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Abstract: Fine particle concentrations measured in many underground rail systems around the
world consistently exceed those observed at ground level, potentially posing significant implications
for human health. While numerous authors have observed these high particle concentrations and
analyzed both their atomic compositions and health impacts, few have investigated devices and
technologies capable of reducing these high levels in underground environments. In light of these
considerations and recognizing the multifaceted challenges associated with maintaining air quality in
underground metro systems, the aim of this paper was to evaluate the usefulness and effectiveness of
utilizing rainwater for washing trains to abate particulate matter (PM) concentrations in underground
rail systems. To achieve this aim, an ad hoc case study was considered: the Naples Metro Line 1 (Italy),
which is characterized by 4.5 km in the ground level and 13.5 km underground. A measurement
campaign was carried out during storms of strong intensity through PM measuring instruments
placed on station platforms along the metro line. Precisely, the trains were washed by the rain in
the initial ground level section, and then continued wet within the underground one. The results
of this measurement campaign were compared with those of a comparable survey carried out
during average clear weather conditions, and the results showed that the train washing produces a
significant PM10 concentration reduction of up to about 60% in the underground environment. If
confirmed in other experimental settings, these results could lay the groundwork for the introduction
of structured washing system devices (e.g., periodically washing trains and/or tunnels) for the
reduction of PM concentration in underground metro systems. The present study sought to contribute
valuable insights towards sustainable and environmentally conscious approaches to addressing
air quality concerns, particularly by harnessing the natural resource of rainwater during specific
meteorological events.

Keywords: air quality; pollutant emission; particulate matter concentrations; underground metro
system; washing effect; quality in public transport

1. Introduction

Within urban areas and cities, the transport system assumes a central role in the
production of particulate matter (PM) emissions, responsible for 20–40% of the total pollu-
tant and environmental emissions (e.g., [1–5]). To mitigate this negative incidence, urban
planners emphasize the promotion of sustainable transport policies (e.g., [6–10]), such
as the development of high-quality underground metro systems or the retrofitting of the
traditional ones (e.g., [3,11–13]). Metro systems, which utilize an electrical power supply
and move a high number of passengers/day, represent an effective solution to curbing
greenhouse gas emissions. To enhance public transport utilization, factors such as service
quality (e.g., environmentally friendly operations, passenger well-being, terminal aesthetics,
assurance, and security) have emerged as pivotal elements in promoting urban sustainable
mobility (e.g., [14–16]).
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All around the world, numerous works of research consistently identified heightened
particulate matter concentrations in subways. The increased PM concentrations primarily
arise from the interaction between pantographs and catenaries. Furthermore, mechanical
wear and tear, as well as friction during brake–wheel–rail contact, contribute to this high PM
production. Finally, resuspension, induced by the piston effect and passenger movements
within stations and trains, jointly with the deterioration of construction materials, further
increase PM concentrations (e.g., [17–25]).

Despite the lack of specific decrees or legislation aimed at mitigating the emissions
in subway system environments, many of the PM measurement surveys exceed the limits
set at ground level by, for example, the European air quality directives for urban settings
(i.e., 50 and 25 µg/m3 for PM10 and PM2.5, respectively; [26,27]).

Although the available research results are not directly comparable due to differences
in the subway system’s age, ventilation system, tunnels, wheels category, braking mecha-
nism, operating methods, measuring devices and techniques, and environmental factors
(e.g., [3,11,25,28–31]), all the studies available in the literature, performed in several coun-
tries (Table 1), conclude that PM10 concentrations at underground station platforms are
systematically higher than those at the street level. For example, in Stockholm (2000) and
Rome (2010), the average PM10 concentrations on station platforms ranked among the high-
est worldwide, reaching average values equal to 469 µg/m3 and 409 µg/m3 (e.g., [32–34])
(with peak measures reaching 722 µg/m3 and 877 µg/m3, respectively). Other examples
include Paris and Barcelona where PM10 concentrations on station platforms were up to five
times higher compared to those measured in the outdoor environments (e.g., [24,35,36]).

In additional case studies, the measured PM10 concentrations were frequently found
to be “exceedingly poor to moderately high”, regarding the thresholds of the European air
quality regulations for urban areas. The average measures range within 170 to 262 µg/m3.
For example, PM10 concentrations of 288 µg/m3, 262 µg/m3, and 233 µg/m3 were mea-
sured in Budapest, Beijing, and Stockholm, respectively [37–39]. Different seasonal concen-
trations, ranging between 166 and 275 µg/m3, were observed in Tehran [35]. Comparable
results were obtained in Milan and Naples (Italy), with PM10 concentrations equal to
188 µg/m3 and 195 µg/m3, respectively [3,40]. Other examples with high measured PM10
concentrations are found in Paris (220 µg/m3), Prague (215 µg/m3), Budapest (180 µg/m3),
Athens (172 µg/m3), and Istanbul (170 µg/m3) [41–45]. Finally, “medium–low” concentra-
tions were measured in the underground metro systems of New York (142 µg/m3—[46]),
Seoul (108 µg/m3—[47]), Athens (107 µg/m3—[48]), Frankfurt (101 µg/m3—[49]), Tehran
(94 µg/m3—[50]), Taipei (66 and 55 µg/m3—[51] and [52], respectively), Los Angeles
(78 µg/m3—[53]), and Sydney (55 µg/m3—[54]).

As has been said, high PM10 concentrations in underground environments could
produce serious problems for human health both for passengers and for train workers.
Recent epidemiological studies have highlighted that the prolonged exposition to high
PM10 concentrations is closely linked to mortality imputable to ischemic heart disease,
dysrhythmia, cardiac arrest, and heart failure (e.g., [55–62]). Research conducted by [63–67]
investigated this issue, concluding that exposure to high PM10 concentrations was also
linked to pulmonary lesions and neurodegenerative anomalies. Ref. [68] provided evidence
indicating that particles within subway environments exhibit a toxicity level around eight
times higher, as also demonstrated by [69,70]. Furthermore, Refs. [71–73] concluded that
high PM10 concentrations could produce inflammatory damage to the human organism.

Hence, underground metro systems are highly unfavorable environments for humans.
Evidence from the literature highlighted effective system devices to mitigate these high
PM concentrations, including platform screen doors (e.g., [74,75]), powerful ventilation
systems (e.g., [24]), and tunnel washing (e.g., [32,76]), as discussed in Section 2.
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Table 1. Average PM10 concentrations on subway station platforms in various underground rail
metro systems (in parentheses is the year of the study).

Case Study Outdoor PM10
[µg/m3]

Station Platform
PM10 [µg/m3] References

Athens (2014–2012) - 107–172 [44–48]
Barcelona (2011) - 346 [24]

Beijing (2016) 275 262 [38]
Budapest (2014–2006) - 180–288 [37–43]

Frankfurt (2013) - 101 [49]
Istanbul (2007) 70 170 [45]

Los Angeles (2010) 31 78 [53]
Milan (2012) 37 188 [40]

Naples (2014) 24 195 [3]
New York (2021) 29 142 [46]
Paris (2013–2006) - 220–320 [36–41]

Prague (2013) - 215 [42]
Rome (2012–2010) 32 407–409 [22–34]
Seoul (2015–2004) 43–155 108–359 [32,47–77]
Shanghai (2013) 190 457 [33]

Stockholm (2017–2000) 16–55 233–469 [32–39]
Sydney (2015) 20 55 [54]

Taipei (2007–2016) 60 55–66 [51,52]
Tehran (2018–2011) 72–139 94–275 [35–50]

Starting from these considerations, the aim of this paper was to investigate and
quantify the usefulness of washing trains with rainwater (e.g., [78]) during storms of
strong intensity (whose specific definition is reported in Section 2.3) in reducing PM10
concentrations in underground metro systems. To achieve this aim, an ad hoc case study
was considered: the Naples Metro Line 1 (Italy), which is characterized by 4.5 km in
the ground level and 13.5 km underground. Precisely, a measurement campaign was
carried out during storms of strong intensity through PM measuring instruments (portable
photometric Aerocet 531 sample) placed on station platforms along the metro line. Precisely,
the trains were washed by the rain in the initial ground level section, and then continued
wet within the underground one. To assess the impact of this “washing effect”, the results
of this measurement campaign were compared with those of a comparable one carried out
with average clear weather conditions.

2. Materials and Methods
2.1. System Devices to Reduce Particulate Matter Concentrations in Underground Metro Systems

Within the topic of sustainable mobility, although the literature abounds with case
studies focusing on measuring elevated PM concentrations and their implications for
human health, there is a noticeable lack of studies addressing effective devices able to reduce
these concentrations in railway metro systems. This gap contrasts with the transportation
planning literature, which emphasizes the importance of proposing strategic actions and
projects to enhance the sustainable development of the transport system (e.g., [6–9]).

Within the topic of our research, only a few studies have investigated the usefulness
of system devices in reducing PM concentrations in underground environments. For in-
stance, as noted by [3,25,47], some “spatial factors” have been identified for retrofitting
metro systems. One such factor is the implementation of platform screen door systems
(Figure 1a) that could significantly reduce PM concentrations in station platforms, estab-
lishing a barrier between the platform and the train/tunnel, as observed in Taipei [51],
Seoul [74], and Los Angeles [53]. This solution has been recently adopted in many metro
systems around the world, both in new constructions and in the retrofitting of existing
ones. For instance, until 2008, the Seoul underground railway system exhibited elevated
PM10 concentrations (359 µg/m3—[77]). However, after implementing the platform screen
door system, measurements by [74,75] showed a notable reduction in average PM10 con-
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centrations (103 and 97 µg/m3, respectively). Analogous results were observed in the
Barcelona subway, where a newly underground railway line equipped with platform
screen doors measured particulate matter levels two/three times lower than those in a
traditional metro system (e.g., [24]). Furthermore, there are other additional useful tools
for reducing elevated concentrations of microparticles, as highlighted in [3]. Among these,
there are the high-quality (powerful) ventilation systems (Figure 1b) and the washing of
the station platforms, trains, and tunnels (Figure 1c,d), that allow us to reduce particle
resuspension, which is one of the main causes of these high PM concentrations in the un-
derground environment (e.g., [7,24,32,51,52,74–76]). For example, Ref. [32] investigated the
tunnel “washing effect” in the Stockholm subway system. The authors, employing water
to wash the tunnel surfaces and railway lines between the platforms of the subway system,
observed that, during a few days, the concentrations were reduced by approximately 13%.
This result suggests that new particles originating day by day from the tunnel surfaces
and tracks play a relatively minor role in influencing the overall PM10 concentrations,
compared to the resuspension of particles caused by the passage of trains and generated in
the previous weeks/months (and which can be removed from the tunnels with washing).
Additionally, Ref. [76] investigated the impact of the tunnel washing on PM levels. The
results revealed a reduction of about 46% in PM10 concentrations 3.5 months after the tunnel
washing. This post-cleaning PM10 reduction could be linked to porous tunnel walls acting
as particle sinks and/or the air-conditioning system filtering effect. Finally, by removing
these particles from surfaces and preventing them from becoming airborne, the practice
of washing trains/tunnels can contribute to cleaner and healthier air in the underground
environments. Furthermore, when combined with other measures, such as an efficient
ventilation system, it can be a comprehensive strategy for addressing air quality concerns
in underground metro systems.
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Figure 1. (a) Example of platform screen door system; (b) example of ventilation system; (c) example
of tunnel washing; and (d) example of train washing (source: exemplary images generated
through AI).
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2.2. Case Study

As stated above, the proposed ad hoc case study is the Naples Metro Line 1 (Figure 2).
Naples, situated in southern Italy, is a historic city renowned for its rich cultural her-
itage and stunning coastal views. With a population of about 1 million and a density
of 8566 people/km2, Naples is one of the largest cities in Italy, offering ideal conditions
for a railway-centric public transportation system that aligns with Transit-Oriented De-
velopment principles (e.g., [79–81]). Firstly, the dense urban fabric and high population
density of Naples underscore the importance of public transportation for mobility and road
congestion reduction. Secondly, Naples’ geographical features, characterized by its coastal
location and surrounding hills, necessitate a transportation network capable of navigating
varied terrain and connecting disparate neighborhoods.
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Figure 2. The Line 1 of the Naples metro system.

The Naples Metro Line 1, also known as the “Collinear Metro”, stands as one of the
primary arteries in the city’s public transport system. It connects the northern part of the city
(Piscinola/Scampia) with the main multimodal rail station Garibaldi, the major interchange
transport node of the city, with both national and high-speed rail services. Weekdays see
approximately 242 train trips/day from 6:00 to 23:00, with an average frequency of one
train every 8 min, operating at an average speed of 32 km/h. It serves about 135 thousand
travelers on weekdays and 50 thousand on weekends and holidays.

With a length of approximately 18.7 km, the Line 1 weaves its way through diverse
areas of Naples, operating both in underground and at ground level landscapes. Notable
for its path following the city’s orographic profile, the line encounters varying altitudes
and terrains. It presents 19 stations (3 in ground level and 16 underground). Beginning
in the northern part of the city, named Piscinola, situated at a relatively higher elevation
compared to the historic city center, Line 1 travels southward through residential and
commercial districts while gradually descending along its path. En route, the line passes
through different areas, including historic neighborhoods such as the Historic Center of
Naples, distinguished by its narrow streets and ancient structures (Figure 2).

The line mainly operates underground, mitigating traffic congestion and respecting
the densely constructed nature of the surroundings. Line 1 emerges above ground level
in the peripheral neighborhoods, traversing open expanses and industrial zones. This
elevated stretch provides passengers with a panoramic view of the city and its environs.
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The journey ended at Garibaldi Station, a pivotal railway and transportation hub located
near the historic center and major suburban rail services. Overall, Line 1 of the Naples
Metro serves as a crucial link connecting diverse areas of the city, along varying elevations,
and offering passengers a travel experience that mirrors the distinctive topography and
geography of Naples.

Based on the representation proposed in [40], the features of the stations are outlined
in Figure 3, detailing aspects such as tunnel type, platform depth, and surrounding urban
traffic conditions.
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Figure 3. Features of the subway systems surveyed of Naples Metro Line 1 and the area nearby the
station entry.

Figures 4 and 5 illustrate the layouts of the metro stations involved in the survey, in
addition to the configuration and operational mode of the ventilation and air-conditioning
systems. This is relevant because the separation form between the public area (including
platform and station hall) of the subway station and the tunnel of the section, in addition
to the form and operation mode of the ventilation system, could affect the number of fine
particles from different sources entering the public area of the station.
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2.3. Monitoring Method

Taking into account the brief sampling duration (e.g., before and during the train
arrivals) and the live measurements performed in different station platforms, the instrument
used to measure PM10 concentrations was the portable photometric Aerocet 531 sampler
(for more information, refer to [83,84]). This device is an automatic device capable of
measuring PM1, PM2.5, PM7, PM10, and total suspended particulates, using a time interval
of 2 min.

Consistent with comparative literature studies, this measurement device is frequently used
for assessing PM concentrations, both inside or outside (for instance, see references [3,85–91]).
To minimize potential inaccuracies in measurement, the Aerocet 531 device underwent
calibration utilizing certified data provided by the Campania Environmental Agency (CEA).
The CEA unit is a LSPM10 airborne particulate continuous monitor and a sampler (UniTec,
Auckland, New Zealand, 2014), and was factory-calibrated and furnished with a gravimet-
ric module consisting of 16 membrane filters, each with a diameter of 47 mm. This configu-
ration enables particulate sampling rigorously along the lines of EN12341/14 standard [92].
In most of the monitoring stations in the Campania region, these analyzers are frequently
utilized and give hourly average data, which provides real-time information on pollution
levels. With the aim to calibrate the photometric PM10 concentrations measured with
the Aerocet 531 with those measured by the CEA unit, four outdoor CEA units near the
monitored stations and one indoor CEA unit were considered.

Mass conversion is made using standard conversion factors or using suitable fac-
tors based on unique conditions (K-Factor). K-factor was estimated regressing Aerocet
531 PM10 measures on the corresponding gravimetric units. PM10 data were reliable with a
determination coefficient of about 90%. Calibration results allow us to adjust PM10 values
measured with the Aerocet 531 through the equations (K-factor):

Corrected PM10 = 1.16 × Measured PM10
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Refs. [86,90] obtained calibration factors comparable to the estimated one.
Furthermore, ambient aerosol particles can change their physical and chemical proper-

ties, including size and refractive index, by either absorbing or releasing water in response
to changes in relative humidity at the atmosphere. Consequently, in environments with
elevated humidity levels, it becomes essential to comprehend the processes of water uptake
and release by aerosol particles to address issues related to light scattering (e.g., [93]).
Studies have noted that exceptionally high ambient relative humidity levels can induce
unusually high readings of particulate matter when using certain sampling techniques
(e.g., [94]). For instance, as demonstrated by [93,95], elevated relative humidity values lead
to inaccuracies in measurements conducted by light-scattering particle analysis devices.
Ref. [94] suggested the application of a specific correction factor to adjust particulate matter
levels when relative humidity exceeds 70%. However, in our case study, because of the mea-
sured relative humidity was consistently below 55%, which indicates a dry environment, it
was not necessary to take any specific measures to adjust the particulate matter readings.

2.4. Measurement Campaigns

As said, to investigate the usefulness of washing trains with rainwater during storms
of strong intensity to reduce PM10 concentrations in subways, two measurement campaigns
were carried out at station platforms during a morning rush hour within the peak period
between 7:00 a.m. and 9:30 a.m. Four business days for both the survey were selected in
December 2022 and January 2023, characterized by different weather conditions, collecting
both the “dry sample” (average seasonal clear weather conditions) and the “wet sample”
(adverse weather conditions during storms of strong intensity). Furthermore, the logging
interval for the surveys was set at 2 min, surveying 120 sample data (1 rush hour × 4 days
× 30 samples/h) for each station and survey (wet and dry). The instrument was always
located in the center of the platform.

Both the surveys were performed on the station platform of five main metro stations
of Line 1 (one in ground level, Piscinola, and four in underground environments, Vanvitelli,
Museo, Dante, and Garibaldi). More specifically:

1. the first campaign was performed on clear weather conditions with surface temper-
atures ranging within the seasonal average values (12–18 ◦C), low wind conditions
(wind speed < 10 km/h), and outdoor relative humidity ranging from 50% to 60%
(Table 2). During this survey, the average measured temperatures on the underground
station platform were moderately higher (16–17 ◦C) than those at street level and the
relative humidity was, as said, always lower than 55%;

2. the second campaign was performed during a storm of strong intensity, with surface
temperatures ranging between 10–15 ◦C and mid-high wind conditions (wind speed
> 10 km/h), with a relative humidity ranging from 65% to 85% (Table 2). Precisely,
this survey was carried out for one hour within the morning peak period during a
storm of strong intensity and starting the measures 30 min after the onset of adverse
weather conditions.

To make the experiment repeatable in other contexts, it was defined as “storm of strong
intensity”, an atmospheric phenomenon accompanied by one or more of the following
weather phenomena (source: [96]): point cumulation greater than 40 mm/1 h, intensity
greater than 20 mm/15 min, large hailstorms (grain diameter > 1 cm), high number of
lightning strikes, and violent blows of wind and/or whirlwinds.

Furthermore, some preliminary pre-tests were also performed with variable sampler
height. Precisely, these pre-tests were performed in the middle station of the line “Museo”;
the instrument was always located in the center of the platform and four different sampler
heights were tested: 1.40 m, 1.50 m, 1.60 m, and 1.70 m. The logging interval for the surveys
was set at 2 min, surveying 30 sample data during a rush hour for each sampler height
tested. Results indicate no significant average differences between measures relative to the
different height (not reported for reason of brevity).
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Table 2. Outdoor environment conditions measured in dry and wet conditions (December 2022–
January 2023) (source: [97]).

Outdoor Environment Conditions Dry Conditions Wet Conditions

Surface temperature 12–18 ◦C 10–15 ◦C
Wind speed 3–9 km/h 14–26 km/h

Relative humidity 50–70% 65–85%

3. Results and Discussion

The main results of the surveys are reported in Table 3 and in Figure 6. The average
PM10 concentration measured in dry conditions ranged from 20.7 to 191.6 µg/m3 with a
standard deviation from 6.2 to 33.5 µg/m3. By contrast, the average PM10 concentration
measured in wet conditions is significantly higher, ranging between 16.0 and 99.4 µg/m3

with a standard deviation of between 4.0 and 28.5 µg/m3 (Table 3). To verify the statistical
difference between the values measured in dry and wet conditions, a sample t-test was con-
ducted with a confidence level set at 95%. The results show that concentrations measured
in dry conditions are significantly different from those measured in wet conditions (results
are not reported for reason of brevity).

Table 3. Distribution of indoor (station platform) PM10 mass concentrations (µg/m3) measured in
dry and wet conditions (December 2022–January 2023).

Station
Platform

Dry Sample Wet Sample (Wet − Dry)/Dry

Min Average Max St. Dev. Min Average Max St. Dev.
Average

Percentage
Variation

Piscinola 15.0 20.7 47.0 10.1 12.0 16.0 24.0 4.0 −22.6%
Vanvitelli 132.0 176.3 220.0 33.0 50.0 73.9 88.0 12.1 −58.1%

Museo 141.0 179.9 255.0 33.5 54.0 82.5 127.0 23.8 −54.1%
Dante 175.0 183.0 190.0 6.2 72.0 84.5 100.0 10.6 −53.8%

Garibaldi 172.0 191.6 220.0 17.6 58.0 99.4 145.0 28.5 −48.1%
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Figure 6. Distribution of indoor (station platform) PM10 average mass concentrations (in µg/m3)
measured in wet and dry conditions (December 2022–January 2023).

These findings indicate a significant reduction between the concentrations measured
during the wet conditions against the dry ones, with the percentage difference ranging
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from −22.6% to −58.1%. These results are comparable to those obtained, for example,
by [76], who measured a 45.9% reduction in PM10 concentrations after the washing of the
metro system tunnel in Taiwan.

It is interesting to note how this observed “washing effect” gradually decreases as the
train moves along the underground section (as highlighted by the yellow dotted arrow
in Figure 6). For example, the PM10 concentrations measured in wet conditions are about
58.1% lower than those measured in dry conditions at the first Vanvitelli station investigated
(the closest to the ground level section); by contrast, this reduction decreases up to the
48.1% at the final Garibaldi station of the line.

4. Conclusions

Much of the research carried out around the world has extensively documented the
presence of elevated PM concentrations within underground metro systems. This result has
raised significant concerns within the scientific community due to the potential health risks
associated with prolonged exposure to fine particles, which can adversely affect respiratory
health and exacerbate conditions such as asthma and cardiovascular disease.

Despite the wealth of literature addressing this issue, there is a relevant gap in specific
studies in terms of useful system devices able to reduce PM concentrations in underground
metro systems. While these devices are discussed in the literature, there is a lack of
comprehensive research elucidating their effectiveness in reducing PM concentrations and
mitigating associated health risks. Considering this gap, the primary objective of this study
was to investigate the efficacy of the trains’ “washing effect” through rainwater during
storms of strong intensity. This experimental field aimed to assess the potential benefits
of utilizing natural resources to mitigate PM concentrations within underground metro
systems, with a specific focus on Naples’ Metro Line 1 (Italy).

To achieve the research aim, a comprehensive survey campaign was planned and
executed in December 2022 and January 2023 in Naples. Through data collection and a
comparative analysis between stormy and clear weather conditions, the study revealed a
significant reduction in PM10 concentrations by up to 60%, as a result of the train washing.
This notable reduction in PM10 concentrations underscores the potential effectiveness of
utilizing rainwater to mitigate air pollution within underground metro networks. Moreover,
the study found that the cleaning impact of rainwater washing was particularly pronounced
when the train entered the first underground station (−58%), gradually decreasing, with
up to a 48% reduction, upon reaching the last station.

These promising findings are specific to the Neapolitan case study but, if confirmed
in other comparable case studies (i.e., characterized by metro lines partially in the ground
level and partially underground), could lay the basis for future public transportation
construction and suggestions for relevant government departments. Among these, there
could be, for example, the periodic train and tunnel washing to effectively mitigate the PM
levels and/or the adoption of the platform screen door system to create a barrier between
the high PM concentrations and the passengers waiting for the train.

Furthermore, such research holds significant implications for public health and tech-
nological innovation, as it directly impacts the well-being of passengers, nearby residents,
and workers.

Starting from the findings of this research, some technological suggestions for dust
reduction for the case study of Naples could also be individuated as, for example, the devel-
opment of a platform screen doors system or a high-quality ventilation system connected to
a PM monitoring system that amplifies filtration when PM levels exceeded attention limits.

Moreover, future research developments also aim to assess the influence of external
wind speed at the ground level and atmospheric humidity conditions on the estimated
“washing effect”. It is expected that outdoor wind can only marginally influence PM
concentration levels at station platforms, as these stations are very deep underground
(between 16 and 40 m). By contrast, humidity probably could influence the results of the
measurements since ambient aerosol particles can absorb or release water in response
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to changes in relative humidity. This could alter their physical and chemical properties,
affecting their light-scattering behavior.

Finally, future research efforts in this field should prioritize optimizing existing tech-
nologies, developing novel solutions, and evaluating the long-term impacts on health
and the environment. In summary, investigating and implementing systems to reduce
PM concentrations in subways offer tangible benefits for urban community health and
well-being, while also advancing scientific and technological progress in air purification
and environmental sustainability.
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