚𝑚103 Lithium 
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𝑀𝑀11 Fan  𝑚𝑚111 60 
  𝑚𝑚112 80 
  𝑚𝑚113 120 

𝑀𝑀12 Optical drive 𝑚𝑚121 CD 
  𝑚𝑚122 CD/DVD 

Table 3. Orthogonal product profiles with conjoint analysis. 

ID 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 … 𝑴𝑴𝟏𝟏𝟏𝟏 
1 Red LCD Mono ATX … DVD 
2 White LED Mono ATX … CD 
3 Black LCD Stereo ATX … DVD 
4 Red LCD Mono ATX … CD 

… … … … … … … 
31 Black LCD Stereo M-ATX … DVD 
32 Red LCD Mono ATX … CD 

Table 4. Part–worth utilities. 

𝒎𝒎𝒌𝒌𝒌𝒌 𝒖𝒖𝒊𝒊𝒊𝒊𝒊𝒊 𝒎𝒎𝒌𝒌𝒌𝒌 𝒖𝒖𝒊𝒊𝒊𝒊𝒊𝒊 
𝑚𝑚11 1.41 𝑚𝑚71 5.11 
𝑚𝑚12 2.53 𝑚𝑚72 −1.35 
𝑚𝑚13 6.42 𝑚𝑚73 2.46 
𝑚𝑚21 6.47 𝑚𝑚81 −3.23 
𝑚𝑚22 7.45 𝑚𝑚82 1.46 
… … … … 
𝑚𝑚61 3.58 𝑚𝑚122 3.16 

The compound module configuration classification is shown in Table 5. For the SMP 
problem information for the module instances, the compound modules, the product var-
iants and the product family can be introduced in Tables 6–10. We assume that the infor-
mation regarding the module instances of different products in each product family are 
the same. 

Table 5. Compound modules configuration classification. 

R 𝑪𝑪𝑪𝑪𝒓𝒓 𝒎𝒎𝒌𝒌𝒌𝒌 
R = 2 𝐶𝐶𝐶𝐶1

2 Motherboard, graphics card, CPU and hard disk are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶2

2 Shell, RAM, keyboard and battery are mandatory; the others are to be optimized 
R = 3 𝐶𝐶𝐶𝐶1

3 Motherboard, graphics card and RAM are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶2

3 Shell, CPU and hard disk are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶3

3 Display, speaker and optical drive are mandatory; the others are to be optimized 
R = 4 𝐶𝐶𝐶𝐶1

4 Display, speaker and RAM are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶2

4 Motherboard, graphics card and CPU are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶3

4 RAM and hard disk are mandatory; the others are to be optimized 
 𝐶𝐶𝐶𝐶4

4 Keyboard is mandatory; the others are to be optimized 

Table 6. Raw material information for module instances. 

𝒎𝒎𝒌𝒌𝒌𝒌 m 𝒄𝒄𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝑫𝑫𝑫𝑫  𝒄𝒄𝒌𝒌𝒌𝒌𝒌𝒌𝑴𝑴𝑴𝑴  𝒄𝒄𝒌𝒌𝒌𝒌𝒌𝒌𝑴𝑴𝑴𝑴  𝒔𝒔𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 𝒅𝒅𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 
𝑚𝑚11 1 20 80 9 3 2 

 2 22 70 8 6 4 
𝑚𝑚12 1 25 80 8 8 3 

 2 23 60 9 1 10 
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𝑚𝑚13 1 20 70 6 9 8 
 2 21 90 9 10 2 

𝑚𝑚21 1 260 300 20 50 32 
 2 260 310 21 20 23 

𝑚𝑚22 1 100 210 23 20 21 
 2 120 290 25 19 40 

… … … … … … … 
𝑚𝑚121 1 200 190 10 10 17 
𝑚𝑚122 2 180 200 12 16 6 

Table 7. Sustainable utilities information for module instances. 

𝒎𝒎𝒌𝒌𝒌𝒌 m 𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋
𝒆𝒆  𝒎𝒎𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋

𝒈𝒈  n 𝝑𝝑𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒃𝒃𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒆𝒆  𝒃𝒃𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏
𝒈𝒈  𝝃𝝃𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝑹𝑹𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒕𝒕𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 

𝒎𝒎𝟏𝟏𝟏𝟏 1 0.9 0.5 1 0.5 2 1 1 23 5 
    … … … … … … … 
    4 0.2 7 0 0.9 25 6 
 2 0.7 0.9 1 0.4 6 4 0.8 20 4 
    … … … … … … … 
    4 0.7 4 1 1.1 23 5 

𝒎𝒎𝟏𝟏𝟏𝟏 1 0.9 0.2 1 0.6 8 3 1.2 22 4 
    … … … … … … … 
    4 0.9 5 0 0.6 25 6 
 2 0.6 0.4 1 0.9 1 1 0.7 10 20 
    … … … … … … … 
    4 0.8 7 5 0.9 22 4 

𝒎𝒎𝟏𝟏𝟏𝟏 1 0.7 0.6 1 0.7 9 8 1.1 10 3 
    … … … … … … … 
    4 0.6 10 4 1.2 11 1 
 2 0.9 0.9 1 0.7 4 2 1.2 10 30 
    … … … … … … … 
    4 0.5 3 6 1.0 12 27 

𝒎𝒎𝟐𝟐𝟐𝟐 1 0.3 0.9 1 0.4 5 2 0.6 21 22 
    … … … … … … … 
    4 0.9 2 2 0.7 19 8 
 2 0.3 0.8 1 0.5 2 2 0.8 10 10 
    … … … … … … … 
    4 0.2 3 0 0.9 12 6 

𝒎𝒎𝟐𝟐𝟐𝟐 1 0.7 0.2 1 0.4 2 2 1.0 22 9 
    … … … … … … … 
    4 0.2 2 3 0.9 18 7 
 2 0.8 0.5 1 0.2 1 4 1.2 10 2 
    … … … … … … … 
    4 0.3 2 3 0.9 8 1 

… … … … … … … … … … … 
𝒎𝒎𝟏𝟏𝟏𝟏𝟏𝟏 1 0.8 0.8 1 0.5 1 7 0.8 25 9 

    … … … … … … … 
    4 0.6 8 2 0.9 29 7 

𝒎𝒎𝟏𝟏𝟏𝟏𝟏𝟏 2 0.7 0.9 1 0.4 1 6 1.0 24 3 
    … …  … … … … 
    4 0.6 5 7 1.1 28 8 
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Table 8. Production information for compound modules. 

𝑪𝑪𝑪𝑪𝒓𝒓 P 𝒄𝒄𝒋𝒋𝒋𝒋𝒋𝒋𝑫𝑫𝑫𝑫  𝒄𝒄𝒓𝒓𝑪𝑪𝑪𝑪 𝒄𝒄𝒓𝒓𝑪𝑪𝑪𝑪 𝒔𝒔𝒋𝒋𝒋𝒋𝒋𝒋 𝒅𝒅𝒋𝒋𝒋𝒋𝒋𝒋 
𝐶𝐶𝐶𝐶11

2  1 900 500 25 90 50 
 2 910 510 22 120 40 
 3 800 450 23 80 30 

𝐶𝐶𝐶𝐶21
3  1 700 520 24 40 80 

… … … … … … … 
𝐶𝐶𝐶𝐶41

4  1 500 300 11 30 25 
 2 550 310 9 50 20 
 3 400 350 12 10 17 
 4 390 270 10 90 32 

Table 9. Products recycling information. 

Stage PV c  𝒄𝒄𝒋𝒋𝒋𝒋𝑫𝑫𝑫𝑫 𝒄𝒄𝒋𝒋𝑷𝑷𝑷𝑷 𝒄𝒄𝒋𝒋𝑷𝑷𝑷𝑷 𝒔𝒔𝒋𝒋𝒋𝒋 𝒅𝒅𝒋𝒋𝒋𝒋 

Recycling 

1 1 27 300 10 9 3 
 2 15 390 19 10 1 
2 1 32 320 17 15 3 
 2 37 290 17 22 4 
 3 83 330 14 15 2 
3 1 26 290 13 13 3 
 2 56 280 12 11 1 
4 1 12 160 12 12 3 
 2 57 590 12 17 4 
 3 37 470 12 8 1 
 4 66 510 18 6 2 

Table 10. End-of-life processing information for product family. 

Stage e 𝒄𝒄𝒆𝒆𝑫𝑫𝑫𝑫 𝒄𝒄𝒋𝒋𝑬𝑬𝑬𝑬 𝒄𝒄𝒋𝒋𝑬𝑬𝑬𝑬 𝒔𝒔𝒆𝒆 𝒅𝒅𝒆𝒆 

End of life pro-
cessing 

1 23 300 73 130 34 
2 24 500 70 150 32 
3 25 100 68 200 19 
4 22 300 77 150 22 
5 20 200 79 180 47 

6.2. Results of HJO Model 
The developed solution method is adopted to solve the HJO model. The NGA is re-

alized by MATLAB 2023b on an Intel(R) Core (TM)i5 and 16 GB RAM 3733 MHz with the 
following parameters: initial population scale is capped at 40; the crossover probability is 
set at 0.80; the mutation probability is 0.05; the maximal number of iterations is 150; and 
the precision of the binary code is set to 0.01, these settings are derived from experience 
in the domain of computational experiments. Figure 9 displays the optimal results for PFA 
design in SMPs. Various colors represent different PFA combinations across distinct prod-
uct variants. Figure 9 comprises an x-axis representing the number of iterations and a y-
axis representing the optimal value of the upper-level objective function for each scenario. 
The iteration count is set to 150 generations with a computational time of 2593 s. Figure 
10 presents the results of the optimal SMPs for PFA scheme (J = 3, R = 3). The x-axis rep-
resents the number of iterations. The left y-axis illustrates the change in optimization re-
sults at the upper-level model, while the right y-axis depicts the change in optimization 
results at the lower-level model. Throughout the entire optimization process, there is a 
mutual influence between the upper and lower levels. The optimization outcomes of both 
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the upper-level and lower-level models fluctuate with each generation and begin to con-
verge around the 95th generation, continuing until the end of the iterations. Both the 
leader and follower are reluctant to further alter their decisions, which suggests that the 
two decision-makers have reached a state of equilibrium. 

Table 11 shows the optimal SMPs for the laptop PFA design. For example, the first 
product variant consists of three compound modules, while 𝐶𝐶𝐶𝐶11

3  consists of four basic 
modules. Each basic module selects the corresponding product configuration 
𝑚𝑚42,𝑚𝑚51,𝑚𝑚73 and 𝑚𝑚84, and each module instance selects the corresponding raw material 
in the fourth column. 𝑚𝑚42 selects the corresponding second raw material. 𝐶𝐶𝐶𝐶11

3  selects 
the third production method, product variant 1 selects the second recycling method, and 
the product family selects the third end-of-life processing method. 

 
Figure 9. Evolution processes with respect to different settings of (J, R). 

 
Figure 10. Evolution processes for both upper-level and lower-level NGA in scenarios J = 3 and R = 
3. 

  



Sustainability 2024, 16, 2727 22 of 28 
 

Table 11. Optimal laptop PFA considering SMPs. 

PV 𝑪𝑪𝑪𝑪𝒓𝒓 𝒎𝒎𝒌𝒌𝒌𝒌 𝒚𝒚𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 𝒚𝒚𝒋𝒋𝒋𝒋𝒋𝒋 𝒚𝒚𝒋𝒋𝒋𝒋  𝒚𝒚𝒆𝒆 
1 𝐶𝐶𝐶𝐶11

3  𝑚𝑚42 2 

3 

2 

3 

  𝑚𝑚51 1 
  𝑚𝑚73 3 
  𝑚𝑚84 1 
 𝐶𝐶𝐶𝐶12

3  𝑚𝑚13 1 

2 
  𝑚𝑚61 2 
  𝑚𝑚93 1 
  𝑚𝑚102 2 
  𝑚𝑚111 1 
 𝐶𝐶𝐶𝐶13

3  𝑚𝑚21 1 

2 
  𝑚𝑚31 1 
  𝑚𝑚83 1 
  𝑚𝑚103 2 
  𝑚𝑚122 1 
2 𝐶𝐶𝐶𝐶21

3  𝑚𝑚41 1 

3 

3 

  𝑚𝑚52 2 
  𝑚𝑚71 2 
  𝑚𝑚102 2 
  𝑚𝑚113 1 
 𝐶𝐶𝐶𝐶22

3  𝑚𝑚12 2 

2 

  𝑚𝑚62 2 
  𝑚𝑚82 2 
  𝑚𝑚93 1 
  𝑚𝑚103 2 
  𝑚𝑚113 1 
 𝐶𝐶𝐶𝐶23

3  𝑚𝑚22 2 

2 

  𝑚𝑚32 3 
  𝑚𝑚84 1 
  𝑚𝑚101 2 
  𝑚𝑚112 1 
  𝑚𝑚121 2 
3 𝐶𝐶𝐶𝐶31

3  𝑚𝑚41 1 

3 

2 

  𝑚𝑚51 1 
  𝑚𝑚73 3 
  𝑚𝑚81 1 
  𝑚𝑚101 2 
  𝑚𝑚111 1 
 𝐶𝐶𝐶𝐶32

3  𝑚𝑚13 1 

2 

  𝑚𝑚62 2 
  𝑚𝑚83 1 
  𝑚𝑚92 2 
  𝑚𝑚101 2 
  𝑚𝑚113 1 
 𝐶𝐶𝐶𝐶33

3  𝑚𝑚22 2 

2 
  𝑚𝑚32 3 
  𝑚𝑚102 2 
  𝑚𝑚112 1 
  𝑚𝑚121 2 

6.3. Sustainability Analysis for Problem 
To validate the advantages of our proposed sustainable product design and manu-

facturing process, we conducted comparative experiments between our proposed optimi-
zation design problem and a non-sustainable optimization design problem. In the non-
sustainable optimization design model (NS-HJO), our upper-level optimization objective 
is to maximize the utility of unit cost. The lower-level optimization objective is to mini-
mize the lifecycle cost. This means that the upper-level no longer considers sustainable 
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manufacturing utilities, while the lower-level no longer considers consumption and emis-
sions. 

The experimental results are shown in Table 12. One can observe that the optimal 
solutions for sustainable PFA schemes are different from those without sustainability con-
siderations. For the former, the optimal solution involves three product variants in a prod-
uct family, each with three combinations of compound modules. For the latter, the optimal 
PFA design involves three product variants in a product family, each with two combina-
tions of compound modules. Additionally, compared with the non-sustainability optimi-
zation problem, the utility of unit cost obtained by considering the sustainability problem 
is increased by 155% from 2.0 × 10−1 to 5.1 × 10−1. This suggests that considering sus-
tainable product development activities not only meets consumer demands for the prod-
uct family but also fulfills the environmental requirements of society, government, and 
customers. 

Table 12. Result comparison of different methods for different settings of (J; R). 

Approach (J, R) 
J = 2; 
R = 2 

J = 2; 
R = 3 

J = 2; 
R = 4 

J = 3; 
R = 2 

J = 3; 
R = 3 

J = 3; 
R = 4 

HJO U/C (×10−1) 4.1 3.8 4.6 4.9 5.1 4.6 
 Index (×1019) 4.9 4.8 4.8 4.9 4.7 4.7 

NS-HJO 
U/C (×101) 1.8 1.6 1.5 2.0 1.9 1.8 

Index (×106) 1.5 1.4 1.4 1.5 1.5 1.4 
IOM U/C (×10−1) 4.0 3.7 4.2 4.7 4.9 4.4 

 Index (×1019) 4.8 4.7 4.5 4.6 4.8 4.6 
TSM U/C (×10−1) 3.6 3.5 4.1 4.6 4.7 4.4 

 Index (×1019) 4.9 4.8 4.5 4.5 4.8 4.9 

6.4. Performance Analysis for Model 
To demonstrate the superiority of the HJO model when addressing the optimal SMPs 

for PFA design, we compare the results obtained from this approach with those from two 
commonly used methods: the integrated optimization method (IOM) [52] and the two-
stage method (TSM) [17]. The comparison results are presented in Table 12. 

The IOM method is not based on the HJO mechanism of PFA and SMPs. The two 
problems are combined into one problem and the PFA and SMP solutions are decided at 
the same time. The leader and follower objective functions of the HJO act as the objective 
functions in IOM method, and the decision variables and constraints of the leader and 
follower models are used in the calculation of the IOM method. After obtaining the value 
calculated by the IOM method, it is taken into the lower-level objective function in order 
to calculate the lower-level model result. Compared with the integrated optimization 
method in J = 3, R = 3, the utility of unit cost obtained by the HJO method is increased by 
4.1% from 4.9 × 10−1  to 5.1 × 10−1 , while the comprehensive evaluation index is de-
creased by 2.13% from 4.8 × 1019 to 4.7 × 1019. This is mainly because the HJO design 
method prioritizes the cost-to-utility ratio of the leader, placing the comprehensive eval-
uation indices of the follower after the PFA design. The first-mover advantage of PFA de-
sign in bilevel decision-making promotes excellent quality and a favorable cost-to-utility 
ratio. Conversely, in the IOM method, PFA design and SMP solutions are equally im-
portant. Consequently, the product design department loses the first-mover advantage, 
resulting in a lower utility of unit cost. 

The TSM divides PFA design and SMP solutions into two stages. Firstly, the PFA is 
optimized, and then SMP solutions are determined according to the PFA and configura-
tion results. In the first stage, based on historical data and existing data of channels such 
as second-hand market, the product family manufacturing cost and utility are estimated 
and optimized. In the second stage, according to the obtained PFA and configuration 
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results, the corresponding raw materials, production methods, recovery methods and 
end-of-life process methods are selected, and sustainable comprehensive evaluation indi-
ces are calculated. In the first stage, the objective function is still the upper-level objective 
function, and the lower-level constraints are incorporated into the upper-level constraints. 
Compared with the two-stage method in J = 3; R = 3, the unit cost-utility ratio obtained by 
the HJO method increases by 8.5%, from 4.7 × 10−1 to 5.1 × 10−1. Additionally, the sus-
tainable comprehensive evaluation indices increase by 2.13%, from 4.8 × 1019  to 4.7 × 
1019. This is primarily attributed to the fact that the PFA cost and utility values are esti-
mated solely through historical and secondary market data analysis, without considering 
the impact of SMPs on cost and utility. As a result, the PFA solution cannot be adjusted 
promptly when the SMP plan changes. 

6.5. Reliability Analysis for Algorithm 
We validate the reliability for the NGA algorithm through two sets of experiments. 

• Optimality Analysis: Particle swarm optimization (PSO) is a relatively recent heuris-
tic algorithm inspired by the social behavior of crowded species like bird flocking 
and fish schooling, which has demonstrated success across a wide range of optimi-
zation tasks [53]. Consequently, we undertake sensitivity analysis of the parameter µ 
in the MNL choice rule on the PFA objective function value using both our proposed 
NGA algorithm and the PSO algorithm within a bilevel solving framework in order 
to verify the reliability of our proposed algorithm in terms of optimality. An experi-
ment is conducted by fixing µ as a series of constants ranging from 0 to 9 in incre-
ments of 1. The parameter settings of PSO are as follows: The number of swarms is 1, 
the number of particles is set to 20, and the number of generations is set to 100. The 
inertia weight (w) is set to 0.4 and 0.6. The acceleration coefficients (c1 and c2) are set 
to 2, and rand1 and rand2 follow a standard normal distribution with a mean of 0 
and a variance of 1. As illustrated in Figure 11, it is apparent that the PFA objective 
function value calculated by the nested PSO algorithm for 10 points ranging from 0 
to 9 is inferior to those obtained by the NGA. Consequently, we can infer that the 
reliability of our proposed NGA in terms of optimality surpasses that of the PSO al-
gorithm. 

• Stability Analysis: The second set of experiments involves conducting multiple trials 
for each value of the parameter µ in the MNL choice rule to determine deviation val-
ues. Subsequently, we assess the model’s stability by comparing the range of devia-
tion intervals for each value. The shaded area depicts the error band from multiple 
trials. As illustrated in Figure 11, the NGA displays varying levels of fluctuation 
across different parameter values. There is a smaller range of fluctuation compared 
with the PSO algorithm. Hence, we can infer that the reliability of our proposed NGA 
in terms of stability outperforms that of the PSO algorithm. 
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Figure 11. The reliability of µ on the MNL choice rule. 

7. Conclusions, Limitations and Future Research Directions 
7.1. Conclusions 

This study focuses on the HJO of PFA and SMP solutions. We delve into the decision 
mechanism and achieve an HJO process for PFA and SMP decisions. AN HJO model im-
plementing the joint optimization of PFA and SMPs is designed, establishing heterogene-
ous decision criteria for different decision-makers. The PFA plays a leader’s role, and it is 
intended to select the optimal PFA that meets the needs of a specific market niche. The 
choices of SMP solution are based on the design of the PFA and play a follower’s role. It 
is intended to arrive at an optimal sustainable solution to meet government, consumer 
and business requirements for sustainable development. An NGA that aligns with the 
HJO model solving mechanism is developed. A laptop case is designed for the application 
of our proposed model and algorithm. The effectiveness of the model and the reliability 
of the algorithm are validated through comparative experiments. Based on the study re-
sults, some valuable management insights can be concluded, as follows: 
(1) Considering sustainable product family design and manufacturing processes is val-

uable. Drawing from the experimental outcomes in Section 6.3, it becomes evident 
that, while integrating sustainability into the product family could potentially lead 
to additional manufacturing and sustainable costs, these expenses pale in compari-
son with the considerable boost in market share and competitive advantage. This re-
sult is consistent with the prevailing research findings on green product innovation, 
further validating the correctness and necessity of our consideration of sustainable 
PFA design and manufacturing processes [54,55]. 

(2) Sustainable PFA design can be achieved by introducing sustainable utility functions. 
The incorporation of sustainability can alter the module configuration choices in PFA 
design schemes [25]. Because the objective of the PFA design is often to maximize 
utility per unit cost, the impact of sustainability on PFA can be described by con-
structing sustainable utility models. The form of sustainable utility models (such as 
linear or nonlinear) typically depends on the actual problem and decision prefer-
ences. 

(3) The HJO mechanism is advantageous. The proposed HJO model is robust and excels 
when dealing with the complex tradeoffs between the optimal PFA design decision 
and SMP decision. Compared with the IOM and TSM, the HJO approach tends to 
obtain better PFA solutions leveraging with the SMP decision. The study findings 
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provide an approach for the industry to address the joint optimization problem con-
cerning PFA design and SMPs. 

(4) NGA is reliable. Through the comparative experiments in Section 6.5, we observe 
that our algorithm exhibits favorable performance in both optimality and stability. 
The nested algorithm framework we designed aligns with the approach for bi-level 
optimization and is easily scalable. These research findings can serve as a basis for 
subsequent studies on nested algorithms. 
The proposed model and algorithm in this paper are especially suitable for the me-

chanical or electronic modular PFA design. For manufacturers that outsource SMPs to 
outsourcers, our HJO model and NGA provides a new effective approach to handle the 
joint optimization of PFA and SMPs. 

7.2. Limitations and Future Research Directions 
Several avenues for future research emerge from the limitations of the current study. 
Initially, the focus of this study was the joint optimization of PFA design and of SMPs, 

which constitutes a deterministic optimization problem. However, practical scenarios of-
ten involve randomness, such as the case of the stochastic nature of product demands [19]. 
Therefore, further research could incorporate stochastic considerations into the HJO 
model.  

Furthermore, our lower-level decisions focus on the selection of various schemes, 
leading to the utilization of discrete decision variables. However, there are also important 
sustainability-related decisions concerning continuous production, especially in pro-
cessing raw materials, such as metals, oil, and ore [56]. Ignoring the sustainability impli-
cations of these factors is a limitation of this study. Therefore, we can further enhance the 
generalizability of the problem by incorporating decisions related to continuous produc-
tion into the model. 

Finally, genetic algorithms are sensitive to parameter settings, and optimizing these 
parameters often requires multiple experiments, which is a limitation of this study. Cur-
rently, artificial intelligence algorithms are gaining popularity. Some researchers have 
combined artificial intelligence algorithms with heuristics to improve their performance 
[57]. We can further consider integrating artificial intelligence algorithms, such as rein-
forcement learning algorithms, into the NGA we designed in order to automatically opti-
mize parameter selections. 
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