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Abstract: As consumers and governments prioritize cost-effectiveness and ecological sustainability,
the limitations of traditional manufacturing paradigms become apparent in the context of constrained
resources. The adverse effects of these paradigms on the environment and society hinder the
achievement of a sustainable product life cycle. Intelligent manufacturing processes offer a solution
by efficiently gathering meaningful data, such as usage and product recycling information, from
previous product generations to enhance product design and subsequent sustainable manufacturing
processes (SMPs). Modular product family architecture (PFA) design holds promise in promoting
product sustainability and addressing diverse consumer needs. PFA design and SMPs are inherently
interconnected within intelligent manufacturing frameworks. This paper aims to integrate the
decision-making processes underlying PFA with SMPs. We model integrated PFA and SMP decisions
as a Stackelberg game, which involves hierarchical joint optimization (HJO) for assessing product
modularity and sustainable manufacturing fulfillment. We develop a bilevel 0–1 integer nonlinear
programming model to represent the HJO decision-making process and propose a nested genetic
algorithm (NGA) to solve the HJO problem. A case study with a laptop is conducted to validate the
feasibility and potential of the proposed HJO model for joint optimization problems in PFA design
and SMPs.

Keywords: bilevel programming; hierarchical joint optimization; product family architecture;
sustainable

1. Introduction

The government is increasingly prioritizing environmental concerns and has enacted
a series of pertinent laws aimed at holding original equipment manufacturers (OEMs)
accountable for the sustainability of products throughout their lifecycle. This requires
enterprises to continually adapt for their own development and to uphold a positive
societal image. They must not only produce products that meet consumer demands but
also consider the sustainability of these products [1]. For designers and manufacturers,
it is essential to consider the sustainability of the product throughout its lifecycle [2].
Product lifecycles involve several stages, from pre-manufacturing (material selection and
processing) through manufacturing (component manufacture and assembly) to use and
post-use (recycling and reuse of products) [3]. In the context of the current availability
of limited resources, the negative impact of traditional manufacturing paradigms on the
environment and society is not conducive to achieving a sustainable product lifecycle [4].

Intelligent manufacturing has the potential to significantly enhance sustainable man-
ufacturing competitiveness. By efficiently capturing relevant data, such as usage and
recycling information from previous product generations, it can improve product design
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and subsequent sustainable manufacturing processes (SMPs) [5]. Intelligent manufacturing
is often categorized into two main types: base and front-end technologies [6]. The base
technologies, including cloud computing, internet of things (IoT), and big data analyt-
ics, provide connectivity and intelligence for the front-end technologies. The front-end
technologies involve the restructuring of manufacturing activities using the intelligent
technologies derived from the base technologies. The reconfiguration of manufacturing
activities is largely influenced by product design. Therefore, it is essential to consider
product design in conjunction with sustainable manufacturing activities.

Modular product family architecture (PFA) offers several advantages in achieving
product sustainability and meeting the diverse needs of consumers [7]. PFA relies on
product platforms organized in family formats, where a variety of modules are selected
to create product variations tailored to different market segments [8]. This approach not
only reduces development time and costs but also facilitates product dismantling and
module reuse [9].

In the realm of intelligent manufacturing, this paper explores the interrelation and opti-
mization of modular PFA with SMPs in response to customer needs and product usage data.
The solutions for each stage of PFA and SMPs are inherently interconnected. The inclusion
of various module types within the product family—such as common, differentiated, and
unique modules—significantly influences the selection of sustainable solutions [10]. When
designing PFAs, it is essential to consider the rationality of product architecture and the
selection of module types based on functional, technical, and structural coupling, while also
meeting the sustainability requirements of consumers and government regulators. For SMP
activities, product sustainability should align with the company’s overall development
objectives. Therefore, sustainable solutions must strike a balance between production costs,
enterprise profitability, and environmental sustainability, rather than solely prioritizing
the latter.

Limited articles currently address the design of joint optimization for PFA and SMPs [11].
These articles often employ multi-objective programming methods [12–14]. However,
adopting this method faces limitations. Firstly, it often overlooks the coupling relationship
between PFA and SMP scheme selection. Secondly, it fails to address conflicting objectives
among different decision-makers [15]. Specifically, technical challenges encompass the
following facets.

Hierarchical joint optimization. The complexity lies in establishing the hierarchical
joint optimization (HJO) decision-making framework. The PFA design and SMP selection
involve distinct decision-makers: the PFA designers and the sustainable manufacturers
of the product family, respectively. Enterprises may have different decision variables and
goals, which can sometimes conflict [15]. On one hand, PFA designers aim to maximize
both customer-perceived utility and sustainable utility per unit cost. They can influence
the choice of SMP scheme through modular architecture and configuration scheme design.
On the other hand, sustainable manufacturers strive to make sustainable manufacturing
solutions based on comprehensive evaluation indicators, which in turn feed back to the
PFA designers and impact PFA decisions. The choice of PFA design and SMP selection
constitutes an HJO problem, with the designer acting as the leader and the sustainable
manufacturer as the follower. This necessitates an HJO decision-making framework that
seeks a balanced solution through noncooperative games. Despite numerous studies on
bilevel optimization, explicitly formulating an HJO decision-making framework to describe
the PFA and SMP problems in engineering remains challenging [16].

Heterogeneous decision criteria. Another challenge addressed in this paper is the con-
struction of a heterogeneous decision criterion. PFA decisions primarily involve multiple
levels of modules, whereas SMP decisions focus more on sustainability considerations.
For instance, PFA design entails combining compound modules and configuring basic
modules [17]. Sustainable solutions encompass the selection of raw materials, processing
methods, recycling methods, and end-of-life processing methods. Furthermore, these two
types of decision problems entail diverse decision criteria, such as customer utilities, pur-
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chase preferences, modularization, and comprehensive sustainable certification standards,
which encompass cost, quality, emissions, and energy consumption, among others [18].
Dealing with multi-dimensional and heterogeneous decision criteria in the optimization
problem presents another challenge in this paper.

The objective of this study is to establish an HJO model by which to address the
hierarchical optimization problem of PFA and SMPs. Firstly, we must delve into the
decision mechanism and achieve a hierarchical joint optimization process for PFA and
SMP decisions based on a Stackelberg game. Secondly, a bilevel programming model
implementing the joint optimization of PFA and SMPs must be designed, establishing
heterogeneous decision criteria for different decision-makers. Thirdly, a nested genetic
algorithm (NGA) that aligns with the HJO model solving mechanism must be developed,
and its effectiveness and reliability must be validated through comparative experiments.

In light of these considerations, this paper employs the HJO method to analyze the PFA
and SMP problems. Section 2 provides a summary of previous research on PFA, SMPs, and
bilevel programming. Section 3 establishes a conceptual model for PFA and SMP solutions.
Section 4 formulates the mathematical model of bilevel 0–1 integer nonlinear programming.
Section 5 develops a nested genetic algorithm (NGA) based on the established HJO model.
Section 6 presents a laptop case study, demonstrating the applicability of the HJO model
and NGA algorithm proposed in this paper. Finally, Section 7 summarizes the research
findings and outlines future research prospects.

2. Literature Review
2.1. Product Family Architecture

A product family shares a common platform with specific features and functionalities
to cater to different sets of customers [19]. Product Architecture refers to how the functional
elements of a product are organized into physical units that interact accordingly [8]. PFA
design enables the creation of a diverse array of products tailored to individualized needs
within a unified framework. This approach facilitates economies of scale, allowing the
fulfillment of customer demands across various market segments [19].

In articles regarding PFA, different evaluation metrics are applied. Tyagi et al. [20]
research product family design and multiple platform architecture by fuzzy goal pro-
gramming, with the objectives of maximizing the overall utility and minimizing the total
production cost. Trentin and Alessio [21] aim to improve configuration capabilities to in-
crease consumers’ perceived benefits of the mass customization experiences. Yoo et al. [22]
have considered increasing consumer-perceived benefits and consumer-perceived values.
Ma et al. [23] have studied products’ family-driven module design, the objective function
of which is to maximize the sum of modularity satisfaction. In recent years, scholars have
gradually begun to investigate the integration of product family design within the sus-
tainable implications in Industry 4.0. Ceschin and Idil [24] have proposed an evolutionary
framework of design for sustainability and mapped the reviewed design for sustainabil-
ity approaches onto this framework. Xiao et al. [25] have increased carbon emissions to
evaluate a low-carbon product family architecture. Tao et al. [26] have presented a digital
twin-driven product design framework. Lim et al. [27] have reviewed engineering product
lifecycle management from the perspective of a digital twin.

At present, research that considers PFA design and SMP solutions in the context of
intelligent manufacturing has focused mainly on the theoretical level. Few scholars have
considered establishing a joint decision-making framework that combines PFA design
and SMPs.

2.2. Sustainable Manufacturing Processes

Sustainability encompasses economic, environmental, and social dimensions [28].
Many scholars have attempted to quantify sustainability criteria from these perspec-
tives [29]. Jayal et al. [2] focused on societal aspects, such as worker health, safety, and
ergonomics. Kremer et al. [30] advocate for a consideration of sustainability throughout the
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entire lifecycle activity, aiming to minimize total costs and carbon footprint. Madani and
Rasti-Barzoki [31] argue that sustainable management should take into account pricing,
greening efforts, and governmental roles, with governments playing a leadership role in
these areas. Mangla et al. [32] have evaluated sustainability based on cost, energy efficiency,
and material utilization in production techniques.

Some scholars assess sustainability across various stages of product manufacturing.
However, the majority of analytical sustainable product modeling has, for many decades,
relied on qualitative approaches [33]. Garbie [34] proposes to cut down the material, the
energy consumption and the emission throughout the product lifecycle. Yan and Feng [35]
have established a structure matrix considering materials, manufacturability, end-of-life
stages and so on. Kim and Moon [36] have developed a modular product architecture while
considering manufacturing and recovering processes at the product design stage. Kim
and Moon [10] have developed a model involving materials production, transportation,
use, and end-of-life stages. Guo et al. [37] believe that the green performance of a fashion
product relates to the material(s) used in the manufacturing process.

Currently, few researchers have developed a quantitative optimization framework
for SMPs and integrated it with PFA design. This paper proposes a joint optimal decision-
making framework for PFA and SMPs.

2.3. Bilevel Programming

Bilevel programming involves two decision-makers and is well-suited for addressing
leader–follower optimization decision-making problems [38]. It has garnered significant
attention in academia and has been applied across various fields, including reconfigurable
process planning [39], crowdsourcing service operations, product family design of per-
sonalized services [40], and the data-driven newsvendor problem [41]. Unlike ordinary
mathematical programming, bilevel programming presents unique challenges. Because
the upper-level model incorporates the optimal solution or optimal value function of the
lower-level model, the problem becomes non-smooth [42]. Even linear bilevel program-
ming is NP-hard, and when the upper-level constraint includes decision variables from the
lower-level model, the feasible region may become disconnected [43].

Many scholars are devoted to studying the solution method of bilevel programming.
When the lower-level model encompasses convex programming with a continuous variable,
the KKT condition can be used to replace the lower-level model, and the solution method
of single-level mathematical programming can then be used to solve this model [44]. The
K-degree best method involves obtaining the optimal solution of a problem by implicitly
enumerating all poles of the constrained domain of a linear bilevel programming prob-
lem [45]. In addition, models that do not meet the above types adopt approximation
algorithms to solve bilevel programming models [38]. Condition types that are often used
include the following: Firstly, the expression of y(x) is estimated and then substituted into
the upper level to transform the model into common single-level mathematical program-
ming, which can then be solved by the solution algorithms of single-level mathematical
programming [46]. Secondly, one must develop a heuristic algorithm that conforms to the
solution framework of the bilevel programming in order to perform iterative calculations
to obtain approximate solutions [43]. Currently, there is a lack of a solution algorithm for
solving bilevel 0–1 integer nonlinear programming established in this paper.

3. Consideration Sustainable Product Family Design
3.1. Research Methodology

Based on the methodology of management science, a research framework is presented
to better explain the development steps of our study.

First and foremost, the identification of the research problem is crucial. Through
empirical research on manufacturing enterprises, it has been discovered that there is a
mutual influence between PFA design and SMPs, and that a hierarchical relationship exists
between product designers and sustainable manufacturers. Literature review reveals that
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the hierarchical relationship between the two agents has not been studied yet. Therefore,
the problem is refined and formulated into key optimization decision issues, accompanied
by an analysis and description of the problem.

Subsequently, the establishment of the research model is essential. A bilevel opti-
mization model based on Stackelberg games is developed to characterize the relationship
between PFA design and SMPs. The upper-level PFA design solutions are modeled based
on product design theory and methods. The MNL model is used to estimate the prob-
ability of the product selection. SMPs are modeled based on the theory of the lifecycle
manufacturing processes and the definition of sustainable development.

Furthermore, in line with the established 0-1 nonlinear bi-level optimization model,
we develop an NGA tailored to meet the requirements of the bilevel optimization solving
mechanism. Through case studies that focus on laptop design and sustainable manufactur-
ing processes, we validate the efficacy of our proposed model and algorithm. Employing
a conjoint analysis method in the case study has enabled us to quantitatively ascertain
consumer preferences. Comparative experiments with integrated optimization methods
and two-stage optimization methods corroborated the superiority of our proposed HJO
model. The reliability of our proposed algorithm is emphasized through experiments that
assess optimality and stability.

3.2. Problem Description

When an enterprise possesses a significant volume of product usage data, maintenance
data, and customer demand information, it can intelligently optimize PFA and SMPs based
on these data. This enables the development of the most optimal product family design and
sustainable manufacturing plan in alignment with the current data landscape. In different
markets, consumers exhibit distinct preferences for various product attributes. Accordingly,
the size of each market segment, denoted as Qi, represents the number of consumers in the
i-th segment. There are J product variants in the product families of each market segment,
offering the possibility to meet consumers’ individualized product needs. At the same
time, there are Nc competitive products in the market. As shown in Figure 1, each product
variant is composed of compound modules CMr(r = 1, . . . , R), each compound module
is composed of several basic modules SMk(r = 1, . . . , K). Some basic modules have some
optional module instances p∗kl (l = 1, . . . , Lk), which represent different product attributes.
Some compound modules (M1) and basic modules (M2 and MN) are standard parts that
cannot be selected, and which are often the core part of the product.

We analyze sustainability across the product lifecycle through three key aspects: cost,
energy consumption, and emissions. This is divided into four stages. The first stage
involves selecting raw materials for the module instance, followed by the second stage,
which encompasses the production methods of the compound modules. The third stage
focuses on the selection of recycling methods for the product variant, while the final stage
involves selecting end-of-life processing methods of the product family.

3.3. Hierachical Interactive Decisions for Dynamic Evalution

Assuming both designers and manufacturers are rational decision-makers. Designers
hold a dominant position as they investigate market demands and production costs, they
formulate product variant combinations for segmented markets. Manufacturers are subor-
dinate because they need to implement SMPs at different stages based on PFA designs. The
decisions made by designers can influence the decision-making of manufacturers regarding
SMPs, thereby altering the costs, energy consumption, and emissions associated with SMPs.
Simultaneously, sustainable decision-making can impact the utility and costs of a product
family. Thus, a Stackelberg game emerges between the designer and manufacturer. An
HJO problem arises between PFA and SMP schemes.
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Figure 1. HJO decision making of PFA and SMPs.

As shown in Figure 2, an HJO decision mechanism is presented. The left is the HJO
model, and the right is the HJO evaluation mechanism. The leader of the model is the
design of the PFA and configuration in each market segment (i). Its objective is to maximize
unit cost (C) utilities (U + V). Costs include product design cost (cDC) and sustainable
costs (cS), which include raw material costs (

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 28 
 

4.4. Lower-Level Optimization 
The lower-level model selects the sustainable solution for the product. In accordance 

with the upper decision-making scheme, the lower-level decision schemes are optimized 
to minimize the sustainable comprehensive evaluation indices. 

For the lower level of the model, the following assumptions are made. 
(1) Product family cost is divided by direct and indirect cost; 
(2) The SMPs of the product family only consider the economic, environmental and con-

sumer demands. 
Equation (9) is the SMP cost for a product family. The sustainable cost of the product 

primarily encompasses the expenses associated with raw materials, production methods, 
recovery methods, and end-of-life processing methods. 𝑐  = 𝑐𝕓 + 𝑐ℂ + 𝑐ℙ + 𝑐𝔼, (9) 

Equations (10)–(13) represent the engineering cost of the four stages of the product 
family. 

𝑐𝕓 = 𝑥 𝑦 𝑐 + 𝑄 𝑃 𝑐  , (10) 

𝑐ℂ = 𝑦 (𝑐 + 𝑄 𝑃 𝑐 ) , (11) 

𝑐ℙ = 𝑦 (𝑐 + 𝑄 𝑃 𝑐 ) 𝜏 , (12) 

𝑐𝔼 = 𝑦 (𝑐 + 𝑄 𝑃 𝑐 ) 𝛽 . (13) 

Equation (10) indicates that the module instances take both fixed and variable costs 
into account when selecting raw materials. Equation (11) represents the manufacturing 
cost of the compound modules, which is composed of fixed and variable costs. Equation 
(12) represents the recycling cost of product variants, including fixed and variable costs. 
Equation (13) represents the cost of different processing methods at the end-of-life stage 
of the product family, including fixed and variable costs. 

Equation (14) is emissions. 

𝐷 = 𝑦 𝑑 + 𝑦 𝑑 + 𝑦 𝑑 𝜏 + 𝑦 𝑑 𝛽 . (14)
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), manufacturing costs (cC), recycling costs
(cP), and processing costs (cE). Utilities cover customer-perceived utilities and sustainable
manufacturing utilities which are determined by the combination of energy consumption
(S) and emissions (D). The sustainable decision-making of the follower model has three
aspects that need to be considered: costs, energy consumption and carbon emissions. The
lower objective function is to minimize the comprehensive evaluation indices of the SMPs.
Both the upper and lower constraints of the model include two parts: the logical constraints
and the functional constraints. The right-to-left arrows indicate that our model is based on
a Stackelberg game.
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Figure 2. Hierarchical joint optimization decision mechanism.

3.4. Illustrative Example

Taking a brand laptop as a case for discussion and analysis. According to the research
of the market segment and the functional constraints of the computer architecture, the
product type and the number of compound modules for a certain market segment are
pseudo-located as follows: J= {2, 3}; R= {2, 3, 4}. After the arrangement and combination,
there are six cases, which are J = 2, R = 2; J = 2, R = 3; J = 2, R = 4; J = 3, R = 2; J = 3, R = 3;
J = 3, R = 4. Based on the calculations of the final model, the optimal combination of PFA
is obtained. For the sake of simplicity and without loss of generality, this paper properly
handles the structure and data of the laptop. The PFA is shown in Figure 3. Assume a laptop
is divided into 12 basic modules: shell, display, speaker, motherboard, graphics card, CPU,
RAM, keyboard, hard disk, battery, fan, and optical drive. Each basic module corresponds
to several module instances, with each module instance representing an attribute feature.
For example, the shell’s three module instances are black, red and white. In addition to
the optimal PFA solution, the upper-level model will calculate the optimal combination of
product configurations.

We provide an example to illustrate the lower-level model. If a market segment
corresponds to a product family PF, there are three types of products: PV1, PV2, PV3. There
are two compound modules, CM2

1 and CM2
2, in some product variants, three basic modules,

M4, M8, and M10, are in CM2
1, while M10 has three attributes, m101, m102, and m103. As each

module instance is composed of different materials, decisions need to be made regarding
the types of raw materials at the module instance level. Assume that there are two materials
to choose from for m101, each corresponding to different fixed costs, variable costs, energy
consumption, and carbon emissions. A judgement must be made based on these data in
order to provide a satisfactory materials selection for the module instance m101. Assume that
for compound module CM2

1, there are two production methods to choose, each of which
corresponds to different production design costs, manufacturing costs, energy consumption
and carbon emissions. In the same way, one must choose the most suitable production
method. After the product variant PV is used from the consumer group, the corresponding
recycling mechanism is formulated. At this stage, each PV has several recycling methods.
It is assumed that PV1 has two recycling methods. A similar method is used to find the
most reasonable recycling way. According to the characteristics of a product family, we
give several treatments at a product’s end-of-life stage, such as incineration, reuse, landfill,
etc. At this level, one or more processing methods are reasonably determined according to
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the characteristics of the product family. In conjunction with the other three levels of SMP
choices, one must select the optimal approach for addressing sustainability.

Figure 3. The laptop architecture.

4. Hierarchical Joint Optimization

We propose an HJO mechanism for PFA and SMPs based on Stackelberg game. The
upper-level model decides the PFA scheme, and the lower-level model decides the SMPs of
the product family.

4.1. Parameters

The parameters used in the HJO model are shown in Table 1.

Table 1. Notations for model parameters.

Parameters Parameter Description

Uij Utility for the j-th product variant in the i-th market segment.
wjk Weight for the k-th basic module of the j-th product variant.
uikl Utility for the l-th module instance of the k-th basic module in the i-th market.
πij Constant related to the comprehensive utility for the j-th product variant in i-th market segments.
εij Error term for the j-th product variant in the i-th market segment.
Eij Sustainable utility for the j-th product variant in the i-th market segment.
eijk Sustainable utility for the l-th module instance of the k-th basic module in i-th market segments.
Pij Probability for the j-th product variant in the i-th market segment.
C Enterprise total cost.

CD Enterprise design cost.
CS Enterprise sustainable cost.
Qi Number of customers in the i-th market segment.

cDF Fixed design cost.

cDB
jrklm

Sustainable design cost for selecting the m-th raw material of the l-th module instance of the k-th basic module of
the r-th compound module of the j-th product variant.

cDC
jrp

Sustainable design cost for selecting the p-th production method of the r-th compound module of the j-th
product variant.

cDP
jc Sustainable design cost for selecting the c-th recycling method of the j-th product variant.

cDE
e Sustainable design cost for selecting the e-th end-of-life processing method of the product family.

cMF
klm Fixed cost for selecting the m-th raw material of the l-th module instance of the k-th basic module.

cMV
klm Unit variable cost for selecting the m-th raw material of the l-th module instance of the k-th basic module.
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Table 1. Cont.

Parameters Parameter Description

cCF
rp Fixed manufacturing cost for selecting the p-th production method of the r-th compound module.

cCV
rp Unit variable manufacturing cost for selecting the p-th production method of the r-th compound module.

cPF
jc Fixed recycling cost for selecting the c-th recycling method of the j-th product variant.

cPV
jc Unit variable recycling cost for selecting the c-th recycling method of the j-th product variant.

cEF
e Fixed process cost for selecting the e-th end-of-life processing method.

cEV
e Unit variable process cost for selecting the e-th end-of-life processing method.

djrklm
Emission for selecting the m-th raw material of the l-th module instance of the k-th basic module of the r-th
compound module of the j-th product variant.

djrp Emission for selecting the p-th production method of the r-th compound module of the j-th product variant.
djc Emission for selecting the c-th recycling method of the j-th product variant.
de Emission for selecting the e-th end-of-life processing method of the product family.

sjrklm
Consumption for selecting the m-th raw material of the l-th module instance of the k-th basic module of the r-th
compound module of the j-th product variant.

sjrp Consumption for selecting the p-th production method of the r-th compound module of the j-th product variant.
sjc Consumption for selecting the c-th recycling method of the j-th product variant.
se Consumption for selecting the e-th end-of-life processing method of the product family.
τj Recovery probability of the j-th product variant.
βe Proportion of e-th end-of-life processing method of the product family.
J+ Maximal number of product variants.

4.2. Decision Variables

The decision variables used in the model are as follows:
xjrkl : Binary integer = 1 or 0, depending on whether the k-th basic module of the r-th

compound module of the j-th product selects the l-th module instance.
yjrklm: Binary integer = 1 or 0, depending on whether the l-th module instance of

the k-th basic module of the r-th compound module of the j-th product selects the m-th
raw material.

yjrp: Binary integer = 1 or 0, depending on whether the r-th compound module of the
j-th product selects the p-th production method.

yjc: Binary integer = 1 or 0, depending on whether the j-th product selects the c-th
recycling method.

ye: Binary integer = 1 or 0, depending on whether the product family selects the e-th
end-of-life processing method of the product family.

xjrkl is the upper-level decision variable and yjrklm, yjrp, yjc, and ye are the lower-
level decision variables. Figure 4 is a structural of the decision variables. The upper part
describes the choice of PFA (x), and the lower part describes the choice of SMPs. The upper-
level decision variable x is passed to the lower-level model by calculating the upper-level
objective function, and the lower-level decision variable y feeds back to the upper-level
model through the result of the lower-level objective function value, thus looping until the
optimal solution satisfying the upper and lower-level constraints is obtained.

4.3. Upper-Level Optimization

The definition of PFA stands as a pivotal undertaking in any industry’s product de-
velopment activity [47]. Given that this paper focuses on the modular architecture of
products and collaborative decision-making design, the upper-level modular architecture is
solely for configuring functional elements (choosing module instances) and aligning func-
tional elements with physical components (determining the quantity of product variants
and compound modules). For the upper level of the model, the following assumptions
are made:

(1) A product family contains multiple types of products [8];
(2) In the same market segment, customers’ purchase preferences are basically the same [48].
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Figure 4. Decision variables’ structure.

The conjoint analysis method is widely used to measure customer demand preferences
for different attribute levels based on stronger analytical capabilities [49]. The customer’s
combined utility for a single product equals the weighted sum of each basic module
instance utility that comprises the product. The utility is expressed as Equation (1).

Uij =
R

∑
r=1

K

∑
k=1

Lk

∑
l=1

(
wjkuijkxjrkl + πij

)
+ εij. (1)

Similarly, sustainable utility is expressed as follows:

Eij =
R

∑
r=1

K

∑
k=1

Lk

∑
l=1

(
wjkejklmyjrklmxjrkl + πij

)
+ εij, (2)

ejklm includes two parts: energy consumption and emissions. Its specific expression is
shown below:

ejklm =
∑2

n=1 znanjklm

∑2
n=1 zn

n = 1, 2, (3)

where zn indicates the weight and a1jklm indicates the energy consumption index during
the product lifecycle for selecting the m-th raw material of the l-th module instance of the
k-th basic module of the r-th compound module of the j-th product variant. The specific
expression of a1jklm is shown in Equation (4):

a1jklm =
N

∑
n=1

ϑnjklm

(
be

njklmme
jklm + bg

njklmmg
jklm

)
, (4)

where n represents the type of consumption, for example lighting and heating, ventilation,
or air conditioning; ϑnjklm describes consumption performance of the n-th type for selecting
the m-th raw material of the l-th module instance of the k-th basic module of the r-th
compound module of the j-th product variant; be

njklm indicates the power consumption of
group n for selecting the m-th raw material of the l-th module instance of the k-th basic
module of the r-th compound module of the j-th product variant; and bg

njklm is fuel (natural
gas/coals) consumption for selecting the m-th raw material of the l-th module instance
of the k-th basic module of the r-th compound module of the j-th product variant. me

jklm
is total annual power consumption for selecting the m-th raw material of the l-th module
instance of the k-th basic module of the r-th compound module of the j-th product variant,
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mg
jklm is total annual fuel consumption for selecting the m-th raw material of the l-th module

instance of the k-th basic module of the r-th compound module of the j-th product variant.
Equation (5) represents the emission index.

a2jklm =
N

∑
n=1

ξnjklmRnjklmtnjklm, (5)

where n represents the type of emission. ξnjklm describes emission performance of the n-th
type for selecting the m-th raw material of the l-th module instance of the k-th basic module
of the r-th compound module of the j-th product variant. Rnjklm is reuse percentage of the
n-th type for selecting the m-th raw material of the l-th module instance of the k-th basic
module of the r-th compound module of the j-th product variant. tnjklm is total disposal
amount of the n-th type for selecting the m-th raw material of the l-th module instance of
the k-th basic module of the r-th compound module of the j-th product variant, tons/yr.

The multinomial logit (MNL) selection rules are known for providing a more realistic
representation of consumer decision-making processes and are used to simulate customer
selection probabilities for products in product design [50]. Specifically, they are expressed
as in Equation (6).

Pij =
exp

[
µ(U ij + Eij

)]
∑J

j exp
[
µ(U ij + Eij

)
] + ∑Nc

j exp
[
µ(U ij + Eij

)
]
, (6)

where µ represents a positive scaling parameter of the MNL model. As µ tends to infinity,
the model approaches a deterministic selection rule. Conversely, as µ tends to 0, the model
approximates a uniformly distributed selection rule.

The total cost is composed of design cost and sustainable cost, which is as follows:

C = cD + cS. (7)

The design cost includes the following components: fixed design cost, raw material
design cost, production method design cost, recycling method design cost, and end-of-life
processing method design cost. The design cost is specifically expressed as follows:

cD = cDF +
I

∑
i=1

Qi

{
J

∑
j=1

Pij

[
R

∑
r

(
K

∑
k=1

Lk

∑
l=1

xjrkl

Mlk

∑
m=1

yjrklmcDB
jrklm +

Pr

∑
P=1

yjrpcDC
jrp

)
+ ∑C

c=1 yjccDP
jc

]
+

E

∑
e=1

yecDE
e

}
. (8)

4.4. Lower-Level Optimization

The lower-level model selects the sustainable solution for the product. In accordance
with the upper decision-making scheme, the lower-level decision schemes are optimized to
minimize the sustainable comprehensive evaluation indices.

For the lower level of the model, the following assumptions are made.

(1) Product family cost is divided by direct and indirect cost;
(2) The SMPs of the product family only consider the economic, environmental and

consumer demands.

Equation (9) is the SMP cost for a product family. The sustainable cost of the product
primarily encompasses the expenses associated with raw materials, production methods,
recovery methods, and end-of-life processing methods.

cS=
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Equations (10)–(13) represent the engineering cost of the four stages of the product family.
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=
I

∑
i=1

J

∑
j=1

R

∑
r=1

K

∑
k=1

L

∑
l=1

xjrkl

Mlk

∑
m=1

yjrklm

(
cMF

klm + QiPijcMV
klm

)
, (10)

cC =
I

∑
i=1

J

∑
j=1

R

∑
r=1

Pr

∑
P=1

yjrp

(
cCF

rp + QiPijcMV
rp

)
, (11)

cP =
I

∑
i=1

J

∑
j=1

C

∑
c=1

yjc

(
cPF

jc + QiPijcPV
jc

)
τj, (12)

cE =
I

∑
i=1

J

∑
j=1

E

∑
e=1

ye(cEF
e + QiPijcEV

e )βe. (13)

Equation (10) indicates that the module instances take both fixed and variable costs
into account when selecting raw materials. Equation (11) represents the manufacturing
cost of the compound modules, which is composed of fixed and variable costs. Equation
(12) represents the recycling cost of product variants, including fixed and variable costs.
Equation (13) represents the cost of different processing methods at the end-of-life stage of
the product family, including fixed and variable costs.

Equation (14) is emissions.

D =
J

∑
j=1

{
R

∑
r=1

(
K

∑
k=1

Lk

∑
l=1

Mlk

∑
m=1

yjrklmdjrklm +
Pr

∑
p=1

yjrpdjrp

)
+

C

∑
c=1

yjcdjcτj

}
+

E

∑
e=1

yedeβe. (14)

Equation (15) represents the energy consumption.

S =
J

∑
j=1

{
R

∑
r=1

(
K

∑
k=1

Lk

∑
l=1

Mlk

∑
m=1

yjrklmsjrklm +
Pr

∑
p=1

yjrpsjrp

)
+

C

∑
c=1

yjcsjcτj

}
+

E

∑
e=1

yeseβe. (15)

4.5. HJO Decision Making of PFA and SMPs

The HJO model can be obtained as follows:

Max F =
Uij + Eij

C
PijQi (16)

s.t.
K

∑
k=1

Lk

∑
l=1

(
xjrkl − xj′rkl

)
≥ 0j ̸= j′ (17)

Lk

∑
l=1

xjrkl = 1 (18)

J

∑
j

xj ≤ J+ (19)

xjrkl ∈ {0, 1} (20)

Min f=
1
K̂

[(
K̂k1C + 1

)(
K̂k2D + 1

)(
K̂k3S + 1

)
− 1
]

(21)

s.t. 1 + K̂ =
3

∏
i=1

(
1 + K̂ki

)
(22)

xjrkl =
M

∑
m=1

yjrklm (23)
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P

∑
p=1

yjrp = 1 (24)

C

∑
c=1

yjc ≥ 1 (25)

E

∑
e=1

ye ≥ 1 (26)

yjrklm, yjrp, yjc, ye ∈ {0, 1} (27)

Equation (16) is the objective function of the PFA design problem. Equation (17)
represents the unique constraint of the product variant. Equation (18) indicates that
every basic module only selects one module instance. Equation (19) represents the prod-
uct quantity constraint. Equation (20) represents the range constraint of the upper-level
decision variable.

Equation (21) is the objective function of the SMP problem. ki(i = 1, 2, 3) indicates
a single attribute scaling constant and K̂ is a normalising constant range from 0 to 1.
Equation (22) represents the relationship between K̂ and ki. Equation (23) represents the
relationship constraint for the instance selection variable and the raw material selection
variable. Equation (24) indicates that only one production method can be selected for each
compound module. Equation (25) indicates at least one or more recycling methods are
available for each product variant. Equation (26) indicates at least one or more end-of-life
process methods are available for the product family. Equation (27) is the range constraints
of the lower-level decision variables.

In the HJO model, the upper-level PFA design determines the PFA and configuration
scheme for a certain market segment. According to the decision results of the upper level,
the lower level decides on the choice of raw materials yjrklm, the production method yjrp,
the recycling method yjc, and the end-of-life processing method ye. The lower-level results
determined according to the sustainable comprehensive evaluation indices are passed to the
upper-level model. According to the results of the lower-level feedback, the upper level will
adjust the product architecture, and then reevaluate the decision variable xjrkl to maximize
the upper-level objective function. The loop continues until it reaches the Stackelberg
equilibrium. The optimal solution of the model is reached when neither decision-maker is
willing to change their decisions further, and the upper- and lower-level objective function
values are calculated based on this optimal solution.

5. Solution of the Model
5.1. Algorithm Construction and Evaluation

The above bilevel 0–1 integer nonlinear programming model established, based on the
actual engineering characteristics, is an NP-hard problem [43], which makes the model so-
lution very difficult. The genetic algorithm is highly effective when efficiently discovering
a global near-optimal solution and has the capability to evade local optima while overcom-
ing the multimodality of the objective function [51]. Given the complexity of our model,
we have developed a nested framework aligned with the bilevel programming solution
mechanism and applying genetic algorithms to this framework, forming an NGA. Figure 5
illustrates the specific process of the NGA, with the detailed steps outlined as follows:

Step 1: Set the parameters: Set the parameters of PFA optimization, contain the upper-
level and lower-level genetic algorithm population size N and M and the maximum number
of iterations in upper and lower model GN and GM.

Step 2: Upper-level population initialization: According to the different PFA design
and the upper-level bounds of the product variant configuration, the coding strategy of the
variables are determined and the upper-level product variant is encoded.

Step 3: Determine that the upper-level constraints are satisfied: First, one must judge
whether the individual population of the upper-level PFA design satisfies the upper-level
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constraint conditions. If it is satisfied, the individuals are passed to the lower-level and
proceed to the next step. If not, set the upper-level fitness function to zero and jump to
step 7. Secondly, the utility of unit cost of the whole product family is taken as the fitness
function of the upper-level model.

Step 4: Lower-level population initialization: According to the different SMP schemes
and the bounds of the lower-level decision variants, the coding strategy of the variables are
determined and the lower-level SMP variants are encoded.

Step 5: Judgement of the lower-level constraints: Evaluate the parent populations of
the lower-level model, setting their fitness values to zero if the populations do not satisfy
the constraints. For populations that meet the constraints, utilize the lower-level sustainable
comprehensive evaluation indices value as the fitness function values.

Step 6: Lower-level termination checking: Check whether the current number of
iterations in the lower-level has reached the maximum limit set by GM. If the limit has been
reached, record the optimal solutions along with their corresponding values. Then, feed
back the decision variables for SMPs to the upper-level model. If the maximum iteration
limit has not been reached, proceed with the selection, crossover, and mutation of the
lower-level population individuals and move to step 5.

Step 7: Termination checking: Check whether the upper-level genetic algorithm has
reached the maximum number of iterations, denoted as GN. If the maximum number of
iterations has been reached, record the upper-level optimal solutions and their correspond-
ing optimal value. If the maximum iteration limit has not been reached, continue with the
selection, crossover, and mutation of individuals in the upper-level population and proceed
to step 3.

Figure 5. NGA process of HJO.

5.2. Encoding

To facilitate the calculation, we encode the upper- and lower-level decision variables
into two chromosomes of finite length. The upper chromosomes represent the PFA design,
and its length is the sum of all modules and corresponding module instances in the product
variants. As shown in Figure 6a, the first layer represents the product family, and the
different colors correspond with the products in the product family. Different PFAs result
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in different lengths of this layer. The second layer represents the product variants, and the
product variant consists of several compound modules. As shown, the product variant
j ∈ J consists of r ∈ R compound modules. The third layer represents the compound
modules, which consists of several basic modules. The fourth layer represents module
instances, with each corresponding number representing the selection of a specific module
instance by a basic module. The upper-level code length is J ∗ R ∗ L. The lower-level
chromosomes represent the choice of product family, product variants, compound modules
and basic modules for the corresponding SMP solutions. The coding of the lower-level
decision variables selects the 0–1 coding mode, 0 when a certain method is not selected and
1 when a certain method is selected. The specific coding method is shown in Figure 6b.

Figure 6. NGA encoding. (a) Upper-level GA encoding for PFA. (b) Lower-level GA encoding
for SMPs.

5.3. Crossover and Mutation

The selection process involves the use of an operator to choose individuals with robust
vitality from the population, thus generating new populations. This can be undertaken in
order to obtain the best child chromosomes for survival in the evolution [52]. In this study,
the operator is generated by roulette. This means that the probability of each chromosome
being selected for the next generation is determined by the ratio of its fitness value to the
total fitness value of all individuals in the population. Consequently, individuals with
higher fitness values are more likely to be selected for the next generation.

Crossover is the primary method for generating new chromosomes. Illustrated in
Figure 7, crossover involves two parent chromosomes exchanging part of their genes at a
certain position to produce two new offspring chromosomes. Mutation, on the other hand,
involves altering a portion of the chromosome’s gene with a small probability after the
crossover operation. Through the mutation operation, the corresponding module selections,
recycling methods, etc., can be randomly altered.

Figure 7. Crossover operations.

6. Case Study
6.1. Background Description

To verify the effectiveness of the proposed HJO model and NGA, it was applied to the
design of a brand of a laptop computer product family. The laptop is a typical modular
product. Its PFA is shown in Figure 8. To ensure the company’s benign development while
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meeting the requirements of consumers, the company must determine the optimal PFA
and corresponding configuration.

Figure 8. Structure of laptop.

The modules information for the laptop family is presented in Table 2. With a total of
12 modules, the number of potential options amounts to 46,656 (4 × 36 × 24 × 1). Given the
considerable number of selected product variants, conducting individual market research
for each one is impractical. Consequently, to gauge consumer preferences across product
segments, orthogonal analysis is employed on the alternatives, yielding 32 orthogonal
product profiles (detailed in Table 3). Subsequently, a group of 50 consumers was selected
to assess and rank the 32 product variants. Through conjoint analysis, the utility values of
different modules within the product variants were determined for the market segment,
as illustrated in Table 4. The estimated sizes of these market segments were 5000, 6000
and 8000. The population size for both upper and lower levels was fixed at 40 generations,
with crossover and mutation probabilities set to 0.8 and 0.05, respectively. Parameters
k1, k2 and k3 in the multi-attribute utility function are assigned values of 0.3, 0.35 and 0.35,
respectively. The parameter µ can be set to 0.6.

Table 2. Modules in the laptop family.

ID Name mkl Attribute

M1 Shell m11 Black
m12 White
m13 Red

M2 Display m21 LCD
m22 LED

M3 Speaker m31 Mono
m32 Stereo

M4 Motherboard m41 ATX
m42 M-ATX

M5 Graphics card m51 Standalone graphics
m52 Integrated graphics

M6 CPU m61 Intel
M7 RAM m71 4G

m72 8G
m73 16G

M8 Keyboard m81 Mechanical
m82 Plastic film
m83 Conductive rubber
m84 Capacitive

M9 Hard disk m91 1TB
m92 500GB
m93 256GB

M10 Battery m101 Nickel-cadmium
m102 NiMH
m103 Lithium
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Table 2. Cont.

ID Name mkl Attribute

M11 Fan m111 60
m112 80
m113 120

M12 Optical drive m121 CD
m122 CD/DVD

Table 3. Orthogonal product profiles with conjoint analysis.

ID M1 M2 M3 M4 . . . M12

1 Red LCD Mono ATX . . . DVD

2 White LED Mono ATX . . . CD

3 Black LCD Stereo ATX . . . DVD

4 Red LCD Mono ATX . . . CD

. . . . . . . . . . . . . . . . . . . . .

31 Black LCD Stereo M-ATX . . . DVD

32 Red LCD Mono ATX . . . CD

Table 4. Part–worth utilities.

mkl uikl mkl uikl

m11 1.41 m71 5.11
m12 2.53 m72 −1.35
m13 6.42 m73 2.46
m21 6.47 m81 −3.23
m22 7.45 m82 1.46
. . . . . . . . . . . .
m61 3.58 m122 3.16

The compound module configuration classification is shown in Table 5. For the
SMP problem information for the module instances, the compound modules, the product
variants and the product family can be introduced in Tables 6–10. We assume that the
information regarding the module instances of different products in each product family
are the same.

Table 5. Compound modules configuration classification.

R CMr mkl

R = 2 CM2
1

Motherboard, graphics card, CPU and hard disk are mandatory; the
others are to be optimized

CM2
2

Shell, RAM, keyboard and battery are mandatory; the others are to
be optimized

R = 3 CM3
1

Motherboard, graphics card and RAM are mandatory; the others are to
be optimized

CM3
2 Shell, CPU and hard disk are mandatory; the others are to be optimized

CM3
3

Display, speaker and optical drive are mandatory; the others are to
be optimized

R = 4 CM4
1 Display, speaker and RAM are mandatory; the others are to be optimized

CM4
2

Motherboard, graphics card and CPU are mandatory; the others are to
be optimized

CM4
3 RAM and hard disk are mandatory; the others are to be optimized

CM4
4 Keyboard is mandatory; the others are to be optimized
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Table 6. Raw material information for module instances.

mkl m cDB
jrklm cMF

klm cMV
klm sjrklm djrklm

m11 1 20 80 9 3 2
2 22 70 8 6 4

m12 1 25 80 8 8 3
2 23 60 9 1 10

m13 1 20 70 6 9 8
2 21 90 9 10 2

m21 1 260 300 20 50 32
2 260 310 21 20 23

m22 1 100 210 23 20 21
2 120 290 25 19 40

. . . . . . . . . . . . . . . . . . . . .
m121 1 200 190 10 10 17
m122 2 180 200 12 16 6

Table 7. Sustainable utilities information for module instances.

mkl m me
jklm mg

jklm n ϑnjklm be
njklm bg

njklm ξnjklm Rnjklm tnjklm

m11 1 0.9 0.5 1 0.5 2 1 1 23 5
. . . . . . . . . . . . . . . . . . . . .
4 0.2 7 0 0.9 25 6

2 0.7 0.9 1 0.4 6 4 0.8 20 4
. . . . . . . . . . . . . . . . . . . . .
4 0.7 4 1 1.1 23 5

m12 1 0.9 0.2 1 0.6 8 3 1.2 22 4
. . . . . . . . . . . . . . . . . . . . .
4 0.9 5 0 0.6 25 6

2 0.6 0.4 1 0.9 1 1 0.7 10 20
. . . . . . . . . . . . . . . . . . . . .
4 0.8 7 5 0.9 22 4

m13 1 0.7 0.6 1 0.7 9 8 1.1 10 3
. . . . . . . . . . . . . . . . . . . . .
4 0.6 10 4 1.2 11 1

2 0.9 0.9 1 0.7 4 2 1.2 10 30
. . . . . . . . . . . . . . . . . . . . .
4 0.5 3 6 1.0 12 27

m21 1 0.3 0.9 1 0.4 5 2 0.6 21 22
. . . . . . . . . . . . . . . . . . . . .
4 0.9 2 2 0.7 19 8

2 0.3 0.8 1 0.5 2 2 0.8 10 10
. . . . . . . . . . . . . . . . . . . . .
4 0.2 3 0 0.9 12 6

m22 1 0.7 0.2 1 0.4 2 2 1.0 22 9
. . . . . . . . . . . . . . . . . . . . .
4 0.2 2 3 0.9 18 7

2 0.8 0.5 1 0.2 1 4 1.2 10 2
. . . . . . . . . . . . . . . . . . . . .
4 0.3 2 3 0.9 8 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m121 1 0.8 0.8 1 0.5 1 7 0.8 25 9

. . . . . . . . . . . . . . . . . . . . .
4 0.6 8 2 0.9 29 7

m122 2 0.7 0.9 1 0.4 1 6 1.0 24 3
. . . . . . . . . . . . . . . . . .
4 0.6 5 7 1.1 28 8
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Table 8. Production information for compound modules.

CMr P cDC
jrp cCF

r cCV
r sjrp djrp

CM2
11 1 900 500 25 90 50

2 910 510 22 120 40
3 800 450 23 80 30

CM3
21 1 700 520 24 40 80

. . . . . . . . . . . . . . . . . . . . .
CM4

41 1 500 300 11 30 25
2 550 310 9 50 20
3 400 350 12 10 17
4 390 270 10 90 32

Table 9. Products recycling information.

Stage PV c cDP
jc cPF

j cPV
j sjc djc

Recycling

1 1 27 300 10 9 3

2 15 390 19 10 1

2 1 32 320 17 15 3

2 37 290 17 22 4

3 83 330 14 15 2

3 1 26 290 13 13 3

2 56 280 12 11 1

4 1 12 160 12 12 3

2 57 590 12 17 4

3 37 470 12 8 1

4 66 510 18 6 2

Table 10. End-of-life processing information for product family.

Stage e cDE
e cEF

j cEV
j se de

End of life
processing

1 23 300 73 130 34

2 24 500 70 150 32

3 25 100 68 200 19

4 22 300 77 150 22

5 20 200 79 180 47

6.2. Results of HJO Model

The developed solution method is adopted to solve the HJO model. The NGA is
realized by MATLAB 2023b on an Intel(R) Core (TM)i5 and 16 GB RAM 3733 MHz with the
following parameters: initial population scale is capped at 40; the crossover probability is
set at 0.80; the mutation probability is 0.05; the maximal number of iterations is 150; and
the precision of the binary code is set to 0.01, these settings are derived from experience
in the domain of computational experiments. Figure 9 displays the optimal results for
PFA design in SMPs. Various colors represent different PFA combinations across distinct
product variants. Figure 9 comprises an x-axis representing the number of iterations and a
y-axis representing the optimal value of the upper-level objective function for each scenario.
The iteration count is set to 150 generations with a computational time of 2593 s. Figure 10
presents the results of the optimal SMPs for PFA scheme (J = 3, R = 3). The x-axis represents
the number of iterations. The left y-axis illustrates the change in optimization results at the
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upper-level model, while the right y-axis depicts the change in optimization results at the
lower-level model. Throughout the entire optimization process, there is a mutual influence
between the upper and lower levels. The optimization outcomes of both the upper-level
and lower-level models fluctuate with each generation and begin to converge around the
95th generation, continuing until the end of the iterations. Both the leader and follower are
reluctant to further alter their decisions, which suggests that the two decision-makers have
reached a state of equilibrium.

Figure 9. Evolution processes with respect to different settings of (J, R).

Figure 10. Evolution processes for both upper-level and lower-level NGA in scenarios J = 3 and R = 3.

Table 11 shows the optimal SMPs for the laptop PFA design. For example, the first
product variant consists of three compound modules, while CM3

11 consists of four basic
modules. Each basic module selects the corresponding product configuration m42, m51, m73
and m84, and each module instance selects the corresponding raw material in the fourth
column. m42 selects the corresponding second raw material. CM3

11 selects the third produc-
tion method, product variant 1 selects the second recycling method, and the product family
selects the third end-of-life processing method.
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Table 11. Optimal laptop PFA considering SMPs.

PV CMr mkl yjrklm yjrp yjc ye

1 CM3
11 m42 2

3

2

3

m51 1

m73 3

m84 1

CM3
12 m13 1

2

m61 2

m93 1

m102 2

m111 1

CM3
13 m21 1

2

m31 1

m83 1

m103 2

m122 1

2 CM3
21 m41 1

3

3

m52 2

m71 2

m102 2

m113 1

CM3
22 m12 2

2

m62 2

m82 2

m93 1

m103 2

m113 1

CM3
23 m22 2

2

m32 3

m84 1

m101 2

m112 1

m121 2

3 CM3
31 m41 1

3 2

m51 1

m73 3

m81 1

m101 2

m111 1
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Table 11. Cont.

PV CMr mkl yjrklm yjrp yjc ye

CM3
32 m13 1

2

2 3

m62 2

m83 1

m92 2

m101 2

m113 1

CM3
33 m22 2

2

m32 3

m102 2

m112 1

m121 2

6.3. Sustainability Analysis for Problem

To validate the advantages of our proposed sustainable product design and manufac-
turing process, we conducted comparative experiments between our proposed optimization
design problem and a non-sustainable optimization design problem. In the non-sustainable
optimization design model (NS-HJO), our upper-level optimization objective is to maximize
the utility of unit cost. The lower-level optimization objective is to minimize the lifecy-
cle cost. This means that the upper-level no longer considers sustainable manufacturing
utilities, while the lower-level no longer considers consumption and emissions.

The experimental results are shown in Table 12. One can observe that the optimal
solutions for sustainable PFA schemes are different from those without sustainability
considerations. For the former, the optimal solution involves three product variants in a
product family, each with three combinations of compound modules. For the latter, the
optimal PFA design involves three product variants in a product family, each with two
combinations of compound modules. Additionally, compared with the non-sustainability
optimization problem, the utility of unit cost obtained by considering the sustainability
problem is increased by 155% from 2.0 × 10−1 to 5.1 × 10−1. This suggests that considering
sustainable product development activities not only meets consumer demands for the
product family but also fulfills the environmental requirements of society, government,
and customers.

Table 12. Result comparison of different methods for different settings of (J; R).

Approach (J, R) J = 2;
R = 2

J = 2;
R = 3

J = 2;
R = 4

J = 3;
R = 2

J = 3;
R = 3

J = 3;
R = 4

HJO U/C (×10−1) 4.1 3.8 4.6 4.9 5.1 4.6

Index (×1019) 4.9 4.8 4.8 4.9 4.7 4.7

NS-HJO
U/C (×101) 1.8 1.6 1.5 2.0 1.9 1.8

Index (×106) 1.5 1.4 1.4 1.5 1.5 1.4

IOM U/C (×10−1) 4.0 3.7 4.2 4.7 4.9 4.4

Index (×1019) 4.8 4.7 4.5 4.6 4.8 4.6

TSM U/C (×10−1) 3.6 3.5 4.1 4.6 4.7 4.4

Index (×1019) 4.9 4.8 4.5 4.5 4.8 4.9
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6.4. Performance Analysis for Model

To demonstrate the superiority of the HJO model when addressing the optimal SMPs
for PFA design, we compare the results obtained from this approach with those from two
commonly used methods: the integrated optimization method (IOM) [52] and the two-stage
method (TSM) [17]. The comparison results are presented in Table 12.

The IOM method is not based on the HJO mechanism of PFA and SMPs. The two
problems are combined into one problem and the PFA and SMP solutions are decided at
the same time. The leader and follower objective functions of the HJO act as the objective
functions in IOM method, and the decision variables and constraints of the leader and
follower models are used in the calculation of the IOM method. After obtaining the value
calculated by the IOM method, it is taken into the lower-level objective function in order to
calculate the lower-level model result. Compared with the integrated optimization method
in J = 3, R = 3, the utility of unit cost obtained by the HJO method is increased by 4.1%
from 4.9 × 10−1 to 5.1 × 10−1, while the comprehensive evaluation index is decreased
by 2.13% from 4.8 × 1019 to 4.7 × 1019. This is mainly because the HJO design method
prioritizes the cost-to-utility ratio of the leader, placing the comprehensive evaluation
indices of the follower after the PFA design. The first-mover advantage of PFA design in
bilevel decision-making promotes excellent quality and a favorable cost-to-utility ratio.
Conversely, in the IOM method, PFA design and SMP solutions are equally important.
Consequently, the product design department loses the first-mover advantage, resulting in
a lower utility of unit cost.

The TSM divides PFA design and SMP solutions into two stages. Firstly, the PFA is
optimized, and then SMP solutions are determined according to the PFA and configuration
results. In the first stage, based on historical data and existing data of channels such as
second-hand market, the product family manufacturing cost and utility are estimated
and optimized. In the second stage, according to the obtained PFA and configuration
results, the corresponding raw materials, production methods, recovery methods and end-
of-life process methods are selected, and sustainable comprehensive evaluation indices are
calculated. In the first stage, the objective function is still the upper-level objective function,
and the lower-level constraints are incorporated into the upper-level constraints. Compared
with the two-stage method in J = 3; R = 3, the unit cost-utility ratio obtained by the HJO
method increases by 8.5%, from 4.7 × 10−1 to 5.1 × 10−1. Additionally, the sustainable
comprehensive evaluation indices increase by 2.13%, from 4.8 × 1019 to 4.7 × 1019. This
is primarily attributed to the fact that the PFA cost and utility values are estimated solely
through historical and secondary market data analysis, without considering the impact of
SMPs on cost and utility. As a result, the PFA solution cannot be adjusted promptly when
the SMP plan changes.

6.5. Reliability Analysis for Algorithm

We validate the reliability for the NGA algorithm through two sets of experiments.

• Optimality Analysis: Particle swarm optimization (PSO) is a relatively recent heuristic
algorithm inspired by the social behavior of crowded species like bird flocking and
fish schooling, which has demonstrated success across a wide range of optimization
tasks [53]. Consequently, we undertake sensitivity analysis of the parameter µ in the
MNL choice rule on the PFA objective function value using both our proposed NGA
algorithm and the PSO algorithm within a bilevel solving framework in order to verify
the reliability of our proposed algorithm in terms of optimality. An experiment is
conducted by fixing µ as a series of constants ranging from 0 to 9 in increments of 1.
The parameter settings of PSO are as follows: The number of swarms is 1, the number
of particles is set to 20, and the number of generations is set to 100. The inertia weight
(w) is set to 0.4 and 0.6. The acceleration coefficients (c1 and c2) are set to 2, and rand1
and rand2 follow a standard normal distribution with a mean of 0 and a variance
of 1. As illustrated in Figure 11, it is apparent that the PFA objective function value
calculated by the nested PSO algorithm for 10 points ranging from 0 to 9 is inferior



Sustainability 2024, 16, 2727 24 of 27

to those obtained by the NGA. Consequently, we can infer that the reliability of our
proposed NGA in terms of optimality surpasses that of the PSO algorithm.

Figure 11. The reliability of µ on the MNL choice rule.

• Stability Analysis: The second set of experiments involves conducting multiple trials
for each value of the parameter µ in the MNL choice rule to determine deviation values.
Subsequently, we assess the model’s stability by comparing the range of deviation
intervals for each value. The shaded area depicts the error band from multiple trials.
As illustrated in Figure 11, the NGA displays varying levels of fluctuation across
different parameter values. There is a smaller range of fluctuation compared with the
PSO algorithm. Hence, we can infer that the reliability of our proposed NGA in terms
of stability outperforms that of the PSO algorithm.

7. Conclusions, Limitations and Future Research Directions
7.1. Conclusions

This study focuses on the HJO of PFA and SMP solutions. We delve into the decision
mechanism and achieve an HJO process for PFA and SMP decisions. AN HJO model imple-
menting the joint optimization of PFA and SMPs is designed, establishing heterogeneous
decision criteria for different decision-makers. The PFA plays a leader’s role, and it is
intended to select the optimal PFA that meets the needs of a specific market niche. The
choices of SMP solution are based on the design of the PFA and play a follower’s role. It is
intended to arrive at an optimal sustainable solution to meet government, consumer and
business requirements for sustainable development. An NGA that aligns with the HJO
model solving mechanism is developed. A laptop case is designed for the application of
our proposed model and algorithm. The effectiveness of the model and the reliability of
the algorithm are validated through comparative experiments. Based on the study results,
some valuable management insights can be concluded, as follows:

(1) Considering sustainable product family design and manufacturing processes is valu-
able. Drawing from the experimental outcomes in Section 6.3, it becomes evident
that, while integrating sustainability into the product family could potentially lead to
additional manufacturing and sustainable costs, these expenses pale in comparison
with the considerable boost in market share and competitive advantage. This result
is consistent with the prevailing research findings on green product innovation, fur-
ther validating the correctness and necessity of our consideration of sustainable PFA
design and manufacturing processes [54,55].

(2) Sustainable PFA design can be achieved by introducing sustainable utility functions.
The incorporation of sustainability can alter the module configuration choices in PFA
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design schemes [25]. Because the objective of the PFA design is often to maximize util-
ity per unit cost, the impact of sustainability on PFA can be described by constructing
sustainable utility models. The form of sustainable utility models (such as linear or
nonlinear) typically depends on the actual problem and decision preferences.

(3) The HJO mechanism is advantageous. The proposed HJO model is robust and excels
when dealing with the complex tradeoffs between the optimal PFA design decision
and SMP decision. Compared with the IOM and TSM, the HJO approach tends to
obtain better PFA solutions leveraging with the SMP decision. The study findings
provide an approach for the industry to address the joint optimization problem
concerning PFA design and SMPs.

(4) NGA is reliable. Through the comparative experiments in Section 6.5, we observe
that our algorithm exhibits favorable performance in both optimality and stability.
The nested algorithm framework we designed aligns with the approach for bi-level
optimization and is easily scalable. These research findings can serve as a basis for
subsequent studies on nested algorithms.

The proposed model and algorithm in this paper are especially suitable for the me-
chanical or electronic modular PFA design. For manufacturers that outsource SMPs to
outsourcers, our HJO model and NGA provides a new effective approach to handle the
joint optimization of PFA and SMPs.

7.2. Limitations and Future Research Directions

Several avenues for future research emerge from the limitations of the current study.
Initially, the focus of this study was the joint optimization of PFA design and of SMPs,

which constitutes a deterministic optimization problem. However, practical scenarios often
involve randomness, such as the case of the stochastic nature of product demands [19].
Therefore, further research could incorporate stochastic considerations into the HJO model.

Furthermore, our lower-level decisions focus on the selection of various schemes,
leading to the utilization of discrete decision variables. However, there are also important
sustainability-related decisions concerning continuous production, especially in processing
raw materials, such as metals, oil, and ore [56]. Ignoring the sustainability implications of
these factors is a limitation of this study. Therefore, we can further enhance the general-
izability of the problem by incorporating decisions related to continuous production into
the model.

Finally, genetic algorithms are sensitive to parameter settings, and optimizing these
parameters often requires multiple experiments, which is a limitation of this study. Cur-
rently, artificial intelligence algorithms are gaining popularity. Some researchers have com-
bined artificial intelligence algorithms with heuristics to improve their performance [57].
We can further consider integrating artificial intelligence algorithms, such as reinforce-
ment learning algorithms, into the NGA we designed in order to automatically optimize
parameter selections.
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